MPE Home Metamath Proof Explorer This is the Unicode version.
Change to GIF version

List of Syntax, Axioms (ax-) and Definitions (df-)
RefExpression (see link for any distinct variable requirements)
wn 3wff ¬ 𝜑
wi 4wff (𝜑𝜓)
ax-mp 5𝜑    &   (𝜑𝜓)       𝜓
ax-1 6(𝜑 → (𝜓𝜑))
ax-2 7((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
ax-3 8((¬ 𝜑 → ¬ 𝜓) → (𝜓𝜑))
wb 206wff (𝜑𝜓)
df-bi 207 ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))
wa 395wff (𝜑𝜓)
df-an 396((𝜑𝜓) ↔ ¬ (𝜑 → ¬ 𝜓))
wo 848wff (𝜑𝜓)
df-or 849((𝜑𝜓) ↔ (¬ 𝜑𝜓))
wif 1063wff if-(𝜑, 𝜓, 𝜒)
df-ifp 1064(if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (¬ 𝜑𝜒)))
w3o 1086wff (𝜑𝜓𝜒)
w3a 1087wff (𝜑𝜓𝜒)
df-3or 1088((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
df-3an 1089((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
wnan 1490wff (𝜑𝜓)
df-nan 1491((𝜑𝜓) ↔ ¬ (𝜑𝜓))
wxo 1510wff (𝜑𝜓)
df-xor 1511((𝜑𝜓) ↔ ¬ (𝜑𝜓))
wnor 1527wff (𝜑 𝜓)
df-nor 1528((𝜑 𝜓) ↔ ¬ (𝜑𝜓))
wal 1537wff 𝑥𝜑
cv 1538class 𝑥
wceq 1539wff 𝐴 = 𝐵
wtru 1540wff
df-tru 1542(⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥))
wfal 1551wff
df-fal 1552(⊥ ↔ ¬ ⊤)
whad 1592wff hadd(𝜑, 𝜓, 𝜒)
df-had 1593(hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ⊻ 𝜒))
wcad 1605wff cadd(𝜑, 𝜓, 𝜒)
df-cad 1606(cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∨ (𝜒 ∧ (𝜑𝜓))))
wex 1778wff 𝑥𝜑
df-ex 1779(∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)
wnf 1782wff 𝑥𝜑
df-nf 1783(Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
ax-gen 1794𝜑       𝑥𝜑
ax-4 1808(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
ax-5 1910(𝜑 → ∀𝑥𝜑)
ax-6 1967 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
ax-7 2007(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
wsb 2064wff [𝑦 / 𝑥]𝜑
df-sb 2065([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
wcel 2108wff 𝐴𝐵
ax-8 2110(𝑥 = 𝑦 → (𝑥𝑧𝑦𝑧))
ax-9 2118(𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
ax-10 2141(¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
ax-11 2157(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
ax-12 2177(𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
ax-13 2377𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
wmo 2538wff ∃*𝑥𝜑
df-mo 2540(∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
weu 2568wff ∃!𝑥𝜑
df-eu 2569(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
ax-ext 2708(∀𝑧(𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
cab 2714class {𝑥𝜑}
df-clab 2715(𝑥 ∈ {𝑦𝜑} ↔ [𝑥 / 𝑦]𝜑)
df-cleq 2729(𝑦 = 𝑧 ↔ ∀𝑢(𝑢𝑦𝑢𝑧))    &   (𝑡 = 𝑡 ↔ ∀𝑣(𝑣𝑡𝑣𝑡))       (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
df-clel 2816(𝑦𝑧 ↔ ∃𝑢(𝑢 = 𝑦𝑢𝑧))    &   (𝑡𝑡 ↔ ∃𝑣(𝑣 = 𝑡𝑣𝑡))       (𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
wnfc 2890wff 𝑥𝐴
df-nfc 2892(𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
wne 2940wff 𝐴𝐵
df-ne 2941(𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
wnel 3046wff 𝐴𝐵
df-nel 3047(𝐴𝐵 ↔ ¬ 𝐴𝐵)
wral 3061wff 𝑥𝐴 𝜑
df-ral 3062(∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
wrex 3070wff 𝑥𝐴 𝜑
df-rex 3071(∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
wreu 3378wff ∃!𝑥𝐴 𝜑
wrmo 3379wff ∃*𝑥𝐴 𝜑
df-rmo 3380(∃*𝑥𝐴 𝜑 ↔ ∃*𝑥(𝑥𝐴𝜑))
df-reu 3381(∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
crab 3436class {𝑥𝐴𝜑}
df-rab 3437{𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
cvv 3481class V
df-v 3483V = {𝑥𝑥 = 𝑥}
wcdeq 3775wff CondEq(𝑥 = 𝑦𝜑)
df-cdeq 3776(CondEq(𝑥 = 𝑦𝜑) ↔ (𝑥 = 𝑦𝜑))
wsbc 3794wff [𝐴 / 𝑥]𝜑
df-sbc 3795([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑})
csb 3911class 𝐴 / 𝑥𝐵
df-csb 3912𝐴 / 𝑥𝐵 = {𝑦[𝐴 / 𝑥]𝑦𝐵}
cdif 3963class (𝐴𝐵)
cun 3964class (𝐴𝐵)
cin 3965class (𝐴𝐵)
wss 3966wff 𝐴𝐵
wpss 3967wff 𝐴𝐵
df-dif 3969(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝑥𝐵)}
df-un 3971(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
df-in 3973(𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
df-ss 3983(𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
df-pss 3986(𝐴𝐵 ↔ (𝐴𝐵𝐴𝐵))
csymdif 4261class (𝐴𝐵)
df-symdif 4262(𝐴𝐵) = ((𝐴𝐵) ∪ (𝐵𝐴))
c0 4342class
df-nul 4343∅ = (V ∖ V)
cif 4534class if(𝜑, 𝐴, 𝐵)
df-if 4535if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵 ∧ ¬ 𝜑))}
cpw 4608class 𝒫 𝐴
df-pw 4610𝒫 𝐴 = {𝑥𝑥𝐴}
csn 4634class {𝐴}
df-sn 4635{𝐴} = {𝑥𝑥 = 𝐴}
cpr 4636class {𝐴, 𝐵}
df-pr 4637{𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
ctp 4638class {𝐴, 𝐵, 𝐶}
df-tp 4639{𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
cop 4640class 𝐴, 𝐵
df-op 4641𝐴, 𝐵⟩ = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})}
cotp 4642class 𝐴, 𝐵, 𝐶
df-ot 4643𝐴, 𝐵, 𝐶⟩ = ⟨⟨𝐴, 𝐵⟩, 𝐶
