Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ustuqtop0 | Structured version Visualization version GIF version |
Description: Lemma for ustuqtop 23306. (Contributed by Thierry Arnoux, 11-Jan-2018.) |
Ref | Expression |
---|---|
utopustuq.1 | ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
Ref | Expression |
---|---|
ustuqtop0 | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ustimasn 23288 | . . . . . . . 8 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈 ∧ 𝑝 ∈ 𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋) | |
2 | 1 | 3expa 1116 | . . . . . . 7 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈) ∧ 𝑝 ∈ 𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋) |
3 | 2 | an32s 648 | . . . . . 6 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑝}) ⊆ 𝑋) |
4 | vex 3426 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
5 | 4 | imaex 7737 | . . . . . . 7 ⊢ (𝑣 “ {𝑝}) ∈ V |
6 | 5 | elpw 4534 | . . . . . 6 ⊢ ((𝑣 “ {𝑝}) ∈ 𝒫 𝑋 ↔ (𝑣 “ {𝑝}) ⊆ 𝑋) |
7 | 3, 6 | sylibr 233 | . . . . 5 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑝}) ∈ 𝒫 𝑋) |
8 | 7 | ralrimiva 3107 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ∀𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋) |
9 | eqid 2738 | . . . . 5 ⊢ (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) | |
10 | 9 | rnmptss 6978 | . . . 4 ⊢ (∀𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋 → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋) |
11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋) |
12 | mptexg 7079 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) | |
13 | rnexg 7725 | . . . . 5 ⊢ ((𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) | |
14 | elpwg 4533 | . . . . 5 ⊢ (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)) | |
15 | 12, 13, 14 | 3syl 18 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)) |
16 | 15 | adantr 480 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)) |
17 | 11, 16 | mpbird 256 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋) |
18 | utopustuq.1 | . 2 ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | |
19 | 17, 18 | fmptd 6970 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 {csn 4558 ↦ cmpt 5153 ran crn 5581 “ cima 5583 ⟶wf 6414 ‘cfv 6418 UnifOncust 23259 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ust 23260 |
This theorem is referenced by: ustuqtop 23306 utopsnneiplem 23307 |
Copyright terms: Public domain | W3C validator |