MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcfval Structured version   Visualization version   GIF version

Theorem uvcfval 21330
Description: Value of the unit-vector generator for a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
uvcfval.u 𝑈 = (𝑅 unitVec 𝐼)
uvcfval.o 1 = (1r𝑅)
uvcfval.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcfval ((𝑅𝑉𝐼𝑊) → 𝑈 = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
Distinct variable groups:   1 ,𝑗,𝑘   𝑅,𝑗,𝑘   𝑗,𝐼,𝑘   0 ,𝑗,𝑘
Allowed substitution hints:   𝑈(𝑗,𝑘)   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem uvcfval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvcfval.u . 2 𝑈 = (𝑅 unitVec 𝐼)
2 elex 3492 . . 3 (𝑅𝑉𝑅 ∈ V)
3 elex 3492 . . 3 (𝐼𝑊𝐼 ∈ V)
4 df-uvc 21329 . . . . 5 unitVec = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)))))
54a1i 11 . . . 4 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → unitVec = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟))))))
6 simpr 485 . . . . . 6 ((𝑟 = 𝑅𝑖 = 𝐼) → 𝑖 = 𝐼)
7 fveq2 6888 . . . . . . . . . 10 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
8 uvcfval.o . . . . . . . . . 10 1 = (1r𝑅)
97, 8eqtr4di 2790 . . . . . . . . 9 (𝑟 = 𝑅 → (1r𝑟) = 1 )
10 fveq2 6888 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
11 uvcfval.z . . . . . . . . . 10 0 = (0g𝑅)
1210, 11eqtr4di 2790 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = 0 )
139, 12ifeq12d 4548 . . . . . . . 8 (𝑟 = 𝑅 → if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)) = if(𝑘 = 𝑗, 1 , 0 ))
1413adantr 481 . . . . . . 7 ((𝑟 = 𝑅𝑖 = 𝐼) → if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)) = if(𝑘 = 𝑗, 1 , 0 ))
156, 14mpteq12dv 5238 . . . . . 6 ((𝑟 = 𝑅𝑖 = 𝐼) → (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟))) = (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))
166, 15mpteq12dv 5238 . . . . 5 ((𝑟 = 𝑅𝑖 = 𝐼) → (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)))) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
1716adantl 482 . . . 4 (((𝑅 ∈ V ∧ 𝐼 ∈ V) ∧ (𝑟 = 𝑅𝑖 = 𝐼)) → (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)))) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
18 simpl 483 . . . 4 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → 𝑅 ∈ V)
19 simpr 485 . . . 4 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → 𝐼 ∈ V)
20 mptexg 7219 . . . . 5 (𝐼 ∈ V → (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) ∈ V)
2120adantl 482 . . . 4 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) ∈ V)
225, 17, 18, 19, 21ovmpod 7556 . . 3 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 unitVec 𝐼) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
232, 3, 22syl2an 596 . 2 ((𝑅𝑉𝐼𝑊) → (𝑅 unitVec 𝐼) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
241, 23eqtrid 2784 1 ((𝑅𝑉𝐼𝑊) → 𝑈 = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3474  ifcif 4527  cmpt 5230  cfv 6540  (class class class)co 7405  cmpo 7407  0gc0g 17381  1rcur 19998   unitVec cuvc 21328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-uvc 21329
This theorem is referenced by:  uvcval  21331  uvcff  21337  frlmdim  32684
  Copyright terms: Public domain W3C validator