cuni 4915class 𝐴
df-uni 4916 𝐴 = {𝑥 ∣ ∃𝑦(𝑥𝑦𝑦𝐴)}
cint 4954class 𝐴
df-int 4955 𝐴 = {𝑥 ∣ ∀𝑦(𝑦𝐴𝑥𝑦)}
ciun 4999class 𝑥𝐴 𝐵
ciin 5000class 𝑥𝐴 𝐵
df-iun 5001 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
df-iin 5002 𝑥𝐴 𝐵 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝐵}
wdisj 5118wff Disj 𝑥𝐴 𝐵
df-disj 5119(Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
wbr 5151wff 𝐴𝑅𝐵
df-br 5152(𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
copab 5213class {⟨𝑥, 𝑦⟩ ∣ 𝜑}
df-opab 5214{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
cmpt 5234class (𝑥𝐴𝐵)
df-mpt 5235(𝑥𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝐵)}
wtr 5268wff Tr 𝐴
df-tr 5269(Tr 𝐴 𝐴𝐴)
ax-rep 5288(∀𝑤𝑦𝑧(∀𝑦𝜑𝑧 = 𝑦) → ∃𝑦𝑧(𝑧𝑦 ↔ ∃𝑤(𝑤𝑥 ∧ ∀𝑦𝜑)))
ax-sep 5305𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑧𝜑))
ax-nul 5315𝑥𝑦 ¬ 𝑦𝑥
ax-pow 5374𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦)
ax-pr 5441𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
cid 5586class I
df-id 5587 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
cep 5592class E
df-eprel 5593 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
wpo 5599wff 𝑅 Po 𝐴
wor 5600wff 𝑅 Or 𝐴
df-po 5601(𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
df-so 5602(𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦𝑥 = 𝑦𝑦𝑅𝑥)))
wfr 5642wff 𝑅 Fr 𝐴
wse 5643wff 𝑅 Se 𝐴
wwe 5644wff 𝑅 We 𝐴
df-fr 5645(𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
df-se 5646(𝑅 Se 𝐴 ↔ ∀𝑥𝐴 {𝑦𝐴𝑦𝑅𝑥} ∈ V)
df-we 5647(𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Or 𝐴))
cxp 5691class (𝐴 × 𝐵)
ccnv 5692class 𝐴
cdm 5693class dom 𝐴
crn 5694class ran 𝐴
cres 5695class (𝐴𝐵)
cima 5696class (𝐴𝐵)
ccom 5697class (𝐴𝐵)
wrel 5698wff Rel 𝐴
df-xp 5699(𝐴 × 𝐵) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝐵)}
df-rel 5700(Rel 𝐴𝐴 ⊆ (V × V))
df-cnv 5701𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
df-co 5702(𝐴𝐵) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦)}
df-dm 5703dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
df-rn 5704ran 𝐴 = dom 𝐴
df-res 5705(𝐴𝐵) = (𝐴 ∩ (𝐵 × V))
df-ima 5706(𝐴𝐵) = ran (𝐴𝐵)
cpred 6328class Pred(𝑅, 𝐴, 𝑋)
df-pred 6329Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (𝑅 “ {𝑋}))
word 6391wff Ord 𝐴
con0 6392class On
wlim 6393wff Lim 𝐴
csuc 6394class suc 𝐴
df-ord 6395(Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
df-on 6396On = {𝑥 ∣ Ord 𝑥}
df-lim 6397(Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
df-suc 6398suc 𝐴 = (𝐴 ∪ {𝐴})
cio 6520class (℩𝑥𝜑)
df-iota 6522(℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
wfun 6563wff Fun 𝐴
wfn 6564wff 𝐴 Fn 𝐵
wf 6565wff 𝐹:𝐴𝐵
wf1 6566wff 𝐹:𝐴1-1𝐵
wfo 6567wff 𝐹:𝐴onto𝐵
wf1o 6568wff 𝐹:𝐴1-1-onto𝐵
cfv 6569class (𝐹𝐴)
wiso 6570wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
df-fun 6571(Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴𝐴) ⊆ I ))
df-fn 6572(𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵))
df-f 6573(𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
df-f1 6574(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ Fun 𝐹))
df-fo 6575(𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
df-f1o 6576(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹:𝐴1-1𝐵𝐹:𝐴onto𝐵))
df-fv 6577(𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
df-isom 6578(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
crio 7394class (𝑥𝐴 𝜑)
df-riota 7395(𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
co 7438class (𝐴𝐹𝐵)
coprab 7439class {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
cmpo 7440class (𝑥𝐴, 𝑦𝐵𝐶)
df-ov 7441(𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
df-oprab 7442{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑤 ∣ ∃𝑥𝑦𝑧(𝑤 = ⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∧ 𝜑)}
df-mpo 7443(𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
cof 7702class f 𝑅
cofr 7703class r 𝑅
df-of 7704f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
df-ofr 7705r 𝑅 = {⟨𝑓, 𝑔⟩ ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓𝑥)𝑅(𝑔𝑥)}
crpss 7748class []
df-rpss 7749 [] = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
ax-un 7761𝑦𝑧(∃𝑤(𝑧𝑤𝑤𝑥) → 𝑧𝑦)
com 7894class ω
df-om 7895ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦𝑥𝑦)}
c1st 8020class 1st
c2nd 8021class 2nd
df-1st 80221st = (𝑥 ∈ V ↦ dom {𝑥})
df-2nd 80232nd = (𝑥 ∈ V ↦ ran {𝑥})
csupp 8193class supp
df-supp 8194 supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}})
ctpos 8258class tpos 𝐹
df-tpos 8259tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
ccur 8298class curry 𝐴
cunc 8299class uncurry 𝐴
