![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ustuqtop | Structured version Visualization version GIF version |
Description: For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
Ref | Expression |
---|---|
utopustuq.1 | ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
Ref | Expression |
---|---|
ustuqtop | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6906 | . . . . . . 7 ⊢ (𝑝 = 𝑟 → (𝑁‘𝑝) = (𝑁‘𝑟)) | |
2 | 1 | eleq2d 2824 | . . . . . 6 ⊢ (𝑝 = 𝑟 → (𝑐 ∈ (𝑁‘𝑝) ↔ 𝑐 ∈ (𝑁‘𝑟))) |
3 | 2 | cbvralvw 3234 | . . . . 5 ⊢ (∀𝑝 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑝) ↔ ∀𝑟 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑟)) |
4 | eleq1w 2821 | . . . . . 6 ⊢ (𝑐 = 𝑎 → (𝑐 ∈ (𝑁‘𝑝) ↔ 𝑎 ∈ (𝑁‘𝑝))) | |
5 | 4 | raleqbi1dv 3335 | . . . . 5 ⊢ (𝑐 = 𝑎 → (∀𝑝 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑝) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝))) |
6 | 3, 5 | bitr3id 285 | . . . 4 ⊢ (𝑐 = 𝑎 → (∀𝑟 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑟) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝))) |
7 | 6 | cbvrabv 3443 | . . 3 ⊢ {𝑐 ∈ 𝒫 𝑋 ∣ ∀𝑟 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} |
8 | utopustuq.1 | . . . 4 ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | |
9 | 8 | ustuqtop0 24264 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
10 | 8 | ustuqtop1 24265 | . . 3 ⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) |
11 | 8 | ustuqtop2 24266 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) |
12 | 8 | ustuqtop3 24267 | . . 3 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) |
13 | 8 | ustuqtop4 24268 | . . 3 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑥 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑥)) |
14 | 8 | ustuqtop5 24269 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
15 | 7, 9, 10, 11, 12, 13, 14 | neiptopreu 23156 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
16 | 9 | feqmptd 6976 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁 = (𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝))) |
17 | 16 | eqeq1d 2736 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ (𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝)) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})))) |
18 | fvex 6919 | . . . . . 6 ⊢ (𝑁‘𝑝) ∈ V | |
19 | 18 | rgenw 3062 | . . . . 5 ⊢ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) ∈ V |
20 | mpteqb 7034 | . . . . 5 ⊢ (∀𝑝 ∈ 𝑋 (𝑁‘𝑝) ∈ V → ((𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝)) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝}))) | |
21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ ((𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝)) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
22 | 17, 21 | bitrdi 287 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝}))) |
23 | 22 | reubidv 3395 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝}))) |
24 | 15, 23 | mpbid 232 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ∈ wcel 2105 ∀wral 3058 ∃!wreu 3375 {crab 3432 Vcvv 3477 𝒫 cpw 4604 {csn 4630 ↦ cmpt 5230 ran crn 5689 “ cima 5691 ‘cfv 6562 TopOnctopon 22931 neicnei 23120 UnifOncust 24223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-om 7887 df-1o 8504 df-2o 8505 df-en 8984 df-fin 8987 df-fi 9448 df-top 22915 df-topon 22932 df-ntr 23043 df-nei 23121 df-ust 24224 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |