Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  icccmplem2 Structured version   Visualization version   GIF version

Theorem icccmplem2 23034
 Description: Lemma for icccmp 23036. (Contributed by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
icccmp.1 𝐽 = (topGen‘ran (,))
icccmp.2 𝑇 = (𝐽t (𝐴[,]𝐵))
icccmp.3 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
icccmp.4 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
icccmp.5 (𝜑𝐴 ∈ ℝ)
icccmp.6 (𝜑𝐵 ∈ ℝ)
icccmp.7 (𝜑𝐴𝐵)
icccmp.8 (𝜑𝑈𝐽)
icccmp.9 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
icccmp.10 (𝜑𝑉𝑈)
icccmp.11 (𝜑𝐶 ∈ ℝ+)
icccmp.12 (𝜑 → (𝐺(ball‘𝐷)𝐶) ⊆ 𝑉)
icccmp.13 𝐺 = sup(𝑆, ℝ, < )
icccmp.14 𝑅 = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵)
Assertion
Ref Expression
icccmplem2 (𝜑𝐵𝑆)
Distinct variable groups:   𝑥,𝑧,𝐵   𝑥,𝐴,𝑧   𝑥,𝐷   𝑥,𝑇,𝑧   𝑧,𝐽   𝑥,𝑈,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑧)   𝐶(𝑥,𝑧)   𝐷(𝑧)   𝑅(𝑥,𝑧)   𝑆(𝑥,𝑧)   𝐺(𝑥,𝑧)   𝐽(𝑥)   𝑉(𝑥,𝑧)

Proof of Theorem icccmplem2
Dummy variables 𝑡 𝑛 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 icccmp.13 . . . . . . 7 𝐺 = sup(𝑆, ℝ, < )
2 icccmp.4 . . . . . . . . . 10 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧}
3 ssrab2 3908 . . . . . . . . . 10 {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} ⊆ (𝐴[,]𝐵)
42, 3eqsstri 3854 . . . . . . . . 9 𝑆 ⊆ (𝐴[,]𝐵)
5 icccmp.5 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
6 icccmp.6 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
7 iccssre 12567 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
85, 6, 7syl2anc 579 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
94, 8syl5ss 3832 . . . . . . . 8 (𝜑𝑆 ⊆ ℝ)
10 icccmp.1 . . . . . . . . . . 11 𝐽 = (topGen‘ran (,))
11 icccmp.2 . . . . . . . . . . 11 𝑇 = (𝐽t (𝐴[,]𝐵))
12 icccmp.3 . . . . . . . . . . 11 𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))
13 icccmp.7 . . . . . . . . . . 11 (𝜑𝐴𝐵)
14 icccmp.8 . . . . . . . . . . 11 (𝜑𝑈𝐽)
15 icccmp.9 . . . . . . . . . . 11 (𝜑 → (𝐴[,]𝐵) ⊆ 𝑈)
1610, 11, 12, 2, 5, 6, 13, 14, 15icccmplem1 23033 . . . . . . . . . 10 (𝜑 → (𝐴𝑆 ∧ ∀𝑦𝑆 𝑦𝐵))
1716simpld 490 . . . . . . . . 9 (𝜑𝐴𝑆)
1817ne0d 4150 . . . . . . . 8 (𝜑𝑆 ≠ ∅)
1916simprd 491 . . . . . . . . 9 (𝜑 → ∀𝑦𝑆 𝑦𝐵)
20 brralrspcev 4946 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ ∀𝑦𝑆 𝑦𝐵) → ∃𝑛 ∈ ℝ ∀𝑦𝑆 𝑦𝑛)
216, 19, 20syl2anc 579 . . . . . . . 8 (𝜑 → ∃𝑛 ∈ ℝ ∀𝑦𝑆 𝑦𝑛)
22 suprcl 11337 . . . . . . . 8 ((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑦𝑆 𝑦𝑛) → sup(𝑆, ℝ, < ) ∈ ℝ)
239, 18, 21, 22syl3anc 1439 . . . . . . 7 (𝜑 → sup(𝑆, ℝ, < ) ∈ ℝ)
241, 23syl5eqel 2863 . . . . . 6 (𝜑𝐺 ∈ ℝ)
25 icccmp.11 . . . . . . 7 (𝜑𝐶 ∈ ℝ+)
2625rphalfcld 12193 . . . . . 6 (𝜑 → (𝐶 / 2) ∈ ℝ+)
2724, 26ltaddrpd 12214 . . . . 5 (𝜑𝐺 < (𝐺 + (𝐶 / 2)))
2826rpred 12181 . . . . . . 7 (𝜑 → (𝐶 / 2) ∈ ℝ)
2924, 28readdcld 10406 . . . . . 6 (𝜑 → (𝐺 + (𝐶 / 2)) ∈ ℝ)
3024, 29ltnled 10523 . . . . 5 (𝜑 → (𝐺 < (𝐺 + (𝐶 / 2)) ↔ ¬ (𝐺 + (𝐶 / 2)) ≤ 𝐺))
3127, 30mpbid 224 . . . 4 (𝜑 → ¬ (𝐺 + (𝐶 / 2)) ≤ 𝐺)
32 icccmp.14 . . . . . . . . . 10 𝑅 = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵)
3329, 6ifcld 4352 . . . . . . . . . 10 (𝜑 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ∈ ℝ)
