| Step | Hyp | Ref
| Expression |
| 1 | | icccmp.13 |
. . . . . . 7
⊢ 𝐺 = sup(𝑆, ℝ, < ) |
| 2 | | icccmp.4 |
. . . . . . . . . 10
⊢ 𝑆 = {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} |
| 3 | 2 | ssrab3 4062 |
. . . . . . . . 9
⊢ 𝑆 ⊆ (𝐴[,]𝐵) |
| 4 | | icccmp.5 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 5 | | icccmp.6 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 6 | | iccssre 13451 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| 7 | 4, 5, 6 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 8 | 3, 7 | sstrid 3975 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ⊆ ℝ) |
| 9 | | icccmp.1 |
. . . . . . . . . . 11
⊢ 𝐽 = (topGen‘ran
(,)) |
| 10 | | icccmp.2 |
. . . . . . . . . . 11
⊢ 𝑇 = (𝐽 ↾t (𝐴[,]𝐵)) |
| 11 | | icccmp.3 |
. . . . . . . . . . 11
⊢ 𝐷 = ((abs ∘ − )
↾ (ℝ × ℝ)) |
| 12 | | icccmp.7 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 13 | | icccmp.8 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑈 ⊆ 𝐽) |
| 14 | | icccmp.9 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ∪ 𝑈) |
| 15 | 9, 10, 11, 2, 4, 5,
12, 13, 14 | icccmplem1 24767 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴 ∈ 𝑆 ∧ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵)) |
| 16 | 15 | simpld 494 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 17 | 16 | ne0d 4322 |
. . . . . . . 8
⊢ (𝜑 → 𝑆 ≠ ∅) |
| 18 | 15 | simprd 495 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵) |
| 19 | | brralrspcev 5184 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ ∧
∀𝑦 ∈ 𝑆 𝑦 ≤ 𝐵) → ∃𝑛 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑛) |
| 20 | 5, 18, 19 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑛 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑛) |
| 21 | 8, 17, 20 | suprcld 12210 |
. . . . . . 7
⊢ (𝜑 → sup(𝑆, ℝ, < ) ∈
ℝ) |
| 22 | 1, 21 | eqeltrid 2839 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ ℝ) |
| 23 | | icccmp.11 |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈
ℝ+) |
| 24 | 23 | rphalfcld 13068 |
. . . . . 6
⊢ (𝜑 → (𝐶 / 2) ∈
ℝ+) |
| 25 | 22, 24 | ltaddrpd 13089 |
. . . . 5
⊢ (𝜑 → 𝐺 < (𝐺 + (𝐶 / 2))) |
| 26 | 24 | rpred 13056 |
. . . . . . 7
⊢ (𝜑 → (𝐶 / 2) ∈ ℝ) |
| 27 | 22, 26 | readdcld 11269 |
. . . . . 6
⊢ (𝜑 → (𝐺 + (𝐶 / 2)) ∈ ℝ) |
| 28 | 22, 27 | ltnled 11387 |
. . . . 5
⊢ (𝜑 → (𝐺 < (𝐺 + (𝐶 / 2)) ↔ ¬ (𝐺 + (𝐶 / 2)) ≤ 𝐺)) |
| 29 | 25, 28 | mpbid 232 |
. . . 4
⊢ (𝜑 → ¬ (𝐺 + (𝐶 / 2)) ≤ 𝐺) |
| 30 | | icccmp.14 |
. . . . . . . . . 10
⊢ 𝑅 = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) |
| 31 | 27, 5 | ifcld 4552 |
. . . . . . . . . 10
⊢ (𝜑 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ∈ ℝ) |
| 32 | 30, 31 | eqeltrid 2839 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ ℝ) |
| 33 | 8, 17, 20, 16 | suprubd 12209 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ≤ sup(𝑆, ℝ, < )) |
