MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop Structured version   Visualization version   GIF version

Theorem ustuqtop 24238
Description: For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣,𝑗   𝑗,𝑁,𝑝   𝑣,𝑗,𝑈   𝑗,𝑋
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop
Dummy variables 𝑎 𝑏 𝑐 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6892 . . . . . . 7 (𝑝 = 𝑟 → (𝑁𝑝) = (𝑁𝑟))
21eleq2d 2812 . . . . . 6 (𝑝 = 𝑟 → (𝑐 ∈ (𝑁𝑝) ↔ 𝑐 ∈ (𝑁𝑟)))
32cbvralvw 3225 . . . . 5 (∀𝑝𝑐 𝑐 ∈ (𝑁𝑝) ↔ ∀𝑟𝑐 𝑐 ∈ (𝑁𝑟))
4 eleq1w 2809 . . . . . 6 (𝑐 = 𝑎 → (𝑐 ∈ (𝑁𝑝) ↔ 𝑎 ∈ (𝑁𝑝)))
54raleqbi1dv 3323 . . . . 5 (𝑐 = 𝑎 → (∀𝑝𝑐 𝑐 ∈ (𝑁𝑝) ↔ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
63, 5bitr3id 284 . . . 4 (𝑐 = 𝑎 → (∀𝑟𝑐 𝑐 ∈ (𝑁𝑟) ↔ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
76cbvrabv 3431 . . 3 {𝑐 ∈ 𝒫 𝑋 ∣ ∀𝑟𝑐 𝑐 ∈ (𝑁𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
8 utopustuq.1 . . . 4 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
98ustuqtop0 24232 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
108ustuqtop1 24233 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
118ustuqtop2 24234 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
128ustuqtop3 24235 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
138ustuqtop4 24236 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑥𝑏 𝑎 ∈ (𝑁𝑥))
148ustuqtop5 24237 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
157, 9, 10, 11, 12, 13, 14neiptopreu 23124 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
169feqmptd 6962 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁 = (𝑝𝑋 ↦ (𝑁𝑝)))
1716eqeq1d 2728 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ (𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))))
18 fvex 6905 . . . . . 6 (𝑁𝑝) ∈ V
1918rgenw 3055 . . . . 5 𝑝𝑋 (𝑁𝑝) ∈ V
20 mpteqb 7019 . . . . 5 (∀𝑝𝑋 (𝑁𝑝) ∈ V → ((𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2119, 20ax-mp 5 . . . 4 ((𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2217, 21bitrdi 286 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2322reubidv 3383 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2415, 23mpbid 231 1 (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  wral 3051  ∃!wreu 3363  {crab 3420  Vcvv 3464  𝒫 cpw 4599  {csn 4625  cmpt 5228  ran crn 5675  cima 5677  cfv 6545  TopOnctopon 22899  neicnei 23088  UnifOncust 24191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7737
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3968  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4908  df-int 4949  df-iun 4997  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-ord 6370  df-on 6371  df-lim 6372  df-suc 6373  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-om 7868  df-1o 8487  df-2o 8488  df-en 8966  df-fin 8969  df-fi 9446  df-top 22883  df-topon 22900  df-ntr 23011  df-nei 23089  df-ust 24192
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator