![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uvcval | Structured version Visualization version GIF version |
Description: Value of a single unit vector in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
Ref | Expression |
---|---|
uvcfval.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
uvcfval.o | ⊢ 1 = (1r‘𝑅) |
uvcfval.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
uvcval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uvcfval.u | . . . . 5 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
2 | uvcfval.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
3 | uvcfval.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
4 | 1, 2, 3 | uvcfval 21831 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑈 = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))) |
5 | 4 | fveq1d 6916 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑈‘𝐽) = ((𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽)) |
6 | 5 | 3adant3 1133 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) = ((𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽)) |
7 | eqid 2737 | . . 3 ⊢ (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) | |
8 | eqeq2 2749 | . . . . 5 ⊢ (𝑗 = 𝐽 → (𝑘 = 𝑗 ↔ 𝑘 = 𝐽)) | |
9 | 8 | ifbid 4557 | . . . 4 ⊢ (𝑗 = 𝐽 → if(𝑘 = 𝑗, 1 , 0 ) = if(𝑘 = 𝐽, 1 , 0 )) |
10 | 9 | mpteq2dv 5253 | . . 3 ⊢ (𝑗 = 𝐽 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) |
11 | simp3 1139 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → 𝐽 ∈ 𝐼) | |
12 | mptexg 7248 | . . . 4 ⊢ (𝐼 ∈ 𝑊 → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) ∈ V) | |
13 | 12 | 3ad2ant2 1135 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) ∈ V) |
14 | 7, 10, 11, 13 | fvmptd3 7046 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → ((𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))‘𝐽) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) |
15 | 6, 14 | eqtrd 2777 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ifcif 4534 ↦ cmpt 5234 ‘cfv 6569 (class class class)co 7438 0gc0g 17495 1rcur 20208 unitVec cuvc 21829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-uvc 21830 |
This theorem is referenced by: uvcvval 21833 |
Copyright terms: Public domain | W3C validator |