| 34 | 33, 1 | breqtrrdi 5166 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ≤ 𝐺) |
| 35 | 22, 27, 25 | ltled 11388 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ≤ (𝐺 + (𝐶 / 2))) |
| 36 | 4, 22, 27, 34, 35 | letrd 11397 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ≤ (𝐺 + (𝐶 / 2))) |
| 37 | | breq2 5128 |
. . . . . . . . . . . 12
⊢ ((𝐺 + (𝐶 / 2)) = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) → (𝐴 ≤ (𝐺 + (𝐶 / 2)) ↔ 𝐴 ≤ if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵))) |
| 38 | | breq2 5128 |
. . . . . . . . . . . 12
⊢ (𝐵 = if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) → (𝐴 ≤ 𝐵 ↔ 𝐴 ≤ if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵))) |
| 39 | 37, 38 | ifboth 4545 |
. . . . . . . . . . 11
⊢ ((𝐴 ≤ (𝐺 + (𝐶 / 2)) ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵)) |
| 40 | 36, 12, 39 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ≤ if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵)) |
| 41 | 40, 30 | breqtrrdi 5166 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ≤ 𝑅) |
| 42 | | min2 13211 |
. . . . . . . . . . 11
⊢ (((𝐺 + (𝐶 / 2)) ∈ ℝ ∧ 𝐵 ∈ ℝ) →
if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ≤ 𝐵) |
| 43 | 27, 5, 42 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ≤ 𝐵) |
| 44 | 30, 43 | eqbrtrid 5159 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ≤ 𝐵) |
| 45 | | elicc2 13433 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑅 ∈ (𝐴[,]𝐵) ↔ (𝑅 ∈ ℝ ∧ 𝐴 ≤ 𝑅 ∧ 𝑅 ≤ 𝐵))) |
| 46 | 4, 5, 45 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝑅 ∈ (𝐴[,]𝐵) ↔ (𝑅 ∈ ℝ ∧ 𝐴 ≤ 𝑅 ∧ 𝑅 ≤ 𝐵))) |
| 47 | 32, 41, 44, 46 | mpbir3and 1343 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ (𝐴[,]𝐵)) |
| 48 | 22, 23 | ltsubrpd 13088 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 − 𝐶) < 𝐺) |
| 49 | 48, 1 | breqtrdi 5165 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐺 − 𝐶) < sup(𝑆, ℝ, < )) |
| 50 | 23 | rpred 13056 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 51 | 22, 50 | resubcld 11670 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 − 𝐶) ∈ ℝ) |
| 52 | | suprlub 12211 |
. . . . . . . . . . 11
⊢ (((𝑆 ⊆ ℝ ∧ 𝑆 ≠ ∅ ∧ ∃𝑛 ∈ ℝ ∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑛) ∧ (𝐺 − 𝐶) ∈ ℝ) → ((𝐺 − 𝐶) < sup(𝑆, ℝ, < ) ↔ ∃𝑣 ∈ 𝑆 (𝐺 − 𝐶) < 𝑣)) |
| 53 | 8, 17, 20, 51, 52 | syl31anc 1375 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐺 − 𝐶) < sup(𝑆, ℝ, < ) ↔ ∃𝑣 ∈ 𝑆 (𝐺 − 𝐶) < 𝑣)) |
| 54 | 49, 53 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑣 ∈ 𝑆 (𝐺 − 𝐶) < 𝑣) |
| 55 | | oveq2 7418 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑣 → (𝐴[,]𝑥) = (𝐴[,]𝑣)) |
| 56 | 55 | sseq1d 3995 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑣 → ((𝐴[,]𝑥) ⊆ ∪ 𝑧 ↔ (𝐴[,]𝑣) ⊆ ∪ 𝑧)) |
| 57 | 56 | rexbidv 3165 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑣 → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ ∪ 𝑧)) |
