| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvcvval | Structured version Visualization version GIF version | ||
| Description: Value of a unit vector coordinate in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| uvcfval.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| uvcfval.o | ⊢ 1 = (1r‘𝑅) |
| uvcfval.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| uvcvval | ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvcfval.u | . . . . 5 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
| 2 | uvcfval.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 3 | uvcfval.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | uvcval 21724 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) |
| 5 | 4 | fveq1d 6830 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾)) |
| 6 | 5 | adantr 480 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾)) |
| 7 | simpr 484 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → 𝐾 ∈ 𝐼) | |
| 8 | 2 | fvexi 6842 | . . . 4 ⊢ 1 ∈ V |
| 9 | 3 | fvexi 6842 | . . . 4 ⊢ 0 ∈ V |
| 10 | 8, 9 | ifex 4525 | . . 3 ⊢ if(𝐾 = 𝐽, 1 , 0 ) ∈ V |
| 11 | eqeq1 2737 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑘 = 𝐽 ↔ 𝐾 = 𝐽)) | |
| 12 | 11 | ifbid 4498 | . . . 4 ⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐽, 1 , 0 ) = if(𝐾 = 𝐽, 1 , 0 )) |
| 13 | eqid 2733 | . . . 4 ⊢ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) | |
| 14 | 12, 13 | fvmptg 6933 | . . 3 ⊢ ((𝐾 ∈ 𝐼 ∧ if(𝐾 = 𝐽, 1 , 0 ) ∈ V) → ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
| 15 | 7, 10, 14 | sylancl 586 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
| 16 | 6, 15 | eqtrd 2768 | 1 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ifcif 4474 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 0gc0g 17345 1rcur 20101 unitVec cuvc 21721 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-uvc 21722 |
| This theorem is referenced by: uvcvvcl 21726 uvcvvcl2 21727 uvcvv1 21728 uvcvv0 21729 matunitlindflem2 37677 |
| Copyright terms: Public domain | W3C validator |