MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvdir Structured version   Visualization version   GIF version

Theorem nvdir 28993
Description: Distributive law for the scalar product of a complex vector space. (Contributed by NM, 4-Dec-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvdi.1 𝑋 = (BaseSet‘𝑈)
nvdi.2 𝐺 = ( +𝑣𝑈)
nvdi.4 𝑆 = ( ·𝑠OLD𝑈)
Assertion
Ref Expression
nvdir ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))

Proof of Theorem nvdir
StepHypRef Expression
1 eqid 2738 . . 3 (1st𝑈) = (1st𝑈)
21nvvc 28977 . 2 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 nvdi.2 . . . 4 𝐺 = ( +𝑣𝑈)
43vafval 28965 . . 3 𝐺 = (1st ‘(1st𝑈))
5 nvdi.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
65smfval 28967 . . 3 𝑆 = (2nd ‘(1st𝑈))
7 nvdi.1 . . . 4 𝑋 = (BaseSet‘𝑈)
87, 3bafval 28966 . . 3 𝑋 = ran 𝐺
94, 6, 8vcdir 28928 . 2 (((1st𝑈) ∈ CVecOLD ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))
102, 9sylan 580 1 ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶𝑋)) → ((𝐴 + 𝐵)𝑆𝐶) = ((𝐴𝑆𝐶)𝐺(𝐵𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  1st c1st 7829  cc 10869   + caddc 10874  CVecOLDcvc 28920  NrmCVeccnv 28946   +𝑣 cpv 28947  BaseSetcba 28948   ·𝑠OLD cns 28949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-1st 7831  df-2nd 7832  df-vc 28921  df-nv 28954  df-va 28957  df-ba 28958  df-sm 28959  df-0v 28960  df-nmcv 28962
This theorem is referenced by:  nvge0  29035  smcnlem  29059  ipidsq  29072  ip2i  29190  ipasslem1  29193  ipasslem11  29202  hldir  29270
  Copyright terms: Public domain W3C validator