| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ustuqtop0 | Structured version Visualization version GIF version | ||
| Description: Lemma for ustuqtop 24134. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
| Ref | Expression |
|---|---|
| utopustuq.1 | ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
| Ref | Expression |
|---|---|
| ustuqtop0 | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustimasn 24116 | . . . . . . . 8 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈 ∧ 𝑝 ∈ 𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋) | |
| 2 | 1 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈) ∧ 𝑝 ∈ 𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋) |
| 3 | 2 | an32s 652 | . . . . . 6 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑝}) ⊆ 𝑋) |
| 4 | vex 3451 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
| 5 | 4 | imaex 7890 | . . . . . . 7 ⊢ (𝑣 “ {𝑝}) ∈ V |
| 6 | 5 | elpw 4567 | . . . . . 6 ⊢ ((𝑣 “ {𝑝}) ∈ 𝒫 𝑋 ↔ (𝑣 “ {𝑝}) ⊆ 𝑋) |
| 7 | 3, 6 | sylibr 234 | . . . . 5 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑝}) ∈ 𝒫 𝑋) |
| 8 | 7 | ralrimiva 3125 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ∀𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋) |
| 9 | eqid 2729 | . . . . 5 ⊢ (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) | |
| 10 | 9 | rnmptss 7095 | . . . 4 ⊢ (∀𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋 → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋) |
| 11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋) |
| 12 | mptexg 7195 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) | |
| 13 | rnexg 7878 | . . . . 5 ⊢ ((𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) | |
| 14 | elpwg 4566 | . . . . 5 ⊢ (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)) | |
| 15 | 12, 13, 14 | 3syl 18 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)) |
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)) |
| 17 | 11, 16 | mpbird 257 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋) |
| 18 | utopustuq.1 | . 2 ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | |
| 19 | 17, 18 | fmptd 7086 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 {csn 4589 ↦ cmpt 5188 ran crn 5639 “ cima 5641 ⟶wf 6507 ‘cfv 6511 UnifOncust 24087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ust 24088 |
| This theorem is referenced by: ustuqtop 24134 utopsnneiplem 24135 |
| Copyright terms: Public domain | W3C validator |