| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uvcvval | Structured version Visualization version GIF version | ||
| Description: Value of a unit vector coordinate in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| Ref | Expression |
|---|---|
| uvcfval.u | ⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| uvcfval.o | ⊢ 1 = (1r‘𝑅) |
| uvcfval.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| uvcvval | ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uvcfval.u | . . . . 5 ⊢ 𝑈 = (𝑅 unitVec 𝐼) | |
| 2 | uvcfval.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 3 | uvcfval.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 4 | 1, 2, 3 | uvcval 21694 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → (𝑈‘𝐽) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))) |
| 5 | 4 | fveq1d 6860 | . . 3 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾)) |
| 6 | 5 | adantr 480 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾)) |
| 7 | simpr 484 | . . 3 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → 𝐾 ∈ 𝐼) | |
| 8 | 2 | fvexi 6872 | . . . 4 ⊢ 1 ∈ V |
| 9 | 3 | fvexi 6872 | . . . 4 ⊢ 0 ∈ V |
| 10 | 8, 9 | ifex 4539 | . . 3 ⊢ if(𝐾 = 𝐽, 1 , 0 ) ∈ V |
| 11 | eqeq1 2733 | . . . . 5 ⊢ (𝑘 = 𝐾 → (𝑘 = 𝐽 ↔ 𝐾 = 𝐽)) | |
| 12 | 11 | ifbid 4512 | . . . 4 ⊢ (𝑘 = 𝐾 → if(𝑘 = 𝐽, 1 , 0 ) = if(𝐾 = 𝐽, 1 , 0 )) |
| 13 | eqid 2729 | . . . 4 ⊢ (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) = (𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 )) | |
| 14 | 12, 13 | fvmptg 6966 | . . 3 ⊢ ((𝐾 ∈ 𝐼 ∧ if(𝐾 = 𝐽, 1 , 0 ) ∈ V) → ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
| 15 | 7, 10, 14 | sylancl 586 | . 2 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑘 ∈ 𝐼 ↦ if(𝑘 = 𝐽, 1 , 0 ))‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
| 16 | 6, 15 | eqtrd 2764 | 1 ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ∧ 𝐽 ∈ 𝐼) ∧ 𝐾 ∈ 𝐼) → ((𝑈‘𝐽)‘𝐾) = if(𝐾 = 𝐽, 1 , 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ifcif 4488 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 0gc0g 17402 1rcur 20090 unitVec cuvc 21691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-uvc 21692 |
| This theorem is referenced by: uvcvvcl 21696 uvcvvcl2 21697 uvcvv1 21698 uvcvv0 21699 matunitlindflem2 37611 |
| Copyright terms: Public domain | W3C validator |