MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop Structured version   Visualization version   GIF version

Theorem ustuqtop 24183
Description: For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣,𝑗   𝑗,𝑁,𝑝   𝑣,𝑗,𝑈   𝑗,𝑋
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop
Dummy variables 𝑎 𝑏 𝑐 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6875 . . . . . . 7 (𝑝 = 𝑟 → (𝑁𝑝) = (𝑁𝑟))
21eleq2d 2820 . . . . . 6 (𝑝 = 𝑟 → (𝑐 ∈ (𝑁𝑝) ↔ 𝑐 ∈ (𝑁𝑟)))
32cbvralvw 3220 . . . . 5 (∀𝑝𝑐 𝑐 ∈ (𝑁𝑝) ↔ ∀𝑟𝑐 𝑐 ∈ (𝑁𝑟))
4 eleq1w 2817 . . . . . 6 (𝑐 = 𝑎 → (𝑐 ∈ (𝑁𝑝) ↔ 𝑎 ∈ (𝑁𝑝)))
54raleqbi1dv 3317 . . . . 5 (𝑐 = 𝑎 → (∀𝑝𝑐 𝑐 ∈ (𝑁𝑝) ↔ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
63, 5bitr3id 285 . . . 4 (𝑐 = 𝑎 → (∀𝑟𝑐 𝑐 ∈ (𝑁𝑟) ↔ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
76cbvrabv 3426 . . 3 {𝑐 ∈ 𝒫 𝑋 ∣ ∀𝑟𝑐 𝑐 ∈ (𝑁𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
8 utopustuq.1 . . . 4 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
98ustuqtop0 24177 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
108ustuqtop1 24178 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
118ustuqtop2 24179 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
128ustuqtop3 24180 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
138ustuqtop4 24181 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑥𝑏 𝑎 ∈ (𝑁𝑥))
148ustuqtop5 24182 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
157, 9, 10, 11, 12, 13, 14neiptopreu 23069 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
169feqmptd 6946 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁 = (𝑝𝑋 ↦ (𝑁𝑝)))
1716eqeq1d 2737 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ (𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))))
18 fvex 6888 . . . . . 6 (𝑁𝑝) ∈ V
1918rgenw 3055 . . . . 5 𝑝𝑋 (𝑁𝑝) ∈ V
20 mpteqb 7004 . . . . 5 (∀𝑝𝑋 (𝑁𝑝) ∈ V → ((𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2119, 20ax-mp 5 . . . 4 ((𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2217, 21bitrdi 287 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2322reubidv 3377 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2415, 23mpbid 232 1 (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wral 3051  ∃!wreu 3357  {crab 3415  Vcvv 3459  𝒫 cpw 4575  {csn 4601  cmpt 5201  ran crn 5655  cima 5657  cfv 6530  TopOnctopon 22846  neicnei 23033  UnifOncust 24136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-om 7860  df-1o 8478  df-2o 8479  df-en 8958  df-fin 8961  df-fi 9421  df-top 22830  df-topon 22847  df-ntr 22956  df-nei 23034  df-ust 24137
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator