MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvval Structured version   Visualization version   GIF version

Theorem uvcvval 21701
Description: Value of a unit vector coordinate in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcfval.u 𝑈 = (𝑅 unitVec 𝐼)
uvcfval.o 1 = (1r𝑅)
uvcfval.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcvval (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 ))

Proof of Theorem uvcvval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uvcfval.u . . . . 5 𝑈 = (𝑅 unitVec 𝐼)
2 uvcfval.o . . . . 5 1 = (1r𝑅)
3 uvcfval.z . . . . 5 0 = (0g𝑅)
41, 2, 3uvcval 21700 . . . 4 ((𝑅𝑉𝐼𝑊𝐽𝐼) → (𝑈𝐽) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )))
54fveq1d 6862 . . 3 ((𝑅𝑉𝐼𝑊𝐽𝐼) → ((𝑈𝐽)‘𝐾) = ((𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾))
65adantr 480 . 2 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = ((𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾))
7 simpr 484 . . 3 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → 𝐾𝐼)
82fvexi 6874 . . . 4 1 ∈ V
93fvexi 6874 . . . 4 0 ∈ V
108, 9ifex 4541 . . 3 if(𝐾 = 𝐽, 1 , 0 ) ∈ V
11 eqeq1 2734 . . . . 5 (𝑘 = 𝐾 → (𝑘 = 𝐽𝐾 = 𝐽))
1211ifbid 4514 . . . 4 (𝑘 = 𝐾 → if(𝑘 = 𝐽, 1 , 0 ) = if(𝐾 = 𝐽, 1 , 0 ))
13 eqid 2730 . . . 4 (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))
1412, 13fvmptg 6968 . . 3 ((𝐾𝐼 ∧ if(𝐾 = 𝐽, 1 , 0 ) ∈ V) → ((𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾) = if(𝐾 = 𝐽, 1 , 0 ))
157, 10, 14sylancl 586 . 2 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾) = if(𝐾 = 𝐽, 1 , 0 ))
166, 15eqtrd 2765 1 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  ifcif 4490  cmpt 5190  cfv 6513  (class class class)co 7389  0gc0g 17408  1rcur 20096   unitVec cuvc 21697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-uvc 21698
This theorem is referenced by:  uvcvvcl  21702  uvcvvcl2  21703  uvcvv1  21704  uvcvv0  21705  matunitlindflem2  37606
  Copyright terms: Public domain W3C validator