MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uvcvval Structured version   Visualization version   GIF version

Theorem uvcvval 21695
Description: Value of a unit vector coordinate in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.)
Hypotheses
Ref Expression
uvcfval.u 𝑈 = (𝑅 unitVec 𝐼)
uvcfval.o 1 = (1r𝑅)
uvcfval.z 0 = (0g𝑅)
Assertion
Ref Expression
uvcvval (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 ))

Proof of Theorem uvcvval
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 uvcfval.u . . . . 5 𝑈 = (𝑅 unitVec 𝐼)
2 uvcfval.o . . . . 5 1 = (1r𝑅)
3 uvcfval.z . . . . 5 0 = (0g𝑅)
41, 2, 3uvcval 21694 . . . 4 ((𝑅𝑉𝐼𝑊𝐽𝐼) → (𝑈𝐽) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )))
54fveq1d 6860 . . 3 ((𝑅𝑉𝐼𝑊𝐽𝐼) → ((𝑈𝐽)‘𝐾) = ((𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾))
65adantr 480 . 2 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = ((𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾))
7 simpr 484 . . 3 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → 𝐾𝐼)
82fvexi 6872 . . . 4 1 ∈ V
93fvexi 6872 . . . 4 0 ∈ V
108, 9ifex 4539 . . 3 if(𝐾 = 𝐽, 1 , 0 ) ∈ V
11 eqeq1 2733 . . . . 5 (𝑘 = 𝐾 → (𝑘 = 𝐽𝐾 = 𝐽))
1211ifbid 4512 . . . 4 (𝑘 = 𝐾 → if(𝑘 = 𝐽, 1 , 0 ) = if(𝐾 = 𝐽, 1 , 0 ))
13 eqid 2729 . . . 4 (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) = (𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))
1412, 13fvmptg 6966 . . 3 ((𝐾𝐼 ∧ if(𝐾 = 𝐽, 1 , 0 ) ∈ V) → ((𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾) = if(𝐾 = 𝐽, 1 , 0 ))
157, 10, 14sylancl 586 . 2 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑘𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾) = if(𝐾 = 𝐽, 1 , 0 ))
166, 15eqtrd 2764 1 (((𝑅𝑉𝐼𝑊𝐽𝐼) ∧ 𝐾𝐼) → ((𝑈𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  ifcif 4488  cmpt 5188  cfv 6511  (class class class)co 7387  0gc0g 17402  1rcur 20090   unitVec cuvc 21691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-uvc 21692
This theorem is referenced by:  uvcvvcl  21696  uvcvvcl2  21697  uvcvv1  21698  uvcvv0  21699  matunitlindflem2  37611
  Copyright terms: Public domain W3C validator