MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop Structured version   Visualization version   GIF version

Theorem ustuqtop 23408
Description: For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣,𝑗   𝑗,𝑁,𝑝   𝑣,𝑗,𝑈   𝑗,𝑋
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop
Dummy variables 𝑎 𝑏 𝑐 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6766 . . . . . . 7 (𝑝 = 𝑟 → (𝑁𝑝) = (𝑁𝑟))
21eleq2d 2824 . . . . . 6 (𝑝 = 𝑟 → (𝑐 ∈ (𝑁𝑝) ↔ 𝑐 ∈ (𝑁𝑟)))
32cbvralvw 3380 . . . . 5 (∀𝑝𝑐 𝑐 ∈ (𝑁𝑝) ↔ ∀𝑟𝑐 𝑐 ∈ (𝑁𝑟))
4 eleq1w 2821 . . . . . 6 (𝑐 = 𝑎 → (𝑐 ∈ (𝑁𝑝) ↔ 𝑎 ∈ (𝑁𝑝)))
54raleqbi1dv 3338 . . . . 5 (𝑐 = 𝑎 → (∀𝑝𝑐 𝑐 ∈ (𝑁𝑝) ↔ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
63, 5bitr3id 285 . . . 4 (𝑐 = 𝑎 → (∀𝑟𝑐 𝑐 ∈ (𝑁𝑟) ↔ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)))
76cbvrabv 3423 . . 3 {𝑐 ∈ 𝒫 𝑋 ∣ ∀𝑟𝑐 𝑐 ∈ (𝑁𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝𝑎 𝑎 ∈ (𝑁𝑝)}
8 utopustuq.1 . . . 4 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
98ustuqtop0 23402 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
108ustuqtop1 23403 . . 3 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎𝑏𝑏𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑏 ∈ (𝑁𝑝))
118ustuqtop2 23404 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (fi‘(𝑁𝑝)) ⊆ (𝑁𝑝))
128ustuqtop3 23405 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
138ustuqtop4 23406 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑏 ∈ (𝑁𝑝)∀𝑥𝑏 𝑎 ∈ (𝑁𝑥))
148ustuqtop5 23407 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → 𝑋 ∈ (𝑁𝑝))
157, 9, 10, 11, 12, 13, 14neiptopreu 22294 . 2 (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})))
169feqmptd 6829 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁 = (𝑝𝑋 ↦ (𝑁𝑝)))
1716eqeq1d 2740 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ (𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝}))))
18 fvex 6779 . . . . . 6 (𝑁𝑝) ∈ V
1918rgenw 3076 . . . . 5 𝑝𝑋 (𝑁𝑝) ∈ V
20 mpteqb 6886 . . . . 5 (∀𝑝𝑋 (𝑁𝑝) ∈ V → ((𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2119, 20ax-mp 5 . . . 4 ((𝑝𝑋 ↦ (𝑁𝑝)) = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
2217, 21bitrdi 287 . . 3 (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2322reubidv 3321 . 2 (𝑈 ∈ (UnifOn‘𝑋) → (∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝})))
2415, 23mpbid 231 1 (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝𝑋 (𝑁𝑝) = ((nei‘𝑗)‘{𝑝}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2106  wral 3064  ∃!wreu 3066  {crab 3068  Vcvv 3429  𝒫 cpw 4533  {csn 4561  cmpt 5156  ran crn 5585  cima 5587  cfv 6426  TopOnctopon 22069  neicnei 22258  UnifOncust 23361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-om 7703  df-1o 8284  df-er 8485  df-en 8721  df-fin 8724  df-fi 9157  df-top 22053  df-topon 22070  df-ntr 22181  df-nei 22259  df-ust 23362
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator