MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grporid Structured version   Visualization version   GIF version

Theorem grporid 30496
Description: The identity element of a group is a right identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpoidval.1 𝑋 = ran 𝐺
grpoidval.2 𝑈 = (GId‘𝐺)
Assertion
Ref Expression
grporid ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺𝑈) = 𝐴)

Proof of Theorem grporid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 grpoidval.1 . . 3 𝑋 = ran 𝐺
2 grpoidval.2 . . 3 𝑈 = (GId‘𝐺)
31, 2grpoidinv2 30494 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑥𝑋 ((𝑥𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑥) = 𝑈)))
4 simplr 768 . 2 ((((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑥𝑋 ((𝑥𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑥) = 𝑈)) → (𝐴𝐺𝑈) = 𝐴)
53, 4syl 17 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺𝑈) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  ran crn 5632  cfv 6499  (class class class)co 7369  GrpOpcgr 30468  GIdcgi 30469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-fv 6507  df-riota 7326  df-ov 7372  df-grpo 30472  df-gid 30473
This theorem is referenced by:  grporcan  30497  grpoinvid1  30507  grpoinvid2  30508  grponpcan  30522  vc0rid  30552  vcm  30555  nv0rid  30614  rngo0rid  37907  rngolz  37909
  Copyright terms: Public domain W3C validator