3432, 33syl5eqel 2863 . . . . . . . . 9 (𝜑𝑅 ∈ ℝ)
35 suprub 11338 . . . . . . . . . . . . . 14 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑦𝑆 𝑦𝑛) ∧ 𝐴𝑆) → 𝐴 ≤ sup(𝑆, ℝ, < ))
369, 18, 21, 17, 35syl31anc 1441 . . . . . . . . . . . . 13 (𝜑𝐴 ≤ sup(𝑆, ℝ, < ))
3736, 1syl6breqr 4928 . . . . . . . . . . . 12 (𝜑𝐴𝐺)
3824, 29, 27ltled 10524 . . . . . . . . . . . 12 (𝜑𝐺 ≤ (𝐺 + (𝐶 / 2)))
395, 24, 29, 37, 38letrd 10533 . . . . . . . . . . 11 (𝜑𝐴 ≤ (𝐺 + (𝐶 / 2)))
40 breq2 4890 . . . . . . . . . . . 12 ((𝐺 + (𝐶 / 2)) = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) → (𝐴 ≤ (𝐺 + (𝐶 / 2)) ↔ 𝐴 ≤ if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵)))
41 breq2 4890 . . . . . . . . . . . 12 (𝐵 = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) → (𝐴𝐵𝐴 ≤ if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵)))
4240, 41ifboth 4345 . . . . . . . . . . 11 ((𝐴 ≤ (𝐺 + (𝐶 / 2)) ∧ 𝐴𝐵) → 𝐴 ≤ if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵))
4339, 13, 42syl2anc 579 . . . . . . . . . 10 (𝜑𝐴 ≤ if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵))
4443, 32syl6breqr 4928 . . . . . . . . 9 (𝜑𝐴𝑅)
45 min2 12333 . . . . . . . . . . 11 (((𝐺 + (𝐶 / 2)) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ≤ 𝐵)
4629, 6, 45syl2anc 579 . . . . . . . . . 10 (𝜑 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ≤ 𝐵)
4732, 46syl5eqbr 4921 . . . . . . . . 9 (𝜑𝑅𝐵)
48 elicc2 12550 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑅 ∈ (𝐴[,]𝐵) ↔ (𝑅 ∈ ℝ ∧ 𝐴𝑅𝑅𝐵)))
495, 6, 48syl2anc 579 . . . . . . . . 9 (𝜑 → (𝑅 ∈ (𝐴[,]𝐵) ↔ (𝑅 ∈ ℝ ∧ 𝐴𝑅𝑅𝐵)))
5034, 44, 47, 49mpbir3and 1399 . . . . . . . 8 (𝜑𝑅 ∈ (𝐴[,]𝐵))
5124, 25ltsubrpd 12213 . . . . . . . . . . 11 (𝜑 → (𝐺𝐶) < 𝐺)
5251, 1syl6breq 4927 . . . . . . . . . 10 (𝜑 → (𝐺𝐶) < sup(𝑆, ℝ, < ))
5325rpred 12181 . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ)
5424, 53resubcld 10803 . . . . . . . . . . 11 (𝜑 → (𝐺𝐶) ∈ ℝ)
55 suprlub 11341 . . . . . . . . . . 11 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑦𝑆 𝑦𝑛) ∧ (𝐺𝐶) ∈ ℝ) → ((𝐺𝐶) < sup(𝑆, ℝ, < ) ↔ ∃𝑣𝑆 (𝐺𝐶) < 𝑣))
569, 18, 21, 54, 55syl31anc 1441 . . . . . . . . . 10 (𝜑 → ((𝐺𝐶) < sup(𝑆, ℝ, < ) ↔ ∃𝑣𝑆 (𝐺𝐶) < 𝑣))
5752, 56mpbid 224 . . . . . . . . 9 (𝜑 → ∃𝑣𝑆 (𝐺𝐶) < 𝑣)
58 oveq2 6930 . . . . . . . . . . . . . 14 (𝑥 = 𝑣 → (𝐴[,]𝑥) = (𝐴[,]𝑣))
5958sseq1d 3851 . . . . . . . . . . . . 13 (𝑥 = 𝑣 → ((𝐴[,]𝑥) ⊆ 𝑧 ↔ (𝐴[,]𝑣) ⊆ 𝑧))
6059rexbidv 3237 . . . . . . . . . . . 12 (𝑥 = 𝑣 → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑧))
6160, 2elrab2 3576 . . . . . . . . . . 11 (𝑣𝑆 ↔ (𝑣 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑧))
62 unieq 4679 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 𝑧 = 𝑤)
6362sseq2d 3852 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → ((𝐴[,]𝑣) ⊆ 𝑧 ↔ (𝐴[,]𝑣) ⊆ 𝑤))
6463cbvrexv 3368 . . . . . . . . . . . . 13 (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑧 ↔ ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑤)
65 simpr1 1205 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑤 ∈ (𝒫 𝑈 ∩ Fin))
66 elin 4019 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ↔ (𝑤 ∈ 𝒫 𝑈𝑤 ∈ Fin))
6765, 66sylib 210 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑤 ∈ 𝒫 𝑈𝑤 ∈ Fin))
