MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtuni Structured version   Visualization version   GIF version

Theorem ordtuni 21322
Description: Value of the order topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ordtval.1 𝑋 = dom 𝑅
ordtval.2 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
ordtval.3 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
Assertion
Ref Expression
ordtuni (𝑅𝑉𝑋 = ({𝑋} ∪ (𝐴𝐵)))
Distinct variable groups:   𝑥,𝑦,𝑅   𝑥,𝑋,𝑦   𝑥,𝑉
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝑉(𝑦)

Proof of Theorem ordtuni
StepHypRef Expression
1 ordtval.1 . . . . . 6 𝑋 = dom 𝑅
2 dmexg 7332 . . . . . 6 (𝑅𝑉 → dom 𝑅 ∈ V)
31, 2syl5eqel 2883 . . . . 5 (𝑅𝑉𝑋 ∈ V)
4 unisng 4644 . . . . 5 (𝑋 ∈ V → {𝑋} = 𝑋)
53, 4syl 17 . . . 4 (𝑅𝑉 {𝑋} = 𝑋)
65uneq1d 3965 . . 3 (𝑅𝑉 → ( {𝑋} ∪ (𝐴𝐵)) = (𝑋 (𝐴𝐵)))
7 ordtval.2 . . . . . . 7 𝐴 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥})
8 ssrab2 3884 . . . . . . . . . 10 {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋
93adantr 473 . . . . . . . . . . 11 ((𝑅𝑉𝑥𝑋) → 𝑋 ∈ V)
10 elpw2g 5020 . . . . . . . . . . 11 (𝑋 ∈ V → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋))
119, 10syl 17 . . . . . . . . . 10 ((𝑅𝑉𝑥𝑋) → ({𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ⊆ 𝑋))
128, 11mpbiri 250 . . . . . . . . 9 ((𝑅𝑉𝑥𝑋) → {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥} ∈ 𝒫 𝑋)
1312fmpttd 6612 . . . . . . . 8 (𝑅𝑉 → (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}):𝑋⟶𝒫 𝑋)
1413frnd 6264 . . . . . . 7 (𝑅𝑉 → ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑦𝑅𝑥}) ⊆ 𝒫 𝑋)
157, 14syl5eqss 3846 . . . . . 6 (𝑅𝑉𝐴 ⊆ 𝒫 𝑋)
16 ordtval.3 . . . . . . 7 𝐵 = ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦})
17 ssrab2 3884 . . . . . . . . . 10 {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ⊆ 𝑋
18 elpw2g 5020 . . . . . . . . . . 11 (𝑋 ∈ V → ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ⊆ 𝑋))
199, 18syl 17 . . . . . . . . . 10 ((𝑅𝑉𝑥𝑋) → ({𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ 𝒫 𝑋 ↔ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ⊆ 𝑋))
2017, 19mpbiri 250 . . . . . . . . 9 ((𝑅𝑉𝑥𝑋) → {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦} ∈ 𝒫 𝑋)
2120fmpttd 6612 . . . . . . . 8 (𝑅𝑉 → (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}):𝑋⟶𝒫 𝑋)
2221frnd 6264 . . . . . . 7 (𝑅𝑉 → ran (𝑥𝑋 ↦ {𝑦𝑋 ∣ ¬ 𝑥𝑅𝑦}) ⊆ 𝒫 𝑋)
2316, 22syl5eqss 3846 . . . . . 6 (𝑅𝑉𝐵 ⊆ 𝒫 𝑋)
2415, 23unssd 3988 . . . . 5 (𝑅𝑉 → (𝐴𝐵) ⊆ 𝒫 𝑋)
25 sspwuni 4803 . . . . 5 ((𝐴𝐵) ⊆ 𝒫 𝑋 (𝐴𝐵) ⊆ 𝑋)
2624, 25sylib 210 . . . 4 (𝑅𝑉 (𝐴𝐵) ⊆ 𝑋)
27 ssequn2 3985 . . . 4 ( (𝐴𝐵) ⊆ 𝑋 ↔ (𝑋 (𝐴𝐵)) = 𝑋)
2826, 27sylib 210 . . 3 (𝑅𝑉 → (𝑋 (𝐴𝐵)) = 𝑋)
296, 28eqtr2d 2835 . 2 (𝑅𝑉𝑋 = ( {𝑋} ∪ (𝐴𝐵)))
30 uniun 4650 . 2 ({𝑋} ∪ (𝐴𝐵)) = ( {𝑋} ∪ (𝐴𝐵))
3129, 30syl6eqr 2852 1 (𝑅𝑉𝑋 = ({𝑋} ∪ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  {crab 3094  Vcvv 3386  cun 3768  wss 3770  𝒫 cpw 4350  {csn 4369   cuni 4629   class class class wbr 4844  cmpt 4923  dom cdm 5313  ran crn 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-sep 4976  ax-nul 4984  ax-pr 5098  ax-un 7184
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3388  df-sbc 3635  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-fv 6110
This theorem is referenced by:  ordtbas2  21323  ordtbas  21324  ordttopon  21325  ordtopn1  21326  ordtopn2  21327  ordtrest2  21336  ordthmeolem  21932  ordtprsuni  30480
  Copyright terms: Public domain W3C validator