MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtuni Structured version   Visualization version   GIF version

Theorem ordtuni 23075
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
ordtval.3 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
Assertion
Ref Expression
ordtuni (𝑅𝑉𝑋 = ({𝑋} ∪ (𝐴𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem ordtuni
StepHypRef Expression
1 ordtval.1 . . . . . 6 𝑋 = dom 𝑅
2 dmexg 7834 . . . . . 6 (𝑅𝑉 → dom 𝑅 ∈ V)
31, 2eqeltrid 2832 . . . . 5 (𝑅𝑉𝑋 ∈ V)
4 unisng 4876 . . . . 5 (𝑋 ∈ V → {𝑋} = 𝑋)
53, 4syl 17 . . . 4 (𝑅𝑉 {𝑋} = 𝑋)
65uneq1d 4118 . . 3 (𝑅𝑉 → ( {𝑋} ∪ (𝐴𝐵)) = (𝑋 (𝐴𝐵)))
7 ordtval.2 . . . . . . 7 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
8 ssrab2 4031 . . . . . . . . . 10 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋
93adantr 480 . . . . . . . . . . 11 ((𝑅𝑉𝑥𝑋) → 𝑋 ∈ V)
10 elpw2g 5272 . . . . . . . . . . 11 (𝑋 ∈ V → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋))
119, 10syl 17 . . . . . . . . . 10 ((𝑅𝑉𝑥𝑋) → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋))
128, 11mpbiri 258 . . . . . . . . 9 ((𝑅𝑉𝑥𝑋) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋)
1312fmpttd 7049 . . . . . . . 8 (𝑅𝑉 → (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}):𝑋⟶𝒫 𝑋)
1413frnd 6660 . . . . . . 7 (𝑅𝑉 → ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ⊆ 𝒫 𝑋)
157, 14eqsstrid 3974 . . . . . 6 (𝑅𝑉𝐴 ⊆ 𝒫 𝑋)
16 ordtval.3 . . . . . . 7 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
17 ssrab2 4031 . . . . . . . . . 10 {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ⊆ 𝑋
18 elpw2g 5272 . . . . . . . . . . 11 (𝑋 ∈ V → ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ⊆ 𝑋))
199, 18syl 17 . . . . . . . . . 10 ((𝑅𝑉𝑥𝑋) → ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ⊆ 𝑋))
2017, 19mpbiri 258 . . . . . . . . 9 ((𝑅𝑉𝑥𝑋) → {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ 𝒫 𝑋)
2120fmpttd 7049 . . . . . . . 8 (𝑅𝑉 → (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}):𝑋⟶𝒫 𝑋)
2221frnd 6660 . . . . . . 7 (𝑅𝑉 → ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ⊆ 𝒫 𝑋)
2316, 22eqsstrid 3974 . . . . . 6 (𝑅𝑉𝐵 ⊆ 𝒫 𝑋)
2415, 23unssd 4143 . . . . 5 (𝑅𝑉 → (𝐴𝐵) ⊆ 𝒫 𝑋)
25 sspwuni 5049 . . . . 5 ((𝐴𝐵) ⊆ 𝒫 𝑋 (𝐴𝐵) ⊆ 𝑋)
2624, 25sylib 218 . . . 4 (𝑅𝑉 (𝐴𝐵) ⊆ 𝑋)
27 ssequn2 4140 . . . 4 ( (𝐴𝐵) ⊆ 𝑋 ↔ (𝑋 (𝐴𝐵)) = 𝑋)
2826, 27sylib 218 . . 3 (𝑅𝑉 → (𝑋 (𝐴𝐵)) = 𝑋)
296, 28eqtr2d 2765 . 2 (𝑅𝑉𝑋 = ( {𝑋} ∪ (𝐴𝐵)))
30 uniun 4881 . 2 ({𝑋} ∪ (𝐴𝐵)) = ( {𝑋} ∪ (𝐴𝐵))
3129, 30eqtr4di 2782 1 (𝑅𝑉𝑋 = ({𝑋} ∪ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3394  Vcvv 3436  cun 3901  wss 3903  𝒫 cpw 4551  {csn 4577   cuni 4858   class class class wbr 5092  cmpt 5173  dom cdm 5619  ran crn 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486
This theorem is referenced by:  ordtbas2  23076  ordtbas  23077  ordttopon  23078  ordtopn1  23079  ordtopn2  23080  ordtrest2  23089  ordthmeolem  23686  ordtprsuni  33886
  Copyright terms: Public domain W3C validator