df-cur 8300curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {⟨𝑦, 𝑧⟩ ∣ ⟨𝑥, 𝑦𝐹𝑧})
df-unc 8301uncurry 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑦(𝐹𝑥)𝑧}
cund 8305class Undef
df-undef 8306Undef = (𝑠 ∈ V ↦ 𝒫 𝑠)
cfrecs 8313class frecs(𝑅, 𝐴, 𝐹)
df-frecs 8314frecs(𝑅, 𝐴, 𝐹) = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))}
cwrecs 8344class wrecs(𝑅, 𝐴, 𝐹)
df-wrecs 8345wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd ))
wsmo 8393wff Smo 𝐴
df-smo 8394(Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴𝑦 ∈ dom 𝐴(𝑥𝑦 → (𝐴𝑥) ∈ (𝐴𝑦))))
crecs 8418class recs(𝐹)
df-recs 8419recs(𝐹) = wrecs( E , On, 𝐹)
crdg 8457class rec(𝐹, 𝐼)
df-rdg 8458rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
cseqom 8495class seqω(𝐹, 𝐼)
df-seqom 8496seqω(𝐹, 𝐼) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) “ ω)
c1o 8507class 1o
c2o 8508class 2o
c3o 8509class 3o
c4o 8510class 4o
coa 8511class +o
comu 8512class ·o
coe 8513class o
df-1o 85141o = suc ∅
df-2o 85152o = suc 1o
df-3o 85163o = suc 2o
df-4o 85174o = suc 3o
df-oadd 8518 +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦))
df-omul 8519 ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦))
df-oexp 8520o = (𝑥 ∈ On, 𝑦 ∈ On ↦ if(𝑥 = ∅, (1o𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦)))
cnadd 8711class +no
df-nadd 8712 +no = frecs({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧ (((1st𝑥) E (1st𝑦) ∨ (1st𝑥) = (1st𝑦)) ∧ ((2nd𝑥) E (2nd𝑦) ∨ (2nd𝑥) = (2nd𝑦)) ∧ 𝑥𝑦))}, (On × On), (𝑧 ∈ V, 𝑎 ∈ V ↦ {𝑤 ∈ On ∣ ((𝑎 “ ({(1st𝑧)} × (2nd𝑧))) ⊆ 𝑤 ∧ (𝑎 “ ((1st𝑧) × {(2nd𝑧)})) ⊆ 𝑤)}))
wer 8750wff 𝑅 Er 𝐴
cec 8751class [𝐴]𝑅
cqs 8752class (𝐴 / 𝑅)
df-er 8753(𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
df-ec 8755[𝐴]𝑅 = (𝑅 “ {𝐴})
df-qs 8759(𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
cmap 8874class m
cpm 8875class pm
df-map 8876m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑦𝑥})
df-pm 8877pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓})
cixp 8945class X𝑥𝐴 𝐵
df-ixp 8946X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
cen 8990class
cdom 8991class
csdm 8992class
cfn 8993class Fin
df-en 8994 ≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
df-dom 8995 ≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
df-sdom 8996 ≺ = ( ≼ ∖ ≈ )
df-fin 8997Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥𝑦}
cfsupp 9408class finSupp
df-fsupp 9409 finSupp = {⟨𝑟, 𝑧⟩ ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)}
cfi 9457class fi
df-fi 9458fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = 𝑦})
csup 9487class sup(𝐴, 𝐵, 𝑅)
cinf 9488class inf(𝐴, 𝐵, 𝑅)
df-sup 9489sup(𝐴, 𝐵, 𝑅) = {𝑥𝐵 ∣ (∀𝑦𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦𝐵 (𝑦𝑅𝑥 → ∃𝑧𝐴 𝑦𝑅𝑧))}
df-inf 9490inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, 𝑅)
coi 9556class OrdIso(𝑅, 𝐴)
df-oi 9557OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴𝑅 Se 𝐴), (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (recs(( ∈ V ↦ (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅)
char 9603class har
df-har 9604har = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
cwdom 9611class *
df-wdom 9612* = {⟨𝑥, 𝑦⟩ ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦onto𝑥)}
ax-reg 9639(∃𝑦 𝑦𝑥 → ∃𝑦(𝑦𝑥 ∧ ∀𝑧(𝑧𝑦 → ¬ 𝑧𝑥)))
ax-inf 9685𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
ax-inf2 9688𝑥(∃𝑦(𝑦𝑥 ∧ ∀𝑧 ¬ 𝑧𝑦) ∧ ∀𝑦(𝑦𝑥 → ∃𝑧(𝑧𝑥 ∧ ∀𝑤(𝑤𝑧 ↔ (𝑤𝑦𝑤 = 𝑦)))))
ccnf 9708class CNF
df-cnf 9709 CNF = (𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥m 𝑦) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
cttrcl 9754class t++𝑅
df-ttrcl 9755t++𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ (ω ∖ 1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓𝑛) = 𝑦) ∧ ∀𝑚𝑛 (𝑓𝑚)𝑅(𝑓‘suc 𝑚))}
ctc 9783class TC
df-tc 9784TC = (𝑥 ∈ V ↦ {𝑦 ∣ (𝑥𝑦 ∧ Tr 𝑦)})
cr1 9809class 𝑅1
crnk 9810class rank
df-r1 9811𝑅1 = rec((𝑥 ∈ V ↦ 𝒫 𝑥), ∅)
df-rank 9812rank = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑥 ∈ (𝑅1‘suc 𝑦)})
cdju 9945class (𝐴𝐵)
cinl 9946class inl
cinr 9947class inr
df-dju 9948(𝐴𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵))
df-inl 9949inl = (𝑥 ∈ V ↦ ⟨∅, 𝑥⟩)
df-inr 9950inr = (𝑥 ∈ V ↦ ⟨1o, 𝑥⟩)
ccrd 9982class card
cale 9983class
ccf 9984class cf
wacn 9985class AC 𝐴
df-card 9986card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
df-aleph 9987ℵ = rec(har, ω)
df-cf 9988cf = (𝑥 ∈ On ↦ {𝑦 ∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧𝑥 ∧ ∀𝑣𝑥𝑢𝑧 𝑣𝑢))})
df-acn 9989AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔𝑦𝐴 (𝑔𝑦) ∈ (𝑓𝑦))}
wac 10162wff CHOICE
