MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvdir Structured version   Visualization version   GIF version

Theorem nvdir 28421
Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvdi.1 𝑋 = (BaseSet‘𝑈)
nvdi.2 𝐺 = ( +𝑣𝑈)
nvdi.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvdir ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))

Proof of Theorem nvdir
StepHypRef Expression
1 eqid 2824 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 28405 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 nvdi.2 . . . 4 𝐺 = ( +𝑣𝑈)
43vafval 28393 . . 3 𝐺 = (1st ‘(1st𝑈))
5 nvdi.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 28395 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvdi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 28394 . . 3 𝑋 = ran 𝐺
94, 6, 8vcdir 28356 . 2 (((1st𝑈) ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))
102, 9sylan 583 1 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  cfv 6343  (class class class)co 7149  1st c1st 7682  cc 10533   + caddc 10538  CVecOLDcvc 28348  NrmCVeccnv 28374   +𝑣 cpv 28375  BaseSetcba 28376   ·𝑠OLD cns 28377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-ov 7152  df-oprab 7153  df-1st 7684  df-2nd 7685  df-vc 28349  df-nv 28382  df-va 28385  df-ba 28386  df-sm 28387  df-0v 28388  df-nmcv 28390
This theorem is referenced by:  nvge0  28463  smcnlem  28487  ipidsq  28500  ip2i  28618  ipasslem1  28621  ipasslem11  28630  hldir  28698
  Copyright terms: Public domain W3C validator