6867simpld 490 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑤 ∈ 𝒫 𝑈)
6968elpwid 4391 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑤𝑈)
70 simpll 757 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝜑)
71 icccmp.10 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑉𝑈)
7270, 71syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑉𝑈)
7372snssd 4571 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → {𝑉} ⊆ 𝑈)
7469, 73unssd 4012 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) ⊆ 𝑈)
75 vex 3401 . . . . . . . . . . . . . . . . . . . 20 𝑤 ∈ V
76 snex 5140 . . . . . . . . . . . . . . . . . . . 20 {𝑉} ∈ V
7775, 76unex 7233 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∪ {𝑉}) ∈ V
7877elpw 4385 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∪ {𝑉}) ∈ 𝒫 𝑈 ↔ (𝑤 ∪ {𝑉}) ⊆ 𝑈)
7974, 78sylibr 226 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) ∈ 𝒫 𝑈)
8067simprd 491 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑤 ∈ Fin)
81 snfi 8326 . . . . . . . . . . . . . . . . . 18 {𝑉} ∈ Fin
82 unfi 8515 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ Fin ∧ {𝑉} ∈ Fin) → (𝑤 ∪ {𝑉}) ∈ Fin)
8380, 81, 82sylancl 580 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) ∈ Fin)
8479, 83elind 4021 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) ∈ (𝒫 𝑈 ∩ Fin))
85 simplr2 1234 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → (𝐴[,]𝑣) ⊆ 𝑤)
86 ssun1 3999 . . . . . . . . . . . . . . . . . . . . . . 23 𝑤 ⊆ ( 𝑤𝑉)
8785, 86syl6ss 3833 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → (𝐴[,]𝑣) ⊆ ( 𝑤𝑉))
8870, 5syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝐴 ∈ ℝ)
8970, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑅 ∈ ℝ)
90 elicc2 12550 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝑅)))
9188, 89, 90syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑡 ∈ (𝐴[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝑅)))
9291biimpa 470 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝑅))
9392simp1d 1133 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝑡 ∈ ℝ)
9493adantrr 707 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → 𝑡 ∈ ℝ)
9592simp2d 1134 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝐴𝑡)
9695adantrr 707 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → 𝐴𝑡)
97 simprr 763 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → 𝑡𝑣)
9870, 8syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝐴[,]𝐵) ⊆ ℝ)
99 simplr 759 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑣 ∈ (𝐴[,]𝐵))
10098, 99sseldd 3822 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → 𝑣 ∈ ℝ)
101 elicc2 12550 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝑣) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝑣)))
10288, 100, 101syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑡 ∈ (𝐴[,]𝑣) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝑣)))
103102adantr 474 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → (𝑡 ∈ (𝐴[,]𝑣) ↔ (𝑡 ∈ ℝ ∧ 𝐴𝑡𝑡𝑣)))
10494, 96, 97, 103mpbir3and 1399 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → 𝑡 ∈ (𝐴[,]𝑣))
10587, 104sseldd 3822 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡𝑣)) → 𝑡 ∈ ( 𝑤𝑉))