| 58 | 57, 2 | elrab2 3679 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ 𝑆 ↔ (𝑣 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ ∪ 𝑧)) |
| 59 | | unieq 4899 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 = 𝑤 → ∪ 𝑧 = ∪
𝑤) |
| 60 | 59 | sseq2d 3996 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑤 → ((𝐴[,]𝑣) ⊆ ∪ 𝑧 ↔ (𝐴[,]𝑣) ⊆ ∪ 𝑤)) |
| 61 | 60 | cbvrexvw 3225 |
. . . . . . . . . . . . 13
⊢
(∃𝑧 ∈
(𝒫 𝑈 ∩
Fin)(𝐴[,]𝑣) ⊆ ∪ 𝑧 ↔ ∃𝑤 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ ∪ 𝑤) |
| 62 | | simpr1 1195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → 𝑤 ∈ (𝒫 𝑈 ∩ Fin)) |
| 63 | | elin 3947 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ↔ (𝑤 ∈ 𝒫 𝑈 ∧ 𝑤 ∈ Fin)) |
| 64 | 62, 63 | sylib 218 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → (𝑤 ∈ 𝒫 𝑈 ∧ 𝑤 ∈ Fin)) |
| 65 | 64 | simpld 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → 𝑤 ∈ 𝒫 𝑈) |
| 66 | 65 | elpwid 4589 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → 𝑤 ⊆ 𝑈) |
| 67 | | simpll 766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → 𝜑) |
| 68 | | icccmp.10 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝑉 ∈ 𝑈) |
| 69 | 67, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → 𝑉 ∈ 𝑈) |
| 70 | 69 | snssd 4790 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → {𝑉} ⊆ 𝑈) |
| 71 | 66, 70 | unssd 4172 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) ⊆ 𝑈) |
| 72 | | vex 3468 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝑤 ∈ V |
| 73 | | snex 5411 |
. . . . . . . . . . . . . . . . . . . 20
⊢ {𝑉} ∈ V |
| 74 | 72, 73 | unex 7743 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∪ {𝑉}) ∈ V |
| 75 | 74 | elpw 4584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∪ {𝑉}) ∈ 𝒫 𝑈 ↔ (𝑤 ∪ {𝑉}) ⊆ 𝑈) |
| 76 | 71, 75 | sylibr 234 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) ∈ 𝒫 𝑈) |
| 77 | 64 | simprd 495 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → 𝑤 ∈ Fin) |
| 78 | | snfi 9062 |
. . . . . . . . . . . . . . . . . 18
⊢ {𝑉} ∈ Fin |
| 79 | | unfi 9190 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑤 ∈ Fin ∧ {𝑉} ∈ Fin) → (𝑤 ∪ {𝑉}) ∈ Fin) |
| 80 | 77, 78, 79 | sylancl 586 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) ∈ Fin) |
| 81 | 76, 80 | elind 4180 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → (𝑤 ∪ {𝑉}) ∈ (𝒫 𝑈 ∩ Fin)) |
| 82 | | simplr2 1217 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡 ≤ 𝑣)) → (𝐴[,]𝑣) ⊆ ∪ 𝑤) |
| 83 | | ssun1 4158 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ∪ 𝑤
⊆ (∪ 𝑤 ∪ 𝑉) |
| 84 | 82, 83 | sstrdi 3976 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡 ≤ 𝑣)) → (𝐴[,]𝑣) ⊆ (∪ 𝑤 ∪ 𝑉)) |
| 85 | 67, 4 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → 𝐴 ∈ ℝ) |
| 86 | 67, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → 𝑅 ∈ ℝ) |
