MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporid Structured version   Visualization version   GIF version

Theorem grporid 28780
Description: The identity element of a group is a right identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoidval.1 𝑋 = ran 𝐺
grpoidval.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
grporid ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺𝑈) = 𝐴)

Proof of Theorem grporid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpoidval.1 . . 3 𝑋 = ran 𝐺
2 grpoidval.2 . . 3 𝑈 = (GId‘𝐺)
31, 2grpoidinv2 28778 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑥𝑋 ((𝑥𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑥) = 𝑈)))
4 simplr 765 . 2 ((((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑥𝑋 ((𝑥𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑥) = 𝑈)) → (𝐴𝐺𝑈) = 𝐴)
53, 4syl 17 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺𝑈) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064  ran crn 5581  cfv 6418  (class class class)co 7255  GrpOpcgr 28752  GIdcgi 28753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-riota 7212  df-ov 7258  df-grpo 28756  df-gid 28757
This theorem is referenced by:  grporcan  28781  grpoinvid1  28791  grpoinvid2  28792  grponpcan  28806  vc0rid  28836  vcm  28839  nv0rid  28898  rngo0rid  36005  rngolz  36007
  Copyright terms: Public domain W3C validator