MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcfval Structured version   Visualization version   GIF version

Theorem uvcfval 21723
Description: Value of the unit-vector generator for a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
uvcfval.u 𝑈 = (𝑅 unitVec 𝐼)
uvcfval.o 1 = (1r𝑅)
uvcfval.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcfval ((𝑅𝑉𝐼𝑊) → 𝑈 = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
Distinct variable groups:   1 ,𝑗,𝑘   𝑅,𝑗,𝑘   𝑗,𝐼,𝑘   0 ,𝑗,𝑘
Allowed substitution hints:   𝑈(𝑗,𝑘)   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem uvcfval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvcfval.u . 2 𝑈 = (𝑅 unitVec 𝐼)
2 elex 3458 . . 3 (𝑅𝑉𝑅 ∈ V)
3 elex 3458 . . 3 (𝐼𝑊𝐼 ∈ V)
4 df-uvc 21722 . . . . 5 unitVec = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)))))
54a1i 11 . . . 4 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → unitVec = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟))))))
6 simpr 484 . . . . . 6 ((𝑟 = 𝑅𝑖 = 𝐼) → 𝑖 = 𝐼)
7 fveq2 6828 . . . . . . . . . 10 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
8 uvcfval.o . . . . . . . . . 10 1 = (1r𝑅)
97, 8eqtr4di 2786 . . . . . . . . 9 (𝑟 = 𝑅 → (1r𝑟) = 1 )
10 fveq2 6828 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
11 uvcfval.z . . . . . . . . . 10 0 = (0g𝑅)
1210, 11eqtr4di 2786 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = 0 )
139, 12ifeq12d 4496 . . . . . . . 8 (𝑟 = 𝑅 → if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)) = if(𝑘 = 𝑗, 1 , 0 ))
1413adantr 480 . . . . . . 7 ((𝑟 = 𝑅𝑖 = 𝐼) → if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)) = if(𝑘 = 𝑗, 1 , 0 ))
156, 14mpteq12dv 5180 . . . . . 6 ((𝑟 = 𝑅𝑖 = 𝐼) → (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟))) = (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))
166, 15mpteq12dv 5180 . . . . 5 ((𝑟 = 𝑅𝑖 = 𝐼) → (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)))) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
1716adantl 481 . . . 4 (((𝑅 ∈ V ∧ 𝐼 ∈ V) ∧ (𝑟 = 𝑅𝑖 = 𝐼)) → (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)))) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
18 simpl 482 . . . 4 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → 𝑅 ∈ V)
19 simpr 484 . . . 4 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → 𝐼 ∈ V)
20 mptexg 7161 . . . . 5 (𝐼 ∈ V → (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) ∈ V)
2120adantl 481 . . . 4 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) ∈ V)
225, 17, 18, 19, 21ovmpod 7504 . . 3 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 unitVec 𝐼) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
232, 3, 22syl2an 596 . 2 ((𝑅𝑉𝐼𝑊) → (𝑅 unitVec 𝐼) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
241, 23eqtrid 2780 1 ((𝑅𝑉𝐼𝑊) → 𝑈 = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  ifcif 4474  cmpt 5174  cfv 6486  (class class class)co 7352  cmpo 7354  0gc0g 17345  1rcur 20101   unitVec cuvc 21721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-uvc 21722
This theorem is referenced by:  uvcval  21724  uvcff  21730  frlmdim  33645
  Copyright terms: Public domain W3C validator