![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvcval | Structured version Visualization version GIF version |
Description: Value of a single unit vector in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
uvcfval.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcfval.o | ⊢ 1 = (1r‘𝑅) |
uvcfval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
uvcval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcfval.u | . . . . 5 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
2 | uvcfval.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
3 | uvcfval.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
4 | 1, 2, 3 | uvcfval 20527 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑈 = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))) |
5 | 4 | fveq1d 6448 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑈‘𝐽) = ((𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽)) |
6 | 5 | 3adant3 1123 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) = ((𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽)) |
7 | simp3 1129 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → 𝐽 ∈ 𝐼) | |
8 | mptexg 6756 | . . . 4 ⊢ (𝐼 ∈ 𝑊 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) ∈ V) | |
9 | 8 | 3ad2ant2 1125 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) ∈ V) |
10 | eqeq2 2788 | . . . . . 6 ⊢ (𝑗 = 𝐽 → (𝑘 = 𝑗 ↔ 𝑘 = 𝐽)) | |
11 | 10 | ifbid 4328 | . . . . 5 ⊢ (𝑗 = 𝐽 → if(𝑘 = 𝑗, 1 , 0 ) = if(𝑘 = 𝐽, 1 , 0 )) |
12 | 11 | mpteq2dv 4980 | . . . 4 ⊢ (𝑗 = 𝐽 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) |
13 | eqid 2777 | . . . 4 ⊢ (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) | |
14 | 12, 13 | fvmptg 6540 | . . 3 ⊢ ((𝐽 ∈ 𝐼 ∧ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) ∈ V) → ((𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) |
15 | 7, 9, 14 | syl2anc 579 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) |
16 | 6, 15 | eqtrd 2813 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2106 Vcvv 3397 ifcif 4306 ↦ cmpt 4965 ‘cfv 6135 (class class class)co 6922 0gc0g 16486 1rcur 18888 unitVec cuvc 20525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-uvc 20526 |
This theorem is referenced by: uvcvval 20529 |
Copyright terms: Public domain | W3C validator |