df-ac 10163(CHOICE ↔ ∀𝑥𝑓(𝑓𝑥𝑓 Fn dom 𝑥))
cfin1a 10325class FinIa
cfin2 10326class FinII
cfin4 10327class FinIV
cfin3 10328class FinIII
cfin5 10329class FinV
cfin6 10330class FinVI
cfin7 10331class FinVII
df-fin1a 10332FinIa = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ∈ Fin ∨ (𝑥𝑦) ∈ Fin)}
df-fin2 10333FinII = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [] Or 𝑦) → 𝑦𝑦)}
df-fin4 10334FinIV = {𝑥 ∣ ¬ ∃𝑦(𝑦𝑥𝑦𝑥)}
df-fin3 10335FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV}
df-fin5 10336FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥𝑥))}
df-fin6 10337FinVI = {𝑥 ∣ (𝑥 ≺ 2o𝑥 ≺ (𝑥 × 𝑥))}
df-fin7 10338FinVII = {𝑥 ∣ ¬ ∃𝑦 ∈ (On ∖ ω)𝑥𝑦}
ax-cc 10482(𝑥 ≈ ω → ∃𝑓𝑧𝑥 (𝑧 ≠ ∅ → (𝑓𝑧) ∈ 𝑧))
ax-dc 10493((∃𝑦𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓𝑛 ∈ ω (𝑓𝑛)𝑥(𝑓‘suc 𝑛))
ax-ac 10506𝑦𝑧𝑤((𝑧𝑤𝑤𝑥) → ∃𝑣𝑢(∃𝑡((𝑢𝑤𝑤𝑡) ∧ (𝑢𝑡𝑡𝑦)) ↔ 𝑢 = 𝑣))
ax-ac2 10510𝑦𝑧𝑣𝑢((𝑦𝑥 ∧ (𝑧𝑦 → ((𝑣𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧𝑣))) ∨ (¬ 𝑦𝑥 ∧ (𝑧𝑥 → ((𝑣𝑧𝑣𝑦) ∧ ((𝑢𝑧𝑢𝑦) → 𝑢 = 𝑣)))))
cgch 10667class GCH
df-gch 10668GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥𝑦𝑦 ≺ 𝒫 𝑥)})
cwina 10729class Inaccw
cina 10730class Inacc
df-wina 10731Inaccw = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 𝑦𝑧)}
df-ina 10732Inacc = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦𝑥 𝒫 𝑦𝑥)}
cwun 10747class WUni
cwunm 10748class wUniCl
df-wun 10749WUni = {𝑢 ∣ (Tr 𝑢𝑢 ≠ ∅ ∧ ∀𝑥𝑢 ( 𝑥𝑢 ∧ 𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢))}
df-wunc 10750wUniCl = (𝑥 ∈ V ↦ {𝑢 ∈ WUni ∣ 𝑥𝑢})
ctsk 10795class Tarski
df-tsk 10796Tarski = {𝑦 ∣ (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))}
cgru 10837class Univ
df-gru 10838Univ = {𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥𝑢 (𝒫 𝑥𝑢 ∧ ∀𝑦𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢m 𝑥) ran 𝑦𝑢))}
ax-groth 10870𝑦(𝑥𝑦 ∧ ∀𝑧𝑦 (∀𝑤(𝑤𝑧𝑤𝑦) ∧ ∃𝑤𝑦𝑣(𝑣𝑧𝑣𝑤)) ∧ ∀𝑧(𝑧𝑦 → (𝑧𝑦𝑧𝑦)))
ctskm 10884class tarskiMap
df-tskm 10885tarskiMap = (𝑥 ∈ V ↦ {𝑦 ∈ Tarski ∣ 𝑥𝑦})
cnpi 10891class N
cpli 10892class +N
cmi 10893class ·N
clti 10894class <N
cplpq 10895class +pQ
cmpq 10896class ·pQ
cltpq 10897class <pQ
ceq 10898class ~Q
cnq 10899class Q
c1q 10900class 1Q
cerq 10901class [Q]
cplq 10902class +Q
cmq 10903class ·Q
crq 10904class *Q
cltq 10905class <Q
cnp 10906class P
c1p 10907class 1P
cpp 10908class +P
cmp 10909class ·P
cltp 10910class <P
cer 10911class ~R
cnr 10912class R
c0r 10913class 0R
c1r 10914class 1R
cm1r 10915class -1R
cplr 10916class +R
cmr 10917class ·R
cltr 10918class <R
df-ni 10919N = (ω ∖ {∅})
df-pli 10920 +N = ( +o ↾ (N × N))
df-mi 10921 ·N = ( ·o ↾ (N × N))
df-lti 10922 <N = ( E ∩ (N × N))
df-plpq 10955 +pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨(((1st𝑥) ·N (2nd𝑦)) +N ((1st𝑦) ·N (2nd𝑥))), ((2nd𝑥) ·N (2nd𝑦))⟩)
df-mpq 10956 ·pQ = (𝑥 ∈ (N × N), 𝑦 ∈ (N × N) ↦ ⟨((1st𝑥) ·N (1st𝑦)), ((2nd𝑥) ·N (2nd𝑦))⟩)
df-ltpq 10957 <pQ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ((1st𝑥) ·N (2nd𝑦)) <N ((1st𝑦) ·N (2nd𝑥)))}
df-enq 10958 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
df-nq 10959Q = {𝑥 ∈ (N × N) ∣ ∀𝑦 ∈ (N × N)(𝑥 ~Q 𝑦 → ¬ (2nd𝑦) <N (2nd𝑥))}
df-erq 10960[Q] = ( ~Q ∩ ((N × N) × Q))
df-plq 10961 +Q = (([Q] ∘ +pQ ) ↾ (Q × Q))
df-mq 10962 ·Q = (([Q] ∘ ·pQ ) ↾ (Q × Q))
df-1nq 109631Q = ⟨1o, 1o
df-rq 10964*Q = ( ·Q “ {1Q})
df-ltnq 10965 <Q = ( <pQ ∩ (Q × Q))
df-np 11028P = {𝑥 ∣ ((∅ ⊊ 𝑥𝑥Q) ∧ ∀𝑦𝑥 (∀𝑧(𝑧 <Q 𝑦𝑧𝑥) ∧ ∃𝑧𝑥 𝑦 <Q 𝑧))}
df-1p 110291P = {𝑥𝑥 <Q 1Q}
df-plp 11030 +P = (𝑥P, 𝑦P ↦ {𝑤 ∣ ∃𝑣𝑥𝑢𝑦 𝑤 = (𝑣 +Q 𝑢)})
df-mp 11031 ·P = (𝑥P, 𝑦P ↦ {𝑤 ∣ ∃𝑣𝑥𝑢𝑦 𝑤 = (𝑣 ·Q 𝑢)})
df-ltp 11032<P = {⟨𝑥, 𝑦⟩ ∣ ((𝑥P𝑦P) ∧ 𝑥𝑦)}
df-enr 11102 ~R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (P × P) ∧ 𝑦 ∈ (P × P)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))}
df-nr 11103R = ((P × P) / ~R )
df-plr 11104 +R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨(𝑤 +P 𝑢), (𝑣 +P 𝑓)⟩] ~R ))}
df-mr 11105 ·R = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = [⟨𝑤, 𝑣⟩] ~R𝑦 = [⟨𝑢, 𝑓⟩] ~R ) ∧ 𝑧 = [⟨((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑓)), ((𝑤 ·P 𝑓) +P (𝑣 ·P 𝑢))⟩] ~R ))}
df-ltr 11106 <R = {⟨𝑥, 𝑦⟩ ∣ ((𝑥R𝑦R) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = [⟨𝑧, 𝑤⟩] ~R𝑦 = [⟨𝑣, 𝑢⟩] ~R ) ∧ (𝑧 +P 𝑢)<P (𝑤 +P 𝑣)))}
df-0r 111070R = [⟨1P, 1P⟩] ~R
df-1r 111081R = [⟨(1P +P 1P), 1P⟩] ~R
df-m1r 11109-1R = [⟨1P, (1P +P 1P)⟩] ~R
cc 11160class
cr 11161class
cc0 11162class 0
c1 11163class 1
ci 11164class i
caddc 11165class +
cltrr 11166class <
cmul 11167class ·
df-c 11168ℂ = (R × R)
df-0 111690 = ⟨0R, 0R
df-1 111701 = ⟨1R, 0R
df-i 11171i = ⟨0R, 1R
df-r 11172ℝ = (R × {0R})
df-add 11173 + = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨(𝑤 +R 𝑢), (𝑣 +R 𝑓)⟩))}
df-mul 11174 · = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))⟩))}
df-lt 11175 < = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧𝑤((𝑥 = ⟨𝑧, 0R⟩ ∧ 𝑦 = ⟨𝑤, 0R⟩) ∧ 𝑧 <R 𝑤))}
ax-cnex 11218ℂ ∈ V
ax-resscn 11219ℝ ⊆ ℂ
ax-1cn 112201 ∈ ℂ
ax-icn 11221i ∈ ℂ
ax-addcl 11222((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
ax-addrcl 11223((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
ax-mulcl 11224((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
ax-mulrcl 11225((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
ax-mulcom 11226((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
ax-addass 11227((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
ax-mulass 11228((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
ax-distr 11229((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
ax-i2m1 11230((i · i) + 1) = 0
ax-1ne0 112311 ≠ 0
ax-1rid 11232(𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴)
ax-rnegex 11233(𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0)
ax-rrecex 11234((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1)
ax-cnre 11235(𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
ax-pre-lttri 11236((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
ax-pre-lttrn 11237((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
ax-pre-ltadd 11238((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 < 𝐵 → (𝐶 + 𝐴) < (𝐶 + 𝐵)))
ax-pre-mulgt0 11239((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵)))
ax-pre-sup 11240((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
ax-addf 11241 + :(ℂ × ℂ)⟶ℂ
ax-mulf 11242 · :(ℂ × ℂ)⟶ℂ
cpnf 11299class +∞
cmnf 11300class -∞
cxr 11301class *
clt 11302class <
cle 11303class
df-pnf 11304+∞ = 𝒫
df-mnf 11305-∞ = 𝒫 +∞
df-xr 11306* = (ℝ ∪ {+∞, -∞})
df-ltxr 11307 < = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦)} ∪ (((ℝ ∪ {-∞}) × {+∞}) ∪ ({-∞} × ℝ)))
df-le 11308 ≤ = ((ℝ* × ℝ*) ∖ < )
cmin 11499class
cneg 11500class -𝐴
df-sub 11501 − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥))
df-neg 11502-𝐴 = (0 − 𝐴)
cdiv 11927class /
df-div 11928 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
cn 12273class
df-nn 12274ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “ ω)
c2 12328class 2
c3 12329class 3
c4 12330class 4
c5 12331class 5
c6 12332class 6
c7 12333class 7
c8 12334class 8
c9 12335class 9
df-2 123362 = (1 + 1)
df-3 123373 = (2 + 1)
df-4 123384 = (3 + 1)
df-5 123395 = (4 + 1)
df-6 123406 = (5 + 1)
df-7 123417 = (6 + 1)
df-8 123428 = (7 + 1)
df-9 123439 = (8 + 1)
cn0 12533class 0
df-n0 125340 = (ℕ ∪ {0})
cxnn0 12606class 0*
df-xnn0 126070* = (ℕ0 ∪ {+∞})
cz 12620class
df-z 12621ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)}
cdc 12740class 𝐴𝐵
df-dec 12741𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵)
cuz 12885class
df-uz 12886 = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗𝑘})
cq 12997class
df-q 12998ℚ = ( / “ (ℤ × ℕ))
crp 13041class +
df-rp 13042+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥}
cxne 13158class -𝑒𝐴
cxad 13159class +𝑒
cxmu 13160class ·e
df-xneg 13161-𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴))
df-xadd 13162 +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 = +∞, if(𝑦 = -∞, 0, +∞), if(𝑥 = -∞, if(𝑦 = +∞, 0, -∞), if(𝑦 = +∞, +∞, if(𝑦 = -∞, -∞, (𝑥 + 𝑦))))))
df-xmul 13163 ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, if((((0 < 𝑦𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦)))))
cioo 13393class (,)
cioc 13394class (,]
cico 13395class [,)
cicc 13396class [,]
df-ioo 13397(,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧 < 𝑦)})
df-ioc 13398(,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥 < 𝑧𝑧𝑦)})
df-ico 13399[,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧 < 𝑦)})
df-icc 13400[,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
cfz 13553class ...
df-fz 13554... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚𝑘𝑘𝑛)})
cfzo 13700class ..^
df-fzo 13701..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1)))
cfl 13836class
cceil 13837class
df-fl 13838⌊ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℤ (𝑦𝑥𝑥 < (𝑦 + 1))))
df-ceil 13839⌈ = (𝑥 ∈ ℝ ↦ -(⌊‘-𝑥))
cmo 13915class mod
df-mod 13916 mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦)))))
cseq 14048class seq𝑀( + , 𝐹)
df-seq 14049seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
cexp 14108class
df-exp 14109↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ × {𝑥}))‘-𝑦)))))
cfa 14318class !
