![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wlkoniswlk | Structured version Visualization version GIF version |
Description: A walk between two vertices is a walk. (Contributed by Alexander van der Vekens, 12-Dec-2017.) (Revised by AV, 2-Jan-2021.) |
Ref | Expression |
---|---|
wlkoniswlk | β’ (πΉ(π΄(WalksOnβπΊ)π΅)π β πΉ(WalksβπΊ)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 β’ (VtxβπΊ) = (VtxβπΊ) | |
2 | 1 | wlkonprop 29179 | . 2 β’ (πΉ(π΄(WalksOnβπΊ)π΅)π β ((πΊ β V β§ π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅))) |
3 | simp31 1208 | . 2 β’ (((πΊ β V β§ π΄ β (VtxβπΊ) β§ π΅ β (VtxβπΊ)) β§ (πΉ β V β§ π β V) β§ (πΉ(WalksβπΊ)π β§ (πβ0) = π΄ β§ (πβ(β―βπΉ)) = π΅)) β πΉ(WalksβπΊ)π) | |
4 | 2, 3 | syl 17 | 1 β’ (πΉ(π΄(WalksOnβπΊ)π΅)π β πΉ(WalksβπΊ)π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 Vcvv 3473 class class class wbr 5149 βcfv 6544 (class class class)co 7412 0cc0 11113 β―chash 14295 Vtxcvtx 28520 Walkscwlks 29117 WalksOncwlkson 29118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7978 df-2nd 7979 df-wlkson 29121 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |