Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustuqtop | Structured version Visualization version GIF version |
Description: For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
Ref | Expression |
---|---|
utopustuq.1 | ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
Ref | Expression |
---|---|
ustuqtop | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6756 | . . . . . . 7 ⊢ (𝑝 = 𝑟 → (𝑁‘𝑝) = (𝑁‘𝑟)) | |
2 | 1 | eleq2d 2824 | . . . . . 6 ⊢ (𝑝 = 𝑟 → (𝑐 ∈ (𝑁‘𝑝) ↔ 𝑐 ∈ (𝑁‘𝑟))) |
3 | 2 | cbvralvw 3372 | . . . . 5 ⊢ (∀𝑝 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑝) ↔ ∀𝑟 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑟)) |
4 | eleq1w 2821 | . . . . . 6 ⊢ (𝑐 = 𝑎 → (𝑐 ∈ (𝑁‘𝑝) ↔ 𝑎 ∈ (𝑁‘𝑝))) | |
5 | 4 | raleqbi1dv 3331 | . . . . 5 ⊢ (𝑐 = 𝑎 → (∀𝑝 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑝) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝))) |
6 | 3, 5 | bitr3id 284 | . . . 4 ⊢ (𝑐 = 𝑎 → (∀𝑟 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑟) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝))) |
7 | 6 | cbvrabv 3416 | . . 3 ⊢ {𝑐 ∈ 𝒫 𝑋 ∣ ∀𝑟 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} |
8 | utopustuq.1 | . . . 4 ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | |
9 | 8 | ustuqtop0 23300 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
10 | 8 | ustuqtop1 23301 | . . 3 ⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) |
11 | 8 | ustuqtop2 23302 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) |
12 | 8 | ustuqtop3 23303 | . . 3 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) |
13 | 8 | ustuqtop4 23304 | . . 3 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑥 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑥)) |
14 | 8 | ustuqtop5 23305 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
15 | 7, 9, 10, 11, 12, 13, 14 | neiptopreu 22192 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
16 | 9 | feqmptd 6819 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁 = (𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝))) |
17 | 16 | eqeq1d 2740 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ (𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝)) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})))) |
18 | fvex 6769 | . . . . . 6 ⊢ (𝑁‘𝑝) ∈ V | |
19 | 18 | rgenw 3075 | . . . . 5 ⊢ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) ∈ V |
20 | mpteqb 6876 | . . . . 5 ⊢ (∀𝑝 ∈ 𝑋 (𝑁‘𝑝) ∈ V → ((𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝)) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝}))) | |
21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ ((𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝)) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
22 | 17, 21 | bitrdi 286 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝}))) |
23 | 22 | reubidv 3315 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝}))) |
24 | 15, 23 | mpbid 231 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃!wreu 3065 {crab 3067 Vcvv 3422 𝒫 cpw 4530 {csn 4558 ↦ cmpt 5153 ran crn 5581 “ cima 5583 ‘cfv 6418 TopOnctopon 21967 neicnei 22156 UnifOncust 23259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-er 8456 df-en 8692 df-fin 8695 df-fi 9100 df-top 21951 df-topon 21968 df-ntr 22079 df-nei 22157 df-ust 23260 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |