MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop Structured version   Visualization version   GIF version

Theorem ustuqtop 22852
Description: For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣,𝑗   𝑗,𝑁,𝑝   𝑣,𝑗,𝑈   𝑗,𝑋
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop
Dummy variables 𝑎 𝑏 𝑐 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6645 . . . . . . 7 (𝑝 = 𝑟 → (𝑁𝑝) = (𝑁𝑟))
21eleq2d 2875 . . . . . 6 (𝑝 = 𝑟 → (𝑐 ∈ (𝑁𝑝) ↔ 𝑐 ∈ (𝑁𝑟)))
32cbvralvw 3396 . . . . 5 (∀𝑝𝑐 𝑐 ∈ (𝑁𝑝) ↔ ∀𝑟𝑐 𝑐 ∈ (𝑁𝑟))
4 eleq1w 2872 . . . . . 6 (𝑐 = 𝑎 → (𝑐 ∈ (𝑁𝑝) ↔ 𝑎 ∈ (𝑁𝑝)))
54raleqbi1dv 3356 . . . . 5 (𝑐 = 𝑎 → (∀𝑝𝑐 𝑐 ∈ (𝑁𝑝) ↔ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
63, 5bitr3id 288 . . . 4 (𝑐 = 𝑎 → (∀𝑟𝑐 𝑐 ∈ (𝑁𝑟) ↔ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
76cbvrabv 3439 . . 3 {𝑐 ∈ 𝒫 𝑋 ∣ ∀𝑟𝑐 𝑐 ∈ (𝑁𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
8 utopustuq.1 . . . 4 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
98ustuqtop0 22846 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
108ustuqtop1 22847 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
118ustuqtop2 22848 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
128ustuqtop3 22849 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
138ustuqtop4 22850 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑥𝑏 𝑎 ∈ (𝑁𝑥))
148ustuqtop5 22851 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
157, 9, 10, 11, 12, 13, 14neiptopreu 21738 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
169feqmptd 6708 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁 = (𝑝𝑋 ↦ (𝑁𝑝)))
1716eqeq1d 2800 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ (𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))))
18 fvex 6658 . . . . . 6 (𝑁𝑝) ∈ V
1918rgenw 3118 . . . . 5 𝑝𝑋 (𝑁𝑝) ∈ V
20 mpteqb 6764 . . . . 5 (∀𝑝𝑋 (𝑁𝑝) ∈ V → ((𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2119, 20ax-mp 5 . . . 4 ((𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2217, 21syl6bb 290 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2322reubidv 3342 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2415, 23mpbid 235 1 (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wcel 2111  wral 3106  ∃!wreu 3108  {crab 3110  Vcvv 3441  𝒫 cpw 4497  {csn 4525  cmpt 5110  ran crn 5520  cima 5522  cfv 6324  TopOnctopon 21515  neicnei 21702  UnifOncust 22805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-fin 8496  df-fi 8859  df-top 21499  df-topon 21516  df-ntr 21625  df-nei 21703  df-ust 22806
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator