| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xrge0tsmseq | Structured version Visualization version GIF version | ||
| Description: Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
| Ref | Expression |
|---|---|
| xrge0tsmseq.g | ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) |
| xrge0tsmseq.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| xrge0tsmseq.f | ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) |
| xrge0tsmseq.h | ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) |
| Ref | Expression |
|---|---|
| xrge0tsmseq | ⊢ (𝜑 → 𝐶 = ∪ (𝐺 tsums 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrge0tsmseq.h | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (𝐺 tsums 𝐹)) | |
| 2 | xrge0tsmseq.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | xrge0tsmseq.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) | |
| 4 | xrge0tsmseq.g | . . . . . 6 ⊢ 𝐺 = (ℝ*𝑠 ↾s (0[,]+∞)) | |
| 5 | 4 | xrge0tsms2 24794 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o) |
| 6 | 2, 3, 5 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐺 tsums 𝐹) ≈ 1o) |
| 7 | en1eqsn 9290 | . . . 4 ⊢ ((𝐶 ∈ (𝐺 tsums 𝐹) ∧ (𝐺 tsums 𝐹) ≈ 1o) → (𝐺 tsums 𝐹) = {𝐶}) | |
| 8 | 1, 6, 7 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐺 tsums 𝐹) = {𝐶}) |
| 9 | 8 | unieqd 4900 | . 2 ⊢ (𝜑 → ∪ (𝐺 tsums 𝐹) = ∪ {𝐶}) |
| 10 | unisng 4905 | . . 3 ⊢ (𝐶 ∈ (𝐺 tsums 𝐹) → ∪ {𝐶} = 𝐶) | |
| 11 | 1, 10 | syl 17 | . 2 ⊢ (𝜑 → ∪ {𝐶} = 𝐶) |
| 12 | 9, 11 | eqtr2d 2770 | 1 ⊢ (𝜑 → 𝐶 = ∪ (𝐺 tsums 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {csn 4606 ∪ cuni 4887 class class class wbr 5123 ⟶wf 6537 (class class class)co 7413 1oc1o 8481 ≈ cen 8964 0cc0 11137 +∞cpnf 11274 [,]cicc 13372 ↾s cress 17253 ℝ*𝑠cxrs 17517 tsums ctsu 24081 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 ax-pre-sup 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7870 df-1st 7996 df-2nd 7997 df-supp 8168 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-er 8727 df-map 8850 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-fsupp 9384 df-fi 9433 df-sup 9464 df-inf 9465 df-oi 9532 df-card 9961 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-div 11903 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12510 df-z 12597 df-dec 12717 df-uz 12861 df-q 12973 df-xadd 13137 df-ioo 13373 df-ioc 13374 df-ico 13375 df-icc 13376 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14353 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17254 df-plusg 17287 df-mulr 17288 df-tset 17293 df-ple 17294 df-ds 17296 df-rest 17439 df-topn 17440 df-0g 17458 df-gsum 17459 df-topgen 17460 df-ordt 17518 df-xrs 17519 df-mre 17601 df-mrc 17602 df-acs 17604 df-ps 18581 df-tsr 18582 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-cntz 19305 df-cmn 19769 df-fbas 21324 df-fg 21325 df-top 22849 df-topon 22866 df-topsp 22888 df-bases 22901 df-ntr 22975 df-nei 23053 df-cn 23182 df-haus 23270 df-fil 23801 df-fm 23893 df-flim 23894 df-flf 23895 df-tsms 24082 |
| This theorem is referenced by: esumid 34020 |
| Copyright terms: Public domain | W3C validator |