| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvcvval | Structured version Visualization version GIF version | ||
| Description: Value of a unit vector coordinate in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| uvcfval.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| uvcfval.o | ⊢ 1 = (1r‘𝑅) |
| uvcfval.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| uvcvval | ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvcfval.u | . . . . 5 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
| 2 | uvcfval.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 3 | uvcfval.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | uvcval 21759 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) |
| 5 | 4 | fveq1d 6888 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾)) |
| 6 | 5 | adantr 480 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾)) |
| 7 | simpr 484 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → 𝐾 ∈ 𝐼) | |
| 8 | 2 | fvexi 6900 | . . . 4 ⊢ 1 ∈ V |
| 9 | 3 | fvexi 6900 | . . . 4 ⊢ 0 ∈ V |
| 10 | 8, 9 | ifex 4556 | . . 3 ⊢ if(𝐾 = 𝐽, 1 , 0 ) ∈ V |
| 11 | eqeq1 2738 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑘 = 𝐽 ↔ 𝐾 = 𝐽)) | |
| 12 | 11 | ifbid 4529 | . . . 4 ⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐽, 1 , 0 ) = if(𝐾 = 𝐽, 1 , 0 )) |
| 13 | eqid 2734 | . . . 4 ⊢ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) | |
| 14 | 12, 13 | fvmptg 6994 | . . 3 ⊢ ((𝐾 ∈ 𝐼 ∧ if(𝐾 = 𝐽, 1 , 0 ) ∈ V) → ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
| 15 | 7, 10, 14 | sylancl 586 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
| 16 | 6, 15 | eqtrd 2769 | 1 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ifcif 4505 ↦ cmpt 5205 ‘cfv 6541 (class class class)co 7413 0gc0g 17455 1rcur 20146 unitVec cuvc 21756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-uvc 21757 |
| This theorem is referenced by: uvcvvcl 21761 uvcvvcl2 21762 uvcvv1 21763 uvcvv0 21764 matunitlindflem2 37583 |
| Copyright terms: Public domain | W3C validator |