MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvdir Structured version   Visualization version   GIF version

Theorem nvdir 30612
Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvdi.1 𝑋 = (BaseSet‘𝑈)
nvdi.2 𝐺 = ( +𝑣𝑈)
nvdi.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvdir ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))

Proof of Theorem nvdir
StepHypRef Expression
1 eqid 2735 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 30596 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 nvdi.2 . . . 4 𝐺 = ( +𝑣𝑈)
43vafval 30584 . . 3 𝐺 = (1st ‘(1st𝑈))
5 nvdi.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 30586 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvdi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 30585 . . 3 𝑋 = ran 𝐺
94, 6, 8vcdir 30547 . 2 (((1st𝑈) ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))
102, 9sylan 580 1 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  cfv 6531  (class class class)co 7405  1st c1st 7986  cc 11127   + caddc 11132  CVecOLDcvc 30539  NrmCVeccnv 30565   +𝑣 cpv 30566  BaseSetcba 30567   ·𝑠OLD cns 30568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-1st 7988  df-2nd 7989  df-vc 30540  df-nv 30573  df-va 30576  df-ba 30577  df-sm 30578  df-0v 30579  df-nmcv 30581
This theorem is referenced by:  nvge0  30654  smcnlem  30678  ipidsq  30691  ip2i  30809  ipasslem1  30812  ipasslem11  30821  hldir  30889
  Copyright terms: Public domain W3C validator