Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustuqtop | Structured version Visualization version GIF version |
Description: For a given uniform structure 𝑈 on a set 𝑋, there is a unique topology 𝑗 such that the set ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) is the filter of the neighborhoods of 𝑝 for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
Ref | Expression |
---|---|
utopustuq.1 | ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
Ref | Expression |
---|---|
ustuqtop | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6766 | . . . . . . 7 ⊢ (𝑝 = 𝑟 → (𝑁‘𝑝) = (𝑁‘𝑟)) | |
2 | 1 | eleq2d 2824 | . . . . . 6 ⊢ (𝑝 = 𝑟 → (𝑐 ∈ (𝑁‘𝑝) ↔ 𝑐 ∈ (𝑁‘𝑟))) |
3 | 2 | cbvralvw 3380 | . . . . 5 ⊢ (∀𝑝 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑝) ↔ ∀𝑟 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑟)) |
4 | eleq1w 2821 | . . . . . 6 ⊢ (𝑐 = 𝑎 → (𝑐 ∈ (𝑁‘𝑝) ↔ 𝑎 ∈ (𝑁‘𝑝))) | |
5 | 4 | raleqbi1dv 3338 | . . . . 5 ⊢ (𝑐 = 𝑎 → (∀𝑝 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑝) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝))) |
6 | 3, 5 | bitr3id 285 | . . . 4 ⊢ (𝑐 = 𝑎 → (∀𝑟 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑟) ↔ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝))) |
7 | 6 | cbvrabv 3423 | . . 3 ⊢ {𝑐 ∈ 𝒫 𝑋 ∣ ∀𝑟 ∈ 𝑐 𝑐 ∈ (𝑁‘𝑟)} = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑝 ∈ 𝑎 𝑎 ∈ (𝑁‘𝑝)} |
8 | utopustuq.1 | . . . 4 ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | |
9 | 8 | ustuqtop0 23402 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
10 | 8 | ustuqtop1 23403 | . . 3 ⊢ ((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ⊆ 𝑏 ∧ 𝑏 ⊆ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑏 ∈ (𝑁‘𝑝)) |
11 | 8 | ustuqtop2 23404 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (fi‘(𝑁‘𝑝)) ⊆ (𝑁‘𝑝)) |
12 | 8 | ustuqtop3 23405 | . . 3 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) |
13 | 8 | ustuqtop4 23406 | . . 3 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑏 ∈ (𝑁‘𝑝)∀𝑥 ∈ 𝑏 𝑎 ∈ (𝑁‘𝑥)) |
14 | 8 | ustuqtop5 23407 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → 𝑋 ∈ (𝑁‘𝑝)) |
15 | 7, 9, 10, 11, 12, 13, 14 | neiptopreu 22294 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝}))) |
16 | 9 | feqmptd 6829 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁 = (𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝))) |
17 | 16 | eqeq1d 2740 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ (𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝)) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})))) |
18 | fvex 6779 | . . . . . 6 ⊢ (𝑁‘𝑝) ∈ V | |
19 | 18 | rgenw 3076 | . . . . 5 ⊢ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) ∈ V |
20 | mpteqb 6886 | . . . . 5 ⊢ (∀𝑝 ∈ 𝑋 (𝑁‘𝑝) ∈ V → ((𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝)) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝}))) | |
21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ ((𝑝 ∈ 𝑋 ↦ (𝑁‘𝑝)) = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
22 | 17, 21 | bitrdi 287 | . . 3 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝}))) |
23 | 22 | reubidv 3321 | . 2 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (∃!𝑗 ∈ (TopOn‘𝑋)𝑁 = (𝑝 ∈ 𝑋 ↦ ((nei‘𝑗)‘{𝑝})) ↔ ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝}))) |
24 | 15, 23 | mpbid 231 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → ∃!𝑗 ∈ (TopOn‘𝑋)∀𝑝 ∈ 𝑋 (𝑁‘𝑝) = ((nei‘𝑗)‘{𝑝})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃!wreu 3066 {crab 3068 Vcvv 3429 𝒫 cpw 4533 {csn 4561 ↦ cmpt 5156 ran crn 5585 “ cima 5587 ‘cfv 6426 TopOnctopon 22069 neicnei 22258 UnifOncust 23361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-om 7703 df-1o 8284 df-er 8485 df-en 8721 df-fin 8724 df-fi 9157 df-top 22053 df-topon 22070 df-ntr 22181 df-nei 22259 df-ust 23362 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |