Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustuqtop0 | Structured version Visualization version GIF version |
Description: Lemma for ustuqtop 23398. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
Ref | Expression |
---|---|
utopustuq.1 | ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
Ref | Expression |
---|---|
ustuqtop0 | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustimasn 23380 | . . . . . . . 8 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈 ∧ 𝑝 ∈ 𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋) | |
2 | 1 | 3expa 1117 | . . . . . . 7 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈) ∧ 𝑝 ∈ 𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋) |
3 | 2 | an32s 649 | . . . . . 6 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑝}) ⊆ 𝑋) |
4 | vex 3436 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
5 | 4 | imaex 7763 | . . . . . . 7 ⊢ (𝑣 “ {𝑝}) ∈ V |
6 | 5 | elpw 4537 | . . . . . 6 ⊢ ((𝑣 “ {𝑝}) ∈ 𝒫 𝑋 ↔ (𝑣 “ {𝑝}) ⊆ 𝑋) |
7 | 3, 6 | sylibr 233 | . . . . 5 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑝}) ∈ 𝒫 𝑋) |
8 | 7 | ralrimiva 3103 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ∀𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋) |
9 | eqid 2738 | . . . . 5 ⊢ (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) | |
10 | 9 | rnmptss 6996 | . . . 4 ⊢ (∀𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋 → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋) |
11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋) |
12 | mptexg 7097 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) | |
13 | rnexg 7751 | . . . . 5 ⊢ ((𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) | |
14 | elpwg 4536 | . . . . 5 ⊢ (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)) | |
15 | 12, 13, 14 | 3syl 18 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)) |
16 | 15 | adantr 481 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)) |
17 | 11, 16 | mpbird 256 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋) |
18 | utopustuq.1 | . 2 ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | |
19 | 17, 18 | fmptd 6988 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 {csn 4561 ↦ cmpt 5157 ran crn 5590 “ cima 5592 ⟶wf 6429 ‘cfv 6433 UnifOncust 23351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ust 23352 |
This theorem is referenced by: ustuqtop 23398 utopsnneiplem 23399 |
Copyright terms: Public domain | W3C validator |