Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0tsmseq Structured version   Visualization version   GIF version

Theorem xrge0tsmseq 31221
Description: Any limit of a finite or infinite sum in the nonnegative extended reals is the union of the sets limits, since this set is a singleton. (Contributed by Thierry Arnoux, 24-Mar-2017.)
Hypotheses
Ref Expression
xrge0tsmseq.g 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0tsmseq.a (𝜑𝐴𝑉)
xrge0tsmseq.f (𝜑𝐹:𝐴⟶(0[,]+∞))
xrge0tsmseq.h (𝜑𝐶 ∈ (𝐺 tsums 𝐹))
Assertion
Ref Expression
xrge0tsmseq (𝜑𝐶 = (𝐺 tsums 𝐹))

Proof of Theorem xrge0tsmseq
StepHypRef Expression
1 xrge0tsmseq.h . . . 4 (𝜑𝐶 ∈ (𝐺 tsums 𝐹))
2 xrge0tsmseq.a . . . . 5 (𝜑𝐴𝑉)
3 xrge0tsmseq.f . . . . 5 (𝜑𝐹:𝐴⟶(0[,]+∞))
4 xrge0tsmseq.g . . . . . 6 𝐺 = (ℝ*𝑠s (0[,]+∞))
54xrge0tsms2 23904 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶(0[,]+∞)) → (𝐺 tsums 𝐹) ≈ 1o)
62, 3, 5syl2anc 583 . . . 4 (𝜑 → (𝐺 tsums 𝐹) ≈ 1o)
7 en1eqsn 8977 . . . 4 ((𝐶 ∈ (𝐺 tsums 𝐹) ∧ (𝐺 tsums 𝐹) ≈ 1o) → (𝐺 tsums 𝐹) = {𝐶})
81, 6, 7syl2anc 583 . . 3 (𝜑 → (𝐺 tsums 𝐹) = {𝐶})
98unieqd 4850 . 2 (𝜑 (𝐺 tsums 𝐹) = {𝐶})
10 unisng 4857 . . 3 (𝐶 ∈ (𝐺 tsums 𝐹) → {𝐶} = 𝐶)
111, 10syl 17 . 2 (𝜑 {𝐶} = 𝐶)
129, 11eqtr2d 2779 1 (𝜑𝐶 = (𝐺 tsums 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {csn 4558   cuni 4836   class class class wbr 5070  wf 6414  (class class class)co 7255  1oc1o 8260  cen 8688  0cc0 10802  +∞cpnf 10937  [,]cicc 13011  s cress 16867  *𝑠cxrs 17128   tsums ctsu 23185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-xadd 12778  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-tset 16907  df-ple 16908  df-ds 16910  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-ordt 17129  df-xrs 17130  df-mre 17212  df-mrc 17213  df-acs 17215  df-ps 18199  df-tsr 18200  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-cntz 18838  df-cmn 19303  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-ntr 22079  df-nei 22157  df-cn 22286  df-haus 22374  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-tsms 23186
This theorem is referenced by:  esumid  31912
  Copyright terms: Public domain W3C validator