MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop0 Structured version   Visualization version   GIF version

Theorem ustuqtop0 24155
Description: Lemma for ustuqtop 24161. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop0 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣   𝑁,𝑝
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop0
StepHypRef Expression
1 ustimasn 24143 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈𝑝𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋)
213expa 1118 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑣𝑈) ∧ 𝑝𝑋) → (𝑣 “ {𝑝}) ⊆ 𝑋)
32an32s 652 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑣𝑈) → (𝑣 “ {𝑝}) ⊆ 𝑋)
4 vex 3440 . . . . . . . 8 𝑣 ∈ V
54imaex 7844 . . . . . . 7 (𝑣 “ {𝑝}) ∈ V
65elpw 4551 . . . . . 6 ((𝑣 “ {𝑝}) ∈ 𝒫 𝑋 ↔ (𝑣 “ {𝑝}) ⊆ 𝑋)
73, 6sylibr 234 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑣𝑈) → (𝑣 “ {𝑝}) ∈ 𝒫 𝑋)
87ralrimiva 3124 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ∀𝑣𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋)
9 eqid 2731 . . . . 5 (𝑣𝑈 ↦ (𝑣 “ {𝑝})) = (𝑣𝑈 ↦ (𝑣 “ {𝑝}))
109rnmptss 7056 . . . 4 (∀𝑣𝑈 (𝑣 “ {𝑝}) ∈ 𝒫 𝑋 → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)
118, 10syl 17 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋)
12 mptexg 7155 . . . . 5 (𝑈 ∈ (UnifOn‘𝑋) → (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V)
13 rnexg 7832 . . . . 5 ((𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V)
14 elpwg 4550 . . . . 5 (ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ V → (ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋))
1512, 13, 143syl 18 . . . 4 (𝑈 ∈ (UnifOn‘𝑋) → (ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋))
1615adantr 480 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋 ↔ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ⊆ 𝒫 𝑋))
1711, 16mpbird 257 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})) ∈ 𝒫 𝒫 𝑋)
18 utopustuq.1 . 2 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1917, 18fmptd 7047 1 (𝑈 ∈ (UnifOn‘𝑋) → 𝑁:𝑋⟶𝒫 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897  𝒫 cpw 4547  {csn 4573  cmpt 5170  ran crn 5615  cima 5617  wf 6477  cfv 6481  UnifOncust 24115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ust 24116
This theorem is referenced by:  ustuqtop  24161  utopsnneiplem  24162
  Copyright terms: Public domain W3C validator