Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0tsmseq Structured version   Visualization version   GIF version

Theorem xrge0tsmseq 33051
Description: Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 24-Mar-2017.)
Hypotheses
Ref Expression
xrge0tsmseq.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0tsmseq.a (𝜑𝐴𝑉)
xrge0tsmseq.f (𝜑𝐹:𝐴⟶(0[,]+∞))
xrge0tsmseq.h (𝜑𝐶 ∈ (𝐺 tsums 𝐹))
Assertion
Ref Expression
xrge0tsmseq (𝜑𝐶 = (𝐺 tsums 𝐹))

Proof of Theorem xrge0tsmseq
StepHypRef Expression
1 xrge0tsmseq.h . . . 4 (𝜑𝐶 ∈ (𝐺 tsums 𝐹))
2 xrge0tsmseq.a . . . . 5 (𝜑𝐴𝑉)
3 xrge0tsmseq.f . . . . 5 (𝜑𝐹:𝐴⟶(0[,]+∞))
4 xrge0tsmseq.g . . . . . 6 𝐺 = (ℝ*𝑠s (0[,]+∞))
54xrge0tsms2 24752 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o)
62, 3, 5syl2anc 584 . . . 4 (𝜑 → (𝐺 tsums 𝐹) ≈ 1o)
7 en1eqsn 9166 . . . 4 ((𝐶 ∈ (𝐺 tsums 𝐹) ∧ (𝐺 tsums 𝐹) ≈ 1o) → (𝐺 tsums 𝐹) = {𝐶})
81, 6, 7syl2anc 584 . . 3 (𝜑 → (𝐺 tsums 𝐹) = {𝐶})
98unieqd 4871 . 2 (𝜑 (𝐺 tsums 𝐹) = {𝐶})
10 unisng 4876 . . 3 (𝐶 ∈ (𝐺 tsums 𝐹) → {𝐶} = 𝐶)
111, 10syl 17 . 2 (𝜑 {𝐶} = 𝐶)
129, 11eqtr2d 2769 1 (𝜑𝐶 = (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {csn 4575   cuni 4858   class class class wbr 5093  wf 6482  (class class class)co 7352  1oc1o 8384  cen 8872  0cc0 11013  +∞cpnf 11150  [,]cicc 13250  s cress 17143  *𝑠cxrs 17406   tsums ctsu 24042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-fi 9302  df-sup 9333  df-inf 9334  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-q 12849  df-xadd 13014  df-ioo 13251  df-ioc 13252  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-tset 17182  df-ple 17183  df-ds 17185  df-rest 17328  df-topn 17329  df-0g 17347  df-gsum 17348  df-topgen 17349  df-ordt 17407  df-xrs 17408  df-mre 17490  df-mrc 17491  df-acs 17493  df-ps 18474  df-tsr 18475  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-cntz 19231  df-cmn 19696  df-fbas 21290  df-fg 21291  df-top 22810  df-topon 22827  df-topsp 22849  df-bases 22862  df-ntr 22936  df-nei 23014  df-cn 23143  df-haus 23231  df-fil 23762  df-fm 23854  df-flim 23855  df-flf 23856  df-tsms 24043
This theorem is referenced by:  esumid  34078
  Copyright terms: Public domain W3C validator