| 87 | | elicc2 13433 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐴 ∈ ℝ ∧ 𝑅 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
| 88 | 85, 86, 87 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → (𝑡 ∈ (𝐴[,]𝑅) ↔ (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅))) |
| 89 | 88 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑅)) |
| 90 | 89 | simp1d 1142 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝑡 ∈ ℝ) |
| 91 | 90 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡 ≤ 𝑣)) → 𝑡 ∈ ℝ) |
| 92 | 89 | simp2d 1143 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝐴 ≤ 𝑡) |
| 93 | 92 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡 ≤ 𝑣)) → 𝐴 ≤ 𝑡) |
| 94 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡 ≤ 𝑣)) → 𝑡 ≤ 𝑣) |
| 95 | 67, 7 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → (𝐴[,]𝐵) ⊆ ℝ) |
| 96 | | simplr 768 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → 𝑣 ∈ (𝐴[,]𝐵)) |
| 97 | 95, 96 | sseldd 3964 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → 𝑣 ∈ ℝ) |
| 98 | | elicc2 13433 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑡 ∈ (𝐴[,]𝑣) ↔ (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑣))) |
| 99 | 85, 97, 98 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → (𝑡 ∈ (𝐴[,]𝑣) ↔ (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑣))) |
| 100 | 99 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡 ≤ 𝑣)) → (𝑡 ∈ (𝐴[,]𝑣) ↔ (𝑡 ∈ ℝ ∧ 𝐴 ≤ 𝑡 ∧ 𝑡 ≤ 𝑣))) |
| 101 | 91, 93, 94, 100 | mpbir3and 1343 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡 ≤ 𝑣)) → 𝑡 ∈ (𝐴[,]𝑣)) |
| 102 | 84, 101 | sseldd 3964 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑡 ≤ 𝑣)) → 𝑡 ∈ (∪ 𝑤 ∪ 𝑉)) |
| 103 | 102 | expr 456 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → (𝑡 ≤ 𝑣 → 𝑡 ∈ (∪ 𝑤 ∪ 𝑉))) |
| 104 | 67 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝜑) |
| 105 | | icccmp.12 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝐺(ball‘𝐷)𝐶) ⊆ 𝑉) |
| 106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺(ball‘𝐷)𝐶) ⊆ 𝑉) |
| 107 | 90 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ∈ ℝ) |
| 108 | 104, 51 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺 − 𝐶) ∈ ℝ) |
| 109 | 97 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑣 ∈ ℝ) |
| 110 | | simplr3 1218 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺 − 𝐶) < 𝑣) |
| 111 | | simprr 772 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑣 < 𝑡) |
| 112 | 108, 109,
107, 110, 111 | lttrd 11401 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺 − 𝐶) < 𝑡) |
| 113 | 104, 32 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑅 ∈ ℝ) |
| 114 | 22, 50 | readdcld 11269 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝐺 + 𝐶) ∈ ℝ) |
| 115 | 104, 114 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺 + 𝐶) ∈ ℝ) |
| 116 | 89 | simp3d 1144 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝑡 ≤ 𝑅) |
| 117 | 116 | adantrr 717 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ≤ 𝑅) |
| 118 | | min1 13210 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (((𝐺 + (𝐶 / 2)) ∈ ℝ ∧ 𝐵 ∈ ℝ) →
if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ≤ (𝐺 + (𝐶 / 2))) |
| 119 | 27, 5, 118 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) ≤ (𝐺 + (𝐶 / 2))) |
| 120 | 30, 119 | eqbrtrid 5159 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝑅 ≤ (𝐺 + (𝐶 / 2))) |
| 121 | | rphalflt 13043 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝐶 ∈ ℝ+
→ (𝐶 / 2) < 𝐶) |
| 122 | 23, 121 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (𝐶 / 2) < 𝐶) |
| 123 | 26, 50, 22, 122 | ltadd2dd 11399 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → (𝐺 + (𝐶 / 2)) < (𝐺 + 𝐶)) |
| 124 | 32, 27, 114, 120, 123 | lelttrd 11398 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑅 < (𝐺 + 𝐶)) |
| 125 | 104, 124 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑅 < (𝐺 + 𝐶)) |
| 126 | 107, 113,
115, 117, 125 | lelttrd 11398 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 < (𝐺 + 𝐶)) |
| 127 | | rexr 11286 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐺 − 𝐶) ∈ ℝ → (𝐺 − 𝐶) ∈
ℝ*) |
| 128 | | rexr 11286 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝐺 + 𝐶) ∈ ℝ → (𝐺 + 𝐶) ∈
ℝ*) |
| 129 | | elioo2 13408 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝐺 − 𝐶) ∈ ℝ* ∧ (𝐺 + 𝐶) ∈ ℝ*) → (𝑡 ∈ ((𝐺 − 𝐶)(,)(𝐺 + 𝐶)) ↔ (𝑡 ∈ ℝ ∧ (𝐺 − 𝐶) < 𝑡 ∧ 𝑡 < (𝐺 + 𝐶)))) |
| 130 | 127, 128,
129 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐺 − 𝐶) ∈ ℝ ∧ (𝐺 + 𝐶) ∈ ℝ) → (𝑡 ∈ ((𝐺 − 𝐶)(,)(𝐺 + 𝐶)) ↔ (𝑡 ∈ ℝ ∧ (𝐺 − 𝐶) < 𝑡 ∧ 𝑡 < (𝐺 + 𝐶)))) |
| 131 | 108, 115,
130 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝑡 ∈ ((𝐺 − 𝐶)(,)(𝐺 + 𝐶)) ↔ (𝑡 ∈ ℝ ∧ (𝐺 − 𝐶) < 𝑡 ∧ 𝑡 < (𝐺 + 𝐶)))) |
| 132 | 107, 112,
126, 131 | mpbir3and 1343 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ∈ ((𝐺 − 𝐶)(,)(𝐺 + 𝐶))) |
| 133 | 104, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝐺 ∈ ℝ) |
| 134 | 104, 23 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝐶 ∈
ℝ+) |
| 135 | 134 | rpred 13056 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝐶 ∈ ℝ) |
| 136 | 11 | bl2ioo 24736 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐺 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐺(ball‘𝐷)𝐶) = ((𝐺 − 𝐶)(,)(𝐺 + 𝐶))) |
| 137 | 133, 135,
136 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → (𝐺(ball‘𝐷)𝐶) = ((𝐺 − 𝐶)(,)(𝐺 + 𝐶))) |
| 138 | 132, 137 | eleqtrrd 2838 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ∈ (𝐺(ball‘𝐷)𝐶)) |
| 139 | 106, 138 | sseldd 3964 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ∈ 𝑉) |
| 140 | | elun2 4163 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑡 ∈ 𝑉 → 𝑡 ∈ (∪ 𝑤 ∪ 𝑉)) |
| 141 | 139, 140 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ (𝑡 ∈ (𝐴[,]𝑅) ∧ 𝑣 < 𝑡)) → 𝑡 ∈ (∪ 𝑤 ∪ 𝑉)) |