106105expr 450 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → (𝑡𝑣𝑡 ∈ ( 𝑤𝑉)))
10770adantr 474 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝜑)
108 icccmp.12 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝐺(ball‘𝐷)𝐶) ⊆ 𝑉)
109107, 108syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺(ball‘𝐷)𝐶) ⊆ 𝑉)
11093adantrr 707 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ∈ ℝ)
111107, 54syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺𝐶) ∈ ℝ)
112100adantr 474 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑣 ∈ ℝ)
113 simplr3 1236 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺𝐶) < 𝑣)
114 simprr 763 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑣 < 𝑡)
115111, 112, 110, 113, 114lttrd 10537 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺𝐶) < 𝑡)
116107, 34syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑅 ∈ ℝ)
11724, 53readdcld 10406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐺 + 𝐶) ∈ ℝ)
118107, 117syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺 + 𝐶) ∈ ℝ)
11992simp3d 1135 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝑡𝑅)
120119adantrr 707 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡𝑅)
121 min1 12332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝐺 + (𝐶 / 2)) ∈ ℝ ∧ 𝐵 ∈ ℝ) → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ≤ (𝐺 + (𝐶 / 2)))
12229, 6, 121syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ≤ (𝐺 + (𝐶 / 2)))
12332, 122syl5eqbr 4921 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝑅 ≤ (𝐺 + (𝐶 / 2)))
124 rphalflt 12168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝐶 ∈ ℝ+ → (𝐶 / 2) < 𝐶)
12525, 124syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (𝐶 / 2) < 𝐶)
12628, 53, 24, 125ltadd2dd 10535 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (𝐺 + (𝐶 / 2)) < (𝐺 + 𝐶))
12734, 29, 117, 123, 126lelttrd 10534 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑅 < (𝐺 + 𝐶))
128107, 127syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑅 < (𝐺 + 𝐶))
129110, 116, 118, 120, 128lelttrd 10534 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 < (𝐺 + 𝐶))
130 rexr 10422 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺𝐶) ∈ ℝ → (𝐺𝐶) ∈ ℝ*)
131 rexr 10422 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 + 𝐶) ∈ ℝ → (𝐺 + 𝐶) ∈ ℝ*)
132 elioo2 12528 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐺𝐶) ∈ ℝ* ∧ (𝐺 + 𝐶) ∈ ℝ*) → (𝑡 ∈ ((𝐺𝐶)(,)(𝐺 + 𝐶)) ↔ (𝑡 ∈ ℝ ∧ (𝐺𝐶) < 𝑡𝑡 < (𝐺 + 𝐶))))
133130, 131, 132syl2an 589 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐺𝐶) ∈ ℝ ∧ (𝐺 + 𝐶) ∈ ℝ) → (𝑡 ∈ ((𝐺𝐶)(,)(𝐺 + 𝐶)) ↔ (𝑡 ∈ ℝ ∧ (𝐺𝐶) < 𝑡𝑡 < (𝐺 + 𝐶))))
134111, 118, 133syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝑡 ∈ ((𝐺𝐶)(,)(𝐺 + 𝐶)) ↔ (𝑡 ∈ ℝ ∧ (𝐺𝐶) < 𝑡𝑡 < (𝐺 + 𝐶))))
135110, 115, 129, 134mpbir3and 1399 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ∈ ((𝐺𝐶)(,)(𝐺 + 𝐶)))
136107, 24syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝐺 ∈ ℝ)
137107, 25syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝐶 ∈ ℝ+)
138137rpred 12181 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝐶 ∈ ℝ)
13912bl2ioo 23003 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐺 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐺(ball‘𝐷)𝐶) = ((𝐺𝐶)(,)(𝐺 + 𝐶)))
