![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0tsmseq | Structured version Visualization version GIF version |
Description: Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
Ref | Expression |
---|---|
xrge0tsmseq.g | ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) |
xrge0tsmseq.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
xrge0tsmseq.f | ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) |
xrge0tsmseq.h | ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) |
Ref | Expression |
---|---|
xrge0tsmseq | ⊢ (𝜑 → 𝐶 = ∪ (𝐺 tsums 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrge0tsmseq.h | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) | |
2 | xrge0tsmseq.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | xrge0tsmseq.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) | |
4 | xrge0tsmseq.g | . . . . . 6 ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) | |
5 | 4 | xrge0tsms2 24852 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o) |
6 | 2, 3, 5 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐹) ≈ 1o) |
7 | en1eqsn 9300 | . . . 4 ⊢ ((𝐶 ∈ (𝐺 tsums 𝐹) ∧ (𝐺 tsums 𝐹) ≈ 1o) → (𝐺 tsums 𝐹) = {𝐶}) | |
8 | 1, 6, 7 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐺 tsums 𝐹) = {𝐶}) |
9 | 8 | unieqd 4927 | . 2 ⊢ (𝜑 → ∪ (𝐺 tsums 𝐹) = ∪ {𝐶}) |
10 | unisng 4932 | . . 3 ⊢ (𝐶 ∈ (𝐺 tsums 𝐹) → ∪ {𝐶} = 𝐶) | |
11 | 1, 10 | syl 17 | . 2 ⊢ (𝜑 → ∪ {𝐶} = 𝐶) |
12 | 9, 11 | eqtr2d 2774 | 1 ⊢ (𝜑 → 𝐶 = ∪ (𝐺 tsums 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1535 ∈ wcel 2104 {csn 4630 ∪ cuni 4914 class class class wbr 5149 ⟶wf 6554 (class class class)co 7425 1oc1o 8492 ≈ cen 8975 0cc0 11146 +∞cpnf 11283 [,]cicc 13380 ↾s cress 17263 ℝ*𝑠cxrs 17536 tsums ctsu 24131 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-pre-sup 11224 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4915 df-int 4954 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5635 df-se 5636 df-we 5637 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-pred 6317 df-ord 6383 df-on 6384 df-lim 6385 df-suc 6386 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-isom 6567 df-riota 7381 df-ov 7428 df-oprab 7429 df-mpo 7430 df-of 7691 df-om 7881 df-1st 8007 df-2nd 8008 df-supp 8179 df-frecs 8299 df-wrecs 8330 df-recs 8404 df-rdg 8443 df-1o 8499 df-2o 8500 df-er 8738 df-map 8861 df-en 8979 df-dom 8980 df-sdom 8981 df-fin 8982 df-fsupp 9394 df-fi 9442 df-sup 9473 df-inf 9474 df-oi 9541 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11485 df-neg 11486 df-div 11912 df-nn 12258 df-2 12320 df-3 12321 df-4 12322 df-5 12323 df-6 12324 df-7 12325 df-8 12326 df-9 12327 df-n0 12518 df-z 12605 df-dec 12725 df-uz 12870 df-q 12982 df-xadd 13146 df-ioo 13381 df-ioc 13382 df-ico 13383 df-icc 13384 df-fz 13538 df-fzo 13682 df-seq 14029 df-hash 14356 df-struct 17170 df-sets 17187 df-slot 17205 df-ndx 17217 df-base 17235 df-ress 17264 df-plusg 17300 df-mulr 17301 df-tset 17306 df-ple 17307 df-ds 17309 df-rest 17458 df-topn 17459 df-0g 17477 df-gsum 17478 df-topgen 17479 df-ordt 17537 df-xrs 17538 df-mre 17620 df-mrc 17621 df-acs 17623 df-ps 18612 df-tsr 18613 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18795 df-cntz 19333 df-cmn 19800 df-fbas 21360 df-fg 21361 df-top 22897 df-topon 22914 df-topsp 22936 df-bases 22950 df-ntr 23025 df-nei 23103 df-cn 23232 df-haus 23320 df-fil 23851 df-fm 23943 df-flim 23944 df-flf 23945 df-tsms 24132 |
This theorem is referenced by: esumid 33986 |
Copyright terms: Public domain | W3C validator |