| 142 | 141 | expr 456 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → (𝑣 < 𝑡 → 𝑡 ∈ (∪ 𝑤 ∪ 𝑉))) |
| 143 | 97 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝑣 ∈ ℝ) |
| 144 | | lelttric 11347 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑡 ∈ ℝ ∧ 𝑣 ∈ ℝ) → (𝑡 ≤ 𝑣 ∨ 𝑣 < 𝑡)) |
| 145 | 90, 143, 144 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → (𝑡 ≤ 𝑣 ∨ 𝑣 < 𝑡)) |
| 146 | 103, 142,
145 | mpjaod 860 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) ∧ 𝑡 ∈ (𝐴[,]𝑅)) → 𝑡 ∈ (∪ 𝑤 ∪ 𝑉)) |
| 147 | 146 | ex 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → (𝑡 ∈ (𝐴[,]𝑅) → 𝑡 ∈ (∪ 𝑤 ∪ 𝑉))) |
| 148 | 147 | ssrdv 3969 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → (𝐴[,]𝑅) ⊆ (∪
𝑤 ∪ 𝑉)) |
| 149 | | uniun 4911 |
. . . . . . . . . . . . . . . . . 18
⊢ ∪ (𝑤
∪ {𝑉}) = (∪ 𝑤
∪ ∪ {𝑉}) |
| 150 | | unisng 4906 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑉 ∈ 𝑈 → ∪ {𝑉} = 𝑉) |
| 151 | 69, 150 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → ∪ {𝑉} = 𝑉) |
| 152 | 151 | uneq2d 4148 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → (∪ 𝑤 ∪ ∪ {𝑉})
= (∪ 𝑤 ∪ 𝑉)) |
| 153 | 149, 152 | eqtrid 2783 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → ∪ (𝑤 ∪ {𝑉}) = (∪ 𝑤 ∪ 𝑉)) |
| 154 | 148, 153 | sseqtrrd 4001 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → (𝐴[,]𝑅) ⊆ ∪
(𝑤 ∪ {𝑉})) |
| 155 | | unieq 4899 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑤 ∪ {𝑉}) → ∪ 𝑦 = ∪
(𝑤 ∪ {𝑉})) |
| 156 | 155 | sseq2d 3996 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑤 ∪ {𝑉}) → ((𝐴[,]𝑅) ⊆ ∪ 𝑦 ↔ (𝐴[,]𝑅) ⊆ ∪
(𝑤 ∪ {𝑉}))) |
| 157 | 156 | rspcev 3606 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∪ {𝑉}) ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑅) ⊆ ∪
(𝑤 ∪ {𝑉})) → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ ∪ 𝑦) |
| 158 | 81, 154, 157 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) ∧ (𝑤 ∈ (𝒫 𝑈 ∩ Fin) ∧ (𝐴[,]𝑣) ⊆ ∪ 𝑤 ∧ (𝐺 − 𝐶) < 𝑣)) → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ ∪ 𝑦) |
| 159 | 158 | 3exp2 1355 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) → (𝑤 ∈ (𝒫 𝑈 ∩ Fin) → ((𝐴[,]𝑣) ⊆ ∪ 𝑤 → ((𝐺 − 𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ ∪ 𝑦)))) |
| 160 | 159 | rexlimdv 3140 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) → (∃𝑤 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ ∪ 𝑤 → ((𝐺 − 𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ ∪ 𝑦))) |
| 161 | 61, 160 | biimtrid 242 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑣 ∈ (𝐴[,]𝐵)) → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ ∪ 𝑧 → ((𝐺 − 𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ ∪ 𝑦))) |
| 162 | 161 | expimpd 453 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑣 ∈ (𝐴[,]𝐵) ∧ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ ∪ 𝑧) → ((𝐺 − 𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ ∪ 𝑦))) |