140136, 138, 139syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺(ball‘𝐷)𝐶) = ((𝐺𝐶)(,)(𝐺 + 𝐶)))
141135, 140eleqtrrd 2862 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ∈ (𝐺(ball‘𝐷)𝐶))
142109, 141sseldd 3822 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡𝑉)
143 elun2 4004 . . . . . . . . . . . . . . . . . . . . . 22 (𝑡𝑉𝑡 ∈ ( 𝑤𝑉))
144142, 143syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ∈ ( 𝑤𝑉))
145144expr 450 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → (𝑣 < 𝑡𝑡 ∈ ( 𝑤𝑉)))
146100adantr 474 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝑣 ∈ ℝ)
147 lelttric 10483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑡 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑡𝑣𝑣 < 𝑡))
14893, 146, 147syl2anc 579 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → (𝑡𝑣𝑣 < 𝑡))
149106, 145, 148mpjaod 849 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝑡 ∈ ( 𝑤𝑉))
150149ex 403 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑡 ∈ (𝐴[,]𝑅) → 𝑡 ∈ ( 𝑤𝑉)))
151150ssrdv 3827 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝐴[,]𝑅) ⊆ ( 𝑤𝑉))
152 uniun 4692 . . . . . . . . . . . . . . . . . 18 (𝑤 ∪ {𝑉}) = ( 𝑤 {𝑉})
153 unisng 4686 . . . . . . . . . . . . . . . . . . . 20 (𝑉𝑈 {𝑉} = 𝑉)
15472, 153syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → {𝑉} = 𝑉)
155154uneq2d 3990 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → ( 𝑤 {𝑉}) = ( 𝑤𝑉))
156152, 155syl5eq 2826 . . . . . . . . . . . . . . . . 17 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) = ( 𝑤𝑉))
157151, 156sseqtr4d 3861 . . . . . . . . . . . . . . . 16 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → (𝐴[,]𝑅) ⊆ (𝑤 ∪ {𝑉}))
158 unieq 4679 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑤 ∪ {𝑉}) → 𝑦 = (𝑤 ∪ {𝑉}))
159158sseq2d 3852 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑤 ∪ {𝑉}) → ((𝐴[,]𝑅) ⊆ 𝑦 ↔ (𝐴[,]𝑅) ⊆ (𝑤 ∪ {𝑉})))
160159rspcev 3511 . . . . . . . . . . . . . . . 16 (((𝑤 ∪ {𝑉}) ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑅) ⊆ (𝑤 ∪ {𝑉})) → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)
16184, 157, 160syl2anc 579 . . . . . . . . . . . . . . 15 (((𝜑𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ 𝑤 ∧ (𝐺𝐶) < 𝑣)) → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)
1621613exp2 1416 . . . . . . . . . . . . . 14 ((𝜑𝑣 ∈ (𝐴[,]𝐵)) → (𝑤 ∈ (𝒫 𝑈 ∩ Fin) → ((𝐴[,]𝑣) ⊆ 𝑤 → ((𝐺𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦))))
163162rexlimdv 3212 . . . . . . . . . . . . 13 ((𝜑𝑣 ∈ (𝐴[,]𝐵)) → (∃𝑤 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑤 → ((𝐺𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)))
16464, 163syl5bi 234 . . . . . . . . . . . 12 ((𝜑𝑣 ∈ (𝐴[,]𝐵)) → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑧 → ((𝐺𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)))
165164expimpd 447 . . . . . . . . . . 11 (𝜑 → ((𝑣 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑧) → ((𝐺𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)))
16661, 165syl5bi 234 . . . . . . . . . 10 (𝜑 → (𝑣𝑆 → ((𝐺𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)))
167166rexlimdv 3212 . . . . . . . . 9 (𝜑 → (∃𝑣𝑆 (𝐺𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦))
