| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustuqtop | Structured version Visualization version GIF version | ||
| Description: For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
| Ref | Expression |
|---|---|
| utopustuq.1 | ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| Ref | Expression |
|---|---|
| ustuqtop | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6906 | . . . . . . 7 ⊢ (𝑝 = 𝑟 → (𝑁‘𝑝) = (𝑁‘𝑟)) | |
| 2 | 1 | eleq2d 2827 | . . . . . 6 ⊢ (𝑝 = 𝑟 → (𝑐 ∈ (𝑁‘𝑝) ↔ 𝑐 ∈ (𝑁‘𝑟))) |
| 3 | 2 | cbvralvw 3237 | . . . . 5 ⊢ (∀𝑝 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑝) ↔ ∀𝑟 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑟)) |
| 4 | eleq1w 2824 | . . . . . 6 ⊢ (𝑐 = 𝑎 → (𝑐 ∈ (𝑁‘𝑝) ↔ 𝑎 ∈ (𝑁‘𝑝))) | |
| 5 | 4 | raleqbi1dv 3338 | . . . . 5 ⊢ (𝑐 = 𝑎 → (∀𝑝 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑝) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝))) |
| 6 | 3, 5 | bitr3id 285 | . . . 4 ⊢ (𝑐 = 𝑎 → (∀𝑟 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑟) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝))) |
| 7 | 6 | cbvrabv 3447 | . . 3 ⊢ {𝑐 ∈ 𝒫 𝑋 ∣ ∀𝑟 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} |
| 8 | utopustuq.1 | . . . 4 ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | |
| 9 | 8 | ustuqtop0 24249 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
| 10 | 8 | ustuqtop1 24250 | . . 3 ⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) |
| 11 | 8 | ustuqtop2 24251 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) |
| 12 | 8 | ustuqtop3 24252 | . . 3 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) |
| 13 | 8 | ustuqtop4 24253 | . . 3 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑥 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑥)) |
| 14 | 8 | ustuqtop5 24254 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
| 15 | 7, 9, 10, 11, 12, 13, 14 | neiptopreu 23141 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
| 16 | 9 | feqmptd 6977 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁 = (𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝))) |
| 17 | 16 | eqeq1d 2739 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ (𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝)) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})))) |
| 18 | fvex 6919 | . . . . . 6 ⊢ (𝑁‘𝑝) ∈ V | |
| 19 | 18 | rgenw 3065 | . . . . 5 ⊢ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) ∈ V |
| 20 | mpteqb 7035 | . . . . 5 ⊢ (∀𝑝 ∈ 𝑋 (𝑁‘𝑝) ∈ V → ((𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝)) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝}))) | |
| 21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ ((𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝)) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
| 22 | 17, 21 | bitrdi 287 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝}))) |
| 23 | 22 | reubidv 3398 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝}))) |
| 24 | 15, 23 | mpbid 232 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃!wreu 3378 {crab 3436 Vcvv 3480 𝒫 cpw 4600 {csn 4626 ↦ cmpt 5225 ran crn 5686 “ cima 5688 ‘cfv 6561 TopOnctopon 22916 neicnei 23105 UnifOncust 24208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-2o 8507 df-en 8986 df-fin 8989 df-fi 9451 df-top 22900 df-topon 22917 df-ntr 23028 df-nei 23106 df-ust 24209 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |