MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop0 Structured version   Visualization version   GIF version

Theorem ustuqtop0 24270
Description: Lemma for ustuqtop 24276. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop0 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣   𝑁,𝑝
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop0
StepHypRef Expression
1 ustimasn 24258 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈𝑝𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋)
213expa 1118 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) ∧ 𝑝𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋)
32an32s 651 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑣𝑈) → (𝑣 “ {𝑝}) ⊆ 𝑋)
4 vex 3492 . . . . . . . 8 𝑣 ∈ V
54imaex 7954 . . . . . . 7 (𝑣 “ {𝑝}) ∈ V
65elpw 4626 . . . . . 6 ((𝑣 “ {𝑝}) ∈ 𝒫 𝑋 ↔ (𝑣 “ {𝑝}) ⊆ 𝑋)
73, 6sylibr 234 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑣𝑈) → (𝑣 “ {𝑝}) ∈ 𝒫 𝑋)
87ralrimiva 3152 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ∀𝑣𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋)
9 eqid 2740 . . . . 5 (𝑣𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣𝑈 ↦ (𝑣 “ {𝑝}))
109rnmptss 7157 . . . 4 (∀𝑣𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋 → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)
118, 10syl 17 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)
12 mptexg 7258 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V)
13 rnexg 7942 . . . . 5 ((𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V)
14 elpwg 4625 . . . . 5 (ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → (ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋))
1512, 13, 143syl 18 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋))
1615adantr 480 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋))
1711, 16mpbird 257 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋)
18 utopustuq.1 . 2 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1917, 18fmptd 7148 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  𝒫 cpw 4622  {csn 4648  cmpt 5249  ran crn 5701  cima 5703  wf 6569  cfv 6573  UnifOncust 24229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ust 24230
This theorem is referenced by:  ustuqtop  24276  utopsnneiplem  24277
  Copyright terms: Public domain W3C validator