16857, 167mpd 15 . . . . . . . 8 (𝜑 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦)
169 oveq2 6930 . . . . . . . . . . 11 (𝑣 = 𝑅 → (𝐴[,]𝑣) = (𝐴[,]𝑅))
170169sseq1d 3851 . . . . . . . . . 10 (𝑣 = 𝑅 → ((𝐴[,]𝑣) ⊆ 𝑦 ↔ (𝐴[,]𝑅) ⊆ 𝑦))
171170rexbidv 3237 . . . . . . . . 9 (𝑣 = 𝑅 → (∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑦 ↔ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦))
172 unieq 4679 . . . . . . . . . . . . . 14 (𝑧 = 𝑦 𝑧 = 𝑦)
173172sseq2d 3852 . . . . . . . . . . . . 13 (𝑧 = 𝑦 → ((𝐴[,]𝑣) ⊆ 𝑧 ↔ (𝐴[,]𝑣) ⊆ 𝑦))
174173cbvrexv 3368 . . . . . . . . . . . 12 (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑧 ↔ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑦)
17560, 174syl6bb 279 . . . . . . . . . . 11 (𝑥 = 𝑣 → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧 ↔ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑦))
176175cbvrabv 3396 . . . . . . . . . 10 {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ 𝑧} = {𝑣 ∈ (𝐴[,]𝐵) ∣ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑦}
1772, 176eqtri 2802 . . . . . . . . 9 𝑆 = {𝑣 ∈ (𝐴[,]𝐵) ∣ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ 𝑦}
178171, 177elrab2 3576 . . . . . . . 8 (𝑅𝑆 ↔ (𝑅 ∈ (𝐴[,]𝐵) ∧ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ 𝑦))
17950, 168, 178sylanbrc 578 . . . . . . 7 (𝜑𝑅𝑆)
180 suprub 11338 . . . . . . 7 (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑦𝑆 𝑦𝑛) ∧ 𝑅𝑆) → 𝑅 ≤ sup(𝑆, ℝ, < ))
1819, 18, 21, 179, 180syl31anc 1441 . . . . . 6 (𝜑𝑅 ≤ sup(𝑆, ℝ, < ))
182181, 1syl6breqr 4928 . . . . 5 (𝜑𝑅𝐺)
183 iftrue 4313 . . . . . . 7 ((𝐺 + (𝐶 / 2)) ≤ 𝐵 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) = (𝐺 + (𝐶 / 2)))
18432, 183syl5eq 2826 . . . . . 6 ((𝐺 + (𝐶 / 2)) ≤ 𝐵𝑅 = (𝐺 + (𝐶 / 2)))
185184breq1d 4896 . . . . 5 ((𝐺 + (𝐶 / 2)) ≤ 𝐵 → (𝑅𝐺 ↔ (𝐺 + (𝐶 / 2)) ≤ 𝐺))
186182, 185syl5ibcom 237 . . . 4 (𝜑 → ((𝐺 + (𝐶 / 2)) ≤ 𝐵 → (𝐺 + (𝐶 / 2)) ≤ 𝐺))
18731, 186mtod 190 . . 3 (𝜑 → ¬ (𝐺 + (𝐶 / 2)) ≤ 𝐵)
188 iffalse 4316 . . . 4 (¬ (𝐺 + (𝐶 / 2)) ≤ 𝐵 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) = 𝐵)
18932, 188syl5eq 2826 . . 3 (¬ (𝐺 + (𝐶 / 2)) ≤ 𝐵𝑅 = 𝐵)
190187, 189syl 17 . 2 (𝜑𝑅 = 𝐵)
191190, 179eqeltrrd 2860 1 (𝜑𝐵𝑆)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 386   ∨ wo 836   ∧ w3a 1071   = wceq 1601   ∈ wcel 2107   ≠ wne 2969  ∀wral 3090  ∃wrex 3091  {crab 3094   ∪ cun 3790   ∩ cin 3791   ⊆ wss 3792  ∅c0 4141  ifcif 4307  𝒫 cpw 4379  {csn 4398  ∪ cuni 4671   class class class wbr 4886   × cxp 5353  ran crn 5356   ↾ cres 5357   ∘ ccom 5359  ‘cfv 6135  (class class class)co 6922  Fincfn 8241  supcsup 8634  ℝcr 10271   + caddc 10275  ℝ*cxr 10410   < clt 10411   ≤ cle 10412   − cmin 10606   / cdiv 11032  2c2 11430  ℝ+crp 12137  (,)cioo 12487  [,]cicc 12490  abscabs 14381   ↾t crest 16467  topGenctg 16484  ballcbl 20129 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-map 8142  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-xadd 12258  df-ioo 12491  df-icc 12494  df-seq 13120  df-exp 13179  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137 This theorem is referenced by:  icccmplem3  23035
 Copyright terms: Public domain W3C validator