MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcfval Structured version   Visualization version   GIF version

Theorem uvcfval 21089
Description: Value of the unit-vector generator for a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
uvcfval.u 𝑈 = (𝑅 unitVec 𝐼)
uvcfval.o 1 = (1r𝑅)
uvcfval.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcfval ((𝑅𝑉𝐼𝑊) → 𝑈 = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
Distinct variable groups:   1 ,𝑗,𝑘   𝑅,𝑗,𝑘   𝑗,𝐼,𝑘   0 ,𝑗,𝑘
Allowed substitution hints:   𝑈(𝑗,𝑘)   𝑉(𝑗,𝑘)   𝑊(𝑗,𝑘)

Proof of Theorem uvcfval
Dummy variables 𝑖 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uvcfval.u . 2 𝑈 = (𝑅 unitVec 𝐼)
2 elex 3459 . . 3 (𝑅𝑉𝑅 ∈ V)
3 elex 3459 . . 3 (𝐼𝑊𝐼 ∈ V)
4 df-uvc 21088 . . . . 5 unitVec = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)))))
54a1i 11 . . . 4 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → unitVec = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟))))))
6 simpr 485 . . . . . 6 ((𝑟 = 𝑅𝑖 = 𝐼) → 𝑖 = 𝐼)
7 fveq2 6819 . . . . . . . . . 10 (𝑟 = 𝑅 → (1r𝑟) = (1r𝑅))
8 uvcfval.o . . . . . . . . . 10 1 = (1r𝑅)
97, 8eqtr4di 2794 . . . . . . . . 9 (𝑟 = 𝑅 → (1r𝑟) = 1 )
10 fveq2 6819 . . . . . . . . . 10 (𝑟 = 𝑅 → (0g𝑟) = (0g𝑅))
11 uvcfval.z . . . . . . . . . 10 0 = (0g𝑅)
1210, 11eqtr4di 2794 . . . . . . . . 9 (𝑟 = 𝑅 → (0g𝑟) = 0 )
139, 12ifeq12d 4493 . . . . . . . 8 (𝑟 = 𝑅 → if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)) = if(𝑘 = 𝑗, 1 , 0 ))
1413adantr 481 . . . . . . 7 ((𝑟 = 𝑅𝑖 = 𝐼) → if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)) = if(𝑘 = 𝑗, 1 , 0 ))
156, 14mpteq12dv 5180 . . . . . 6 ((𝑟 = 𝑅𝑖 = 𝐼) → (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟))) = (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 )))
166, 15mpteq12dv 5180 . . . . 5 ((𝑟 = 𝑅𝑖 = 𝐼) → (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)))) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
1716adantl 482 . . . 4 (((𝑅 ∈ V ∧ 𝐼 ∈ V) ∧ (𝑟 = 𝑅𝑖 = 𝐼)) → (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)))) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
18 simpl 483 . . . 4 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → 𝑅 ∈ V)
19 simpr 485 . . . 4 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → 𝐼 ∈ V)
20 mptexg 7147 . . . . 5 (𝐼 ∈ V → (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) ∈ V)
2120adantl 482 . . . 4 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))) ∈ V)
225, 17, 18, 19, 21ovmpod 7479 . . 3 ((𝑅 ∈ V ∧ 𝐼 ∈ V) → (𝑅 unitVec 𝐼) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
232, 3, 22syl2an 596 . 2 ((𝑅𝑉𝐼𝑊) → (𝑅 unitVec 𝐼) = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
241, 23eqtrid 2788 1 ((𝑅𝑉𝐼𝑊) → 𝑈 = (𝑗𝐼 ↦ (𝑘𝐼 ↦ if(𝑘 = 𝑗, 1 , 0 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  Vcvv 3441  ifcif 4472  cmpt 5172  cfv 6473  (class class class)co 7329  cmpo 7331  0gc0g 17239  1rcur 19824   unitVec cuvc 21087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pr 5369
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334  df-uvc 21088
This theorem is referenced by:  uvcval  21090  uvcff  21096  frlmdim  31933
  Copyright terms: Public domain W3C validator