df-fac 14319! = ({⟨0, 1⟩} ∪ seq1( · , I ))
cbc 14347class C
df-bc 14348C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛𝑘)) · (!‘𝑘))), 0))
chash 14375class
df-hash 14376♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card) ∪ ((V ∖ Fin) × {+∞}))
cword 14558class Word 𝑆
df-word 14559Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆}
clsw 14606class lastS
df-lsw 14607lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1)))
cconcat 14614class ++
df-concat 14615 ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈ (0..^(♯‘𝑠)), (𝑠𝑥), (𝑡‘(𝑥 − (♯‘𝑠))))))
cs1 14639class ⟨“𝐴”⟩
df-s1 14640⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
csubstr 14684class substr
df-substr 14685 substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦ if(((1st𝑏)..^(2nd𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd𝑏) − (1st𝑏))) ↦ (𝑠‘(𝑥 + (1st𝑏)))), ∅))
cpfx 14714class prefix
df-pfx 14715 prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr ⟨0, 𝑙⟩))
csplice 14793class splice
df-splice 14794 splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st ‘(1st𝑏))) ++ (2nd𝑏)) ++ (𝑠 substr ⟨(2nd ‘(1st𝑏)), (♯‘𝑠)⟩)))
creverse 14802class reverse
df-reverse 14803reverse = (𝑠 ∈ V ↦ (𝑥 ∈ (0..^(♯‘𝑠)) ↦ (𝑠‘(((♯‘𝑠) − 1) − 𝑥))))
creps 14812class repeatS
df-reps 14813 repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠))
ccsh 14832class cyclShift
df-csh 14833 cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr ⟨(𝑛 mod (♯‘𝑤)), (♯‘𝑤)⟩) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤))))))
cs2 14886class ⟨“𝐴𝐵”⟩
cs3 14887class ⟨“𝐴𝐵𝐶”⟩
cs4 14888class ⟨“𝐴𝐵𝐶𝐷”⟩
cs5 14889class ⟨“𝐴𝐵𝐶𝐷𝐸”⟩
cs6 14890class ⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩
cs7 14891class ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩
cs8 14892class ⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩
df-s2 14893⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
df-s3 14894⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
df-s4 14895⟨“𝐴𝐵𝐶𝐷”⟩ = (⟨“𝐴𝐵𝐶”⟩ ++ ⟨“𝐷”⟩)
df-s5 14896⟨“𝐴𝐵𝐶𝐷𝐸”⟩ = (⟨“𝐴𝐵𝐶𝐷”⟩ ++ ⟨“𝐸”⟩)
df-s6 14897⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸”⟩ ++ ⟨“𝐹”⟩)
df-s7 14898⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸𝐹”⟩ ++ ⟨“𝐺”⟩)
df-s8 14899⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”⟩ = (⟨“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”⟩ ++ ⟨“𝐻”⟩)
ctcl 15030class t+
crtcl 15031class t*
df-trcl 15032t+ = (𝑥 ∈ V ↦ {𝑧 ∣ (𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
df-rtrcl 15033t* = (𝑥 ∈ V ↦ {𝑧 ∣ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑧𝑥𝑧 ∧ (𝑧𝑧) ⊆ 𝑧)})
crelexp 15064class 𝑟
df-relexp 15065𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛)))
crtrcl 15100class t*rec
df-rtrclrec 15101t*rec = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
cshi 15111class shift
df-shft 15112 shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ ℂ ∧ (𝑦𝑥)𝑓𝑧)})
csgn 15131class sgn
df-sgn 15132sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1)))
ccj 15141class
cre 15142class
cim 15143class
df-cj 15144∗ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ)))
df-re 15145ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2))
df-im 15146ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i)))
csqrt 15278class
cabs 15279class abs
df-sqrt 15280√ = (𝑥 ∈ ℂ ↦ (𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉ ℝ+)))
df-abs 15281abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
clsp 15512class lim sup
df-limsup 15513lim sup = (𝑥 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
cli 15526class
crli 15527class 𝑟
co1 15528class 𝑂(1)
clo1 15529class ≤𝑂(1)
df-clim 15530 ⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
df-rlim 15531𝑟 = {⟨𝑓, 𝑥⟩ ∣ ((𝑓 ∈ (ℂ ↑pm ℝ) ∧ 𝑥 ∈ ℂ) ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧𝑤 → (abs‘((𝑓𝑤) − 𝑥)) < 𝑦))}
df-o1 15532𝑂(1) = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓𝑦)) ≤ 𝑚}
df-lo1 15533≤𝑂(1) = {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ 𝑚}
csu 15728class Σ𝑘𝐴 𝐵
df-sum 15729Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
cprod 15945class 𝑘𝐴 𝐵
df-prod 15946𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
cfallfac 16046class FallFac
crisefac 16047class RiseFac
df-risefac 16048 RiseFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘))
df-fallfac 16049 FallFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (0...(𝑛 − 1))(𝑥𝑘))
cbp 16088class BernPoly
df-bpoly 16089 BernPoly = (𝑚 ∈ ℕ0, 𝑥 ∈ ℂ ↦ (wrecs( < , ℕ0, (𝑔 ∈ V ↦ (♯‘dom 𝑔) / 𝑛((𝑥𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔𝑘) / ((𝑛𝑘) + 1))))))‘𝑚))
ce 16103class exp
ceu 16104class e
csin 16105class sin
ccos 16106class cos
ctan 16107class tan
cpi 16108class π
df-ef 16109exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0 ((𝑥𝑘) / (!‘𝑘)))
df-e 16110e = (exp‘1)
df-sin 16111sin = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) − (exp‘(-i · 𝑥))) / (2 · i)))
df-cos 16112cos = (𝑥 ∈ ℂ ↦ (((exp‘(i · 𝑥)) + (exp‘(-i · 𝑥))) / 2))
df-tan 16113tan = (𝑥 ∈ (cos “ (ℂ ∖ {0})) ↦ ((sin‘𝑥) / (cos‘𝑥)))
df-pi 16114π = inf((ℝ+ ∩ (sin “ {0})), ℝ, < )
ctau 16244class τ