| 163 | 58, 162 | biimtrid 242 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑣 ∈ 𝑆 → ((𝐺 − 𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ ∪ 𝑦))) |
| 164 | 163 | rexlimdv 3140 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑣 ∈ 𝑆 (𝐺 − 𝐶) < 𝑣 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ ∪ 𝑦)) |
| 165 | 54, 164 | mpd 15 |
. . . . . . . 8
⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ ∪ 𝑦) |
| 166 | | oveq2 7418 |
. . . . . . . . . . 11
⊢ (𝑣 = 𝑅 → (𝐴[,]𝑣) = (𝐴[,]𝑅)) |
| 167 | 166 | sseq1d 3995 |
. . . . . . . . . 10
⊢ (𝑣 = 𝑅 → ((𝐴[,]𝑣) ⊆ ∪ 𝑦 ↔ (𝐴[,]𝑅) ⊆ ∪ 𝑦)) |
| 168 | 167 | rexbidv 3165 |
. . . . . . . . 9
⊢ (𝑣 = 𝑅 → (∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ ∪ 𝑦 ↔ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ ∪ 𝑦)) |
| 169 | | unieq 4899 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑦 → ∪ 𝑧 = ∪
𝑦) |
| 170 | 169 | sseq2d 3996 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑦 → ((𝐴[,]𝑣) ⊆ ∪ 𝑧 ↔ (𝐴[,]𝑣) ⊆ ∪ 𝑦)) |
| 171 | 170 | cbvrexvw 3225 |
. . . . . . . . . . . 12
⊢
(∃𝑧 ∈
(𝒫 𝑈 ∩
Fin)(𝐴[,]𝑣) ⊆ ∪ 𝑧 ↔ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ ∪ 𝑦) |
| 172 | 57, 171 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑣 → (∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧 ↔ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ ∪ 𝑦)) |
| 173 | 172 | cbvrabv 3431 |
. . . . . . . . . 10
⊢ {𝑥 ∈ (𝐴[,]𝐵) ∣ ∃𝑧 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑥) ⊆ ∪ 𝑧} = {𝑣 ∈ (𝐴[,]𝐵) ∣ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ ∪ 𝑦} |
| 174 | 2, 173 | eqtri 2759 |
. . . . . . . . 9
⊢ 𝑆 = {𝑣 ∈ (𝐴[,]𝐵) ∣ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑣) ⊆ ∪ 𝑦} |
| 175 | 168, 174 | elrab2 3679 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝑆 ↔ (𝑅 ∈ (𝐴[,]𝐵) ∧ ∃𝑦 ∈ (𝒫 𝑈 ∩ Fin)(𝐴[,]𝑅) ⊆ ∪ 𝑦)) |
| 176 | 47, 165, 175 | sylanbrc 583 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ 𝑆) |
| 177 | 8, 17, 20, 176 | suprubd 12209 |
. . . . . 6
⊢ (𝜑 → 𝑅 ≤ sup(𝑆, ℝ, < )) |
| 178 | 177, 1 | breqtrrdi 5166 |
. . . . 5
⊢ (𝜑 → 𝑅 ≤ 𝐺) |
| 179 | | iftrue 4511 |
. . . . . . 7
⊢ ((𝐺 + (𝐶 / 2)) ≤ 𝐵 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) = (𝐺 + (𝐶 / 2))) |
| 180 | 30, 179 | eqtrid 2783 |
. . . . . 6
⊢ ((𝐺 + (𝐶 / 2)) ≤ 𝐵 → 𝑅 = (𝐺 + (𝐶 / 2))) |
| 181 | 180 | breq1d 5134 |
. . . . 5
⊢ ((𝐺 + (𝐶 / 2)) ≤ 𝐵 → (𝑅 ≤ 𝐺 ↔ (𝐺 + (𝐶 / 2)) ≤ 𝐺)) |
| 182 | 178, 181 | syl5ibcom 245 |
. . . 4
⊢ (𝜑 → ((𝐺 + (𝐶 / 2)) ≤ 𝐵 → (𝐺 + (𝐶 / 2)) ≤ 𝐺)) |
| 183 | 29, 182 | mtod 198 |
. . 3
⊢ (𝜑 → ¬ (𝐺 + (𝐶 / 2)) ≤ 𝐵) |
| 184 | | iffalse 4514 |
. . . 4
⊢ (¬
(𝐺 + (𝐶 / 2)) ≤ 𝐵 → if((𝐺 + (𝐶 / 2)) ≤ 𝐵, (𝐺 + (𝐶 / 2)), 𝐵) = 𝐵) |
| 185 | 30, 184 | eqtrid 2783 |
. . 3
⊢ (¬
(𝐺 + (𝐶 / 2)) ≤ 𝐵 → 𝑅 = 𝐵) |
| 186 | 183, 185 | syl 17 |
. 2
⊢ (𝜑 → 𝑅 = 𝐵) |
| 187 | 186, 176 | eqeltrrd 2836 |
1
⊢ (𝜑 → 𝐵 ∈ 𝑆) |