![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grporid | Structured version Visualization version GIF version |
Description: The identity element of a group is a right identity. (Contributed by NM, 24-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpoidval.1 | ⊢ 𝑋 = ran 𝐺 |
grpoidval.2 | ⊢ 𝑈 = (GId‘𝐺) |
Ref | Expression |
---|---|
grporid | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑈) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpoidval.1 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
2 | grpoidval.2 | . . 3 ⊢ 𝑈 = (GId‘𝐺) | |
3 | 1, 2 | grpoidinv2 29755 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑥 ∈ 𝑋 ((𝑥𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑥) = 𝑈))) |
4 | simplr 767 | . 2 ⊢ ((((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑥 ∈ 𝑋 ((𝑥𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑥) = 𝑈)) → (𝐴𝐺𝑈) = 𝐴) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑈) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ran crn 5676 ‘cfv 6540 (class class class)co 7405 GrpOpcgr 29729 GIdcgi 29730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fo 6546 df-fv 6548 df-riota 7361 df-ov 7408 df-grpo 29733 df-gid 29734 |
This theorem is referenced by: grporcan 29758 grpoinvid1 29768 grpoinvid2 29769 grponpcan 29783 vc0rid 29813 vcm 29816 nv0rid 29875 rngo0rid 36776 rngolz 36778 |
Copyright terms: Public domain | W3C validator |