df-tau 16245τ = inf((ℝ+ ∩ (cos “ {1})), ℝ, < )
cdvds 16296class
df-dvds 16297 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)}
cbits 16462class bits
csad 16463class sadd
csmu 16464class smul
df-bits 16465bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2 ∥ (⌊‘(𝑛 / (2↑𝑚)))})
df-sad 16494 sadd = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ hadd(𝑘𝑥, 𝑘𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝑥, 𝑚𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘𝑘))})
df-smu 16519 smul = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫 ℕ0 ↦ {𝑘 ∈ ℕ0𝑘 ∈ (seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝑥 ∧ (𝑛𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))})
cgcd 16537class gcd
df-gcd 16538 gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑥𝑛𝑦)}, ℝ, < )))
clcm 16631class lcm
clcmf 16632class lcm
df-lcm 16633 lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥𝑛𝑦𝑛)}, ℝ, < )))
df-lcmf 16634lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈ 𝑧, 0, inf({𝑛 ∈ ℕ ∣ ∀𝑚𝑧 𝑚𝑛}, ℝ, < )))
cprime 16714class
df-prm 16715ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛𝑝} ≈ 2o}
cnumer 16776class numer
cdenom 16777class denom
df-numer 16778numer = (𝑦 ∈ ℚ ↦ (1st ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
df-denom 16779denom = (𝑦 ∈ ℚ ↦ (2nd ‘(𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝑦 = ((1st𝑥) / (2nd𝑥))))))
codz 16806class od
cphi 16807class ϕ
df-odz 16808od = (𝑛 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥𝑚) − 1)}, ℝ, < )))
df-phi 16809ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1}))
cpc 16879class pCnt
df-pc 16880 pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑝𝑛) ∥ 𝑦}, ℝ, < ))))))
cgz 16972class ℤ[i]
df-gz 16973ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧ (ℑ‘𝑥) ∈ ℤ)}
cvdwa 17008class AP
cvdwm 17009class MonoAP
cvdwp 17010class PolyAP
df-vdwap 17011AP = (𝑘 ∈ ℕ0 ↦ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))))
df-vdwmc 17012 MonoAP = {⟨𝑘, 𝑓⟩ ∣ ∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (𝑓 “ {𝑐})) ≠ ∅}
df-vdwpc 17013 PolyAP = {⟨⟨𝑚, 𝑘⟩, 𝑓⟩ ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m (1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑𝑖))(AP‘𝑘)(𝑑𝑖)) ⊆ (𝑓 “ {(𝑓‘(𝑎 + (𝑑𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑𝑖))))) = 𝑚)}
cram 17042class Ramsey
df-ram 17044 Ramsey = (𝑚 ∈ ℕ0, 𝑟 ∈ V ↦ inf({𝑛 ∈ ℕ0 ∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟𝑥 ∈ 𝒫 𝑠((𝑟𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓𝑦) = 𝑐)))}, ℝ*, < ))
cprmo 17074class #p
df-prmo 17075#p = (𝑛 ∈ ℕ0 ↦ ∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1))
cstr 17189class Struct
df-struct 17190 Struct = {⟨𝑓, 𝑥⟩ ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))}
csts 17206class sSet
df-sets 17207 sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒}))
cslot 17224class Slot 𝐴
df-slot 17225Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥𝐴))
cnx 17236class ndx
df-ndx 17237ndx = ( I ↾ ℕ)
cbs 17254class Base
df-base 17255Base = Slot 1
cress 17283class s
df-ress 17284s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Base‘ndx), (𝑥 ∩ (Base‘𝑤))⟩)))
cplusg 17307class +g
cmulr 17308class .r
cstv 17309class *𝑟
csca 17310class Scalar
cvsca 17311class ·𝑠
cip 17312class ·𝑖
cts 17313class TopSet
cple 17314class le
coc 17315class oc
cds 17316class dist
cunif 17317class UnifSet
chom 17318class Hom
cco 17319class comp
df-plusg 17320+g = Slot 2
df-mulr 17321.r = Slot 3
df-starv 17322*𝑟 = Slot 4
df-sca 17323Scalar = Slot 5
df-vsca 17324 ·𝑠 = Slot 6
df-ip 17325·𝑖 = Slot 8
df-tset 17326TopSet = Slot 9
df-ple 17327le = Slot 10
df-ocomp 17328oc = Slot 11
df-ds 17329dist = Slot 12
df-unif 17330UnifSet = Slot 13
df-hom 17331Hom = Slot 14
df-cco 17332comp = Slot 15
crest 17476class t
ctopn 17477class TopOpen
df-rest 17478t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦𝑗 ↦ (𝑦𝑥)))
df-topn 17479TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤)))
ctg 17493class topGen
cpt 17494class t
c0g 17495class 0g
cgsu 17496class Σg
df-0g 174970g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g𝑔)𝑥) = 𝑥 ∧ (𝑥(+g𝑔)𝑒) = 𝑥))))
df-gsum 17498 Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ {𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g𝑤)𝑦) = 𝑦 ∧ (𝑦(+g𝑤)𝑥) = 𝑦)} / 𝑜if(ran 𝑓𝑜, (0g𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g𝑤), 𝑓)‘𝑛))), (℩𝑥𝑔[(𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto𝑦𝑥 = (seq1((+g𝑤), (𝑓𝑔))‘(♯‘𝑦)))))))
df-topgen 17499topGen = (𝑥 ∈ V ↦ {𝑦𝑦 (𝑥 ∩ 𝒫 𝑦)})
df-pt 17500t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔𝑦) ∈ (𝑓𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓𝑧)(𝑔𝑦) = (𝑓𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔𝑦))}))
cprds 17501class Xs
cpws 17502class s
