Step | Hyp | Ref
| Expression |
1 | | uvcfval.u |
. 2
⊢ 𝑈 = (𝑅 unitVec 𝐼) |
2 | | elex 3450 |
. . 3
⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) |
3 | | elex 3450 |
. . 3
⊢ (𝐼 ∈ 𝑊 → 𝐼 ∈ V) |
4 | | df-uvc 20990 |
. . . . 5
⊢ unitVec
= (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ (𝑘 ∈ 𝑖 ↦ if(𝑘 = 𝑗, (1r‘𝑟), (0g‘𝑟))))) |
5 | 4 | a1i 11 |
. . . 4
⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → unitVec =
(𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ (𝑘 ∈ 𝑖 ↦ if(𝑘 = 𝑗, (1r‘𝑟), (0g‘𝑟)))))) |
6 | | simpr 485 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → 𝑖 = 𝐼) |
7 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (1r‘𝑟) = (1r‘𝑅)) |
8 | | uvcfval.o |
. . . . . . . . . 10
⊢ 1 =
(1r‘𝑅) |
9 | 7, 8 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (1r‘𝑟) = 1 ) |
10 | | fveq2 6774 |
. . . . . . . . . 10
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = (0g‘𝑅)) |
11 | | uvcfval.z |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑅) |
12 | 10, 11 | eqtr4di 2796 |
. . . . . . . . 9
⊢ (𝑟 = 𝑅 → (0g‘𝑟) = 0 ) |
13 | 9, 12 | ifeq12d 4480 |
. . . . . . . 8
⊢ (𝑟 = 𝑅 → if(𝑘 = 𝑗, (1r‘𝑟), (0g‘𝑟)) = if(𝑘 = 𝑗, 1 , 0 )) |
14 | 13 | adantr 481 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → if(𝑘 = 𝑗, (1r‘𝑟), (0g‘𝑟)) = if(𝑘 = 𝑗, 1 , 0 )) |
15 | 6, 14 | mpteq12dv 5165 |
. . . . . 6
⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (𝑘 ∈ 𝑖 ↦ if(𝑘 = 𝑗, (1r‘𝑟), (0g‘𝑟))) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) |
16 | 6, 15 | mpteq12dv 5165 |
. . . . 5
⊢ ((𝑟 = 𝑅 ∧ 𝑖 = 𝐼) → (𝑗 ∈ 𝑖 ↦ (𝑘 ∈ 𝑖 ↦ if(𝑘 = 𝑗, (1r‘𝑟), (0g‘𝑟)))) = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))) |
17 | 16 | adantl 482 |
. . . 4
⊢ (((𝑅 ∈ V ∧ 𝐼 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑖 = 𝐼)) → (𝑗 ∈ 𝑖 ↦ (𝑘 ∈ 𝑖 ↦ if(𝑘 = 𝑗, (1r‘𝑟), (0g‘𝑟)))) = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))) |
18 | | simpl 483 |
. . . 4
⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → 𝑅 ∈ V) |
19 | | simpr 485 |
. . . 4
⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → 𝐼 ∈ V) |
20 | | mptexg 7097 |
. . . . 5
⊢ (𝐼 ∈ V → (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) ∈
V) |
21 | 20 | adantl 482 |
. . . 4
⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) ∈
V) |
22 | 5, 17, 18, 19, 21 | ovmpod 7425 |
. . 3
⊢ ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 unitVec 𝐼) = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))) |
23 | 2, 3, 22 | syl2an 596 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝑅 unitVec 𝐼) = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))) |
24 | 1, 23 | eqtrid 2790 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑈 = (𝑗 ∈ 𝐼 ↦ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))) |