MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporid Structured version   Visualization version   GIF version

Theorem grporid 27712
Description: The identity element of a group is a right identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoidval.1 𝑋 = ran 𝐺
grpoidval.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
grporid ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺𝑈) = 𝐴)

Proof of Theorem grporid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpoidval.1 . . 3 𝑋 = ran 𝐺
2 grpoidval.2 . . 3 𝑈 = (GId‘𝐺)
31, 2grpoidinv2 27710 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑥𝑋 ((𝑥𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑥) = 𝑈)))
4 simplr 746 . 2 ((((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑥𝑋 ((𝑥𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑥) = 𝑈)) → (𝐴𝐺𝑈) = 𝐴)
53, 4syl 17 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺𝑈) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  wrex 3062  ran crn 5251  cfv 6032  (class class class)co 6794  GrpOpcgr 27684  GIdcgi 27685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035  ax-un 7097
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 829  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3589  df-csb 3684  df-dif 3727  df-un 3729  df-in 3731  df-ss 3738  df-nul 4065  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-iota 5995  df-fun 6034  df-fn 6035  df-f 6036  df-fo 6038  df-fv 6040  df-riota 6755  df-ov 6797  df-grpo 27688  df-gid 27689
This theorem is referenced by:  grporcan  27713  grpoinvid1  27723  grpoinvid2  27724  grponpcan  27738  vc0rid  27769  vcm  27772  nv0rid  27831  rngo0rid  34052  rngolz  34054
  Copyright terms: Public domain W3C validator