df-prds 17503Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) / 𝑣(𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) / (({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(+g‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(.r‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(.r‘(𝑟𝑥))(𝑔𝑥))))⟩} ∪ {⟨(Scalar‘ndx), 𝑠⟩, ⟨( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟𝑥))(𝑔𝑥))))⟩, ⟨(·𝑖‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(·𝑖‘(𝑟𝑥))(𝑔𝑥)))))⟩}) ∪ ({⟨(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))⟩, ⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓𝑥)(le‘(𝑟𝑥))(𝑔𝑥))}⟩, ⟨(dist‘ndx), (𝑓𝑣, 𝑔𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓𝑥)(dist‘(𝑟𝑥))(𝑔𝑥))) ∪ {0}), ℝ*, < ))⟩} ∪ {⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐𝑣 ↦ (𝑑 ∈ ((2nd𝑎)𝑐), 𝑒 ∈ (𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑𝑥)(⟨((1st𝑎)‘𝑥), ((2nd𝑎)‘𝑥)⟩(comp‘(𝑟𝑥))(𝑐𝑥))(𝑒𝑥)))))⟩})))
df-pws 17505s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟})))
cordt 17555class ordTop
cxrs 17556class *𝑠
df-ordt 17557ordTop = (𝑟 ∈ V ↦ (topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦}))))))
df-xrs 17558*𝑠 = ({⟨(Base‘ndx), ℝ*⟩, ⟨(+g‘ndx), +𝑒 ⟩, ⟨(.r‘ndx), ·e ⟩} ∪ {⟨(TopSet‘ndx), (ordTop‘ ≤ )⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))⟩})
cqtop 17559class qTop
cimas 17560class s
cqus 17561class /s
cxps 17562class ×s
df-qtop 17563 qTop = (𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 𝑗) ∣ ((𝑓𝑠) ∩ 𝑗) ∈ 𝑗})
df-imas 17564s = (𝑓 ∈ V, 𝑟 ∈ V ↦ (Base‘𝑟) / 𝑣(({⟨(Base‘ndx), ran 𝑓⟩, ⟨(+g‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(+g𝑟)𝑞))⟩}⟩, ⟨(.r‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑓‘(𝑝(.r𝑟)𝑞))⟩}⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), 𝑞𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓𝑞)} ↦ (𝑓‘(𝑝( ·𝑠𝑟)𝑞)))⟩, ⟨(·𝑖‘ndx), 𝑝𝑣 𝑞𝑣 {⟨⟨(𝑓𝑝), (𝑓𝑞)⟩, (𝑝(·𝑖𝑟)𝑞)⟩}⟩}) ∪ {⟨(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)⟩, ⟨(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ 𝑓)⟩, ⟨(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf( 𝑛 ∈ ℕ ran (𝑔 ∈ { ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(𝑖))) = (𝑓‘(1st ‘(‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg ((dist‘𝑟) ∘ 𝑔))), ℝ*, < ))⟩}))
df-qus 17565 /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟))
df-xps 17566 ×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑟)Xs{⟨∅, 𝑟⟩, ⟨1o, 𝑠⟩})))
cmre 17636class Moore
cmrc 17637class mrCls
cmri 17638class mrInd
cacs 17639class ACS
df-mre 17640Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → 𝑠𝑐))})
df-mrc 17641mrCls = (𝑐 ran Moore ↦ (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}))
df-mri 17642mrInd = (𝑐 ran Moore ↦ {𝑠 ∈ 𝒫 𝑐 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))})
df-acs 17643ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠𝑐 (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))})
ccat 17718class Cat
ccid 17719class Id
chomf 17720class Homf
ccomf 17721class compf
df-cat 17722Cat = {𝑐[(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ][(comp‘𝑐) / 𝑜]𝑥𝑏 (∃𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦𝑏𝑧𝑏𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)((𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓) ∈ (𝑥𝑧) ∧ ∀𝑤𝑏𝑘 ∈ (𝑧𝑤)((𝑘(⟨𝑦, 𝑧𝑜𝑤)𝑔)(⟨𝑥, 𝑦𝑜𝑤)𝑓) = (𝑘(⟨𝑥, 𝑧𝑜𝑤)(𝑔(⟨𝑥, 𝑦𝑜𝑧)𝑓))))}
df-cid 17723Id = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (comp‘𝑐) / 𝑜(𝑥𝑏 ↦ (𝑔 ∈ (𝑥𝑥)∀𝑦𝑏 (∀𝑓 ∈ (𝑦𝑥)(𝑔(⟨𝑦, 𝑥𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥𝑦)(𝑓(⟨𝑥, 𝑥𝑜𝑦)𝑔) = 𝑓))))
df-homf 17724Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦)))
df-comf 17725compf = (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓))))
coppc 17765class oppCat
df-oppc 17766oppCat = (𝑓 ∈ V ↦ ((𝑓 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝑓)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝑓) × (Base‘𝑓)), 𝑧 ∈ (Base‘𝑓) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝑓)(1st𝑢)))⟩))
cmon 17785class Mono
cepi 17786class Epi
df-mon 17787Mono = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}))
df-epi 17788Epi = (𝑐 ∈ Cat ↦ tpos (Mono‘(oppCat‘𝑐)))
csect 17801class Sect
cinv 17802class Inv
ciso 17803class Iso
df-sect 17804Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {⟨𝑓, 𝑔⟩ ∣ [(Hom ‘𝑐) / ]((𝑓 ∈ (𝑥𝑦) ∧ 𝑔 ∈ (𝑦𝑥)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))}))
df-inv 17805Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ (𝑦(Sect‘𝑐)𝑥))))
df-iso 17806Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐)))
ccic 17852class 𝑐
df-cic 17853𝑐 = (𝑐 ∈ Cat ↦ ((Iso‘𝑐) supp ∅))
cssc 17864class cat
cresc 17865class cat
csubc 17866class Subcat
df-ssc 17867cat = {⟨, 𝑗⟩ ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥))}
df-resc 17868cat = (𝑐 ∈ V, ∈ V ↦ ((𝑐s dom dom ) sSet ⟨(Hom ‘ndx), ⟩))
df-subc 17869Subcat = (𝑐 ∈ Cat ↦ { ∣ (cat (Homf𝑐) ∧ [dom dom / 𝑠]𝑥𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥𝑥) ∧ ∀𝑦𝑠𝑧𝑠𝑓 ∈ (𝑥𝑦)∀𝑔 ∈ (𝑦𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝑐)𝑧)𝑓) ∈ (𝑥𝑧)))})
cfunc 17914class Func
cidfu 17915class idfunc
ccofu 17916class func
cresf 17917class f
df-func 17918 Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st𝑧))(Hom ‘𝑢)(𝑓‘(2nd𝑧))) ↑m ((Hom ‘𝑡)‘𝑧)) ∧ ∀𝑥𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓𝑥)) ∧ ∀𝑦𝑏𝑧𝑏𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(⟨𝑥, 𝑦⟩(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(⟨(𝑓𝑥), (𝑓𝑦)⟩(comp‘𝑢)(𝑓𝑧))((𝑥𝑔𝑦)‘𝑚))))})
df-idfu 17919idfunc = (