Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0tsmseq Structured version   Visualization version   GIF version

Theorem xrge0tsmseq 30357
Description: Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 24-Mar-2017.)
Hypotheses
Ref Expression
xrge0tsmseq.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0tsmseq.a (𝜑𝐴𝑉)
xrge0tsmseq.f (𝜑𝐹:𝐴⟶(0[,]+∞))
xrge0tsmseq.h (𝜑𝐶 ∈ (𝐺 tsums 𝐹))
Assertion
Ref Expression
xrge0tsmseq (𝜑𝐶 = (𝐺 tsums 𝐹))

Proof of Theorem xrge0tsmseq
StepHypRef Expression
1 xrge0tsmseq.h . . . 4 (𝜑𝐶 ∈ (𝐺 tsums 𝐹))
2 xrge0tsmseq.a . . . . 5 (𝜑𝐴𝑉)
3 xrge0tsmseq.f . . . . 5 (𝜑𝐹:𝐴⟶(0[,]+∞))
4 xrge0tsmseq.g . . . . . 6 𝐺 = (ℝ*𝑠s (0[,]+∞))
54xrge0tsms2 23057 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o)
62, 3, 5syl2anc 579 . . . 4 (𝜑 → (𝐺 tsums 𝐹) ≈ 1o)
7 en1eqsn 8480 . . . 4 ((𝐶 ∈ (𝐺 tsums 𝐹) ∧ (𝐺 tsums 𝐹) ≈ 1o) → (𝐺 tsums 𝐹) = {𝐶})
81, 6, 7syl2anc 579 . . 3 (𝜑 → (𝐺 tsums 𝐹) = {𝐶})
98unieqd 4683 . 2 (𝜑 (𝐺 tsums 𝐹) = {𝐶})
10 unisng 4688 . . 3 (𝐶 ∈ (𝐺 tsums 𝐹) → {𝐶} = 𝐶)
111, 10syl 17 . 2 (𝜑 {𝐶} = 𝐶)
129, 11eqtr2d 2815 1 (𝜑𝐶 = (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1601  wcel 2107  {csn 4398   cuni 4673   class class class wbr 4888  wf 6133  (class class class)co 6924  1oc1o 7838  cen 8240  0cc0 10274  +∞cpnf 10410  [,]cicc 12495  s cress 16267  *𝑠cxrs 16557   tsums ctsu 22348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-oadd 7849  df-er 8028  df-map 8144  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-q 12101  df-xadd 12263  df-ioo 12496  df-ioc 12497  df-ico 12498  df-icc 12499  df-fz 12649  df-fzo 12790  df-seq 13125  df-hash 13442  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-tset 16368  df-ple 16369  df-ds 16371  df-rest 16480  df-topn 16481  df-0g 16499  df-gsum 16500  df-topgen 16501  df-ordt 16558  df-xrs 16559  df-mre 16643  df-mrc 16644  df-acs 16646  df-ps 17597  df-tsr 17598  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-submnd 17733  df-cntz 18144  df-cmn 18592  df-fbas 20150  df-fg 20151  df-top 21117  df-topon 21134  df-topsp 21156  df-bases 21169  df-ntr 21243  df-nei 21321  df-cn 21450  df-haus 21538  df-fil 22069  df-fm 22161  df-flim 22162  df-flf 22163  df-tsms 22349
This theorem is referenced by:  esumid  30712
  Copyright terms: Public domain W3C validator