MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop0 Structured version   Visualization version   GIF version

Theorem ustuqtop0 22844
Description: Lemma for ustuqtop 22850. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop0 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣   𝑁,𝑝
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop0
StepHypRef Expression
1 ustimasn 22832 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈𝑝𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋)
213expa 1115 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) ∧ 𝑝𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋)
32an32s 651 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑣𝑈) → (𝑣 “ {𝑝}) ⊆ 𝑋)
4 vex 3472 . . . . . . . 8 𝑣 ∈ V
54imaex 7607 . . . . . . 7 (𝑣 “ {𝑝}) ∈ V
65elpw 4515 . . . . . 6 ((𝑣 “ {𝑝}) ∈ 𝒫 𝑋 ↔ (𝑣 “ {𝑝}) ⊆ 𝑋)
73, 6sylibr 237 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑣𝑈) → (𝑣 “ {𝑝}) ∈ 𝒫 𝑋)
87ralrimiva 3174 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ∀𝑣𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋)
9 eqid 2822 . . . . 5 (𝑣𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣𝑈 ↦ (𝑣 “ {𝑝}))
109rnmptss 6868 . . . 4 (∀𝑣𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋 → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)
118, 10syl 17 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)
12 mptexg 6966 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V)
13 rnexg 7600 . . . . 5 ((𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V)
14 elpwg 4514 . . . . 5 (ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → (ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋))
1512, 13, 143syl 18 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋))
1615adantr 484 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋))
1711, 16mpbird 260 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋)
18 utopustuq.1 . 2 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1917, 18fmptd 6860 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2114  wral 3130  Vcvv 3469  wss 3908  𝒫 cpw 4511  {csn 4539  cmpt 5122  ran crn 5533  cima 5535  wf 6330  cfv 6334  UnifOncust 22803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-ust 22804
This theorem is referenced by:  ustuqtop  22850  utopsnneiplem  22851
  Copyright terms: Public domain W3C validator