|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ustuqtop0 | Structured version Visualization version GIF version | ||
| Description: Lemma for ustuqtop 24256. (Contributed by Thierry Arnoux, 11-Jan-2018.) | 
| Ref | Expression | 
|---|---|
| utopustuq.1 | ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | 
| Ref | Expression | 
|---|---|
| ustuqtop0 | ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ustimasn 24238 | . . . . . . . 8 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈 ∧ 𝑝 ∈ 𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋) | |
| 2 | 1 | 3expa 1118 | . . . . . . 7 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣 ∈ 𝑈) ∧ 𝑝 ∈ 𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋) | 
| 3 | 2 | an32s 652 | . . . . . 6 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑝}) ⊆ 𝑋) | 
| 4 | vex 3483 | . . . . . . . 8 ⊢ 𝑣 ∈ V | |
| 5 | 4 | imaex 7937 | . . . . . . 7 ⊢ (𝑣 “ {𝑝}) ∈ V | 
| 6 | 5 | elpw 4603 | . . . . . 6 ⊢ ((𝑣 “ {𝑝}) ∈ 𝒫 𝑋 ↔ (𝑣 “ {𝑝}) ⊆ 𝑋) | 
| 7 | 3, 6 | sylibr 234 | . . . . 5 ⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑣 ∈ 𝑈) → (𝑣 “ {𝑝}) ∈ 𝒫 𝑋) | 
| 8 | 7 | ralrimiva 3145 | . . . 4 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ∀𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋) | 
| 9 | eqid 2736 | . . . . 5 ⊢ (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) | |
| 10 | 9 | rnmptss 7142 | . . . 4 ⊢ (∀𝑣 ∈ 𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋 → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋) | 
| 11 | 8, 10 | syl 17 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋) | 
| 12 | mptexg 7242 | . . . . 5 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) | |
| 13 | rnexg 7925 | . . . . 5 ⊢ ((𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V) | |
| 14 | elpwg 4602 | . . . . 5 ⊢ (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)) | |
| 15 | 12, 13, 14 | 3syl 18 | . . . 4 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)) | 
| 16 | 15 | adantr 480 | . . 3 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)) | 
| 17 | 11, 16 | mpbird 257 | . 2 ⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋) | 
| 18 | utopustuq.1 | . 2 ⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) | |
| 19 | 17, 18 | fmptd 7133 | 1 ⊢ (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 Vcvv 3479 ⊆ wss 3950 𝒫 cpw 4599 {csn 4625 ↦ cmpt 5224 ran crn 5685 “ cima 5687 ⟶wf 6556 ‘cfv 6560 UnifOncust 24209 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ust 24210 | 
| This theorem is referenced by: ustuqtop 24256 utopsnneiplem 24257 | 
| Copyright terms: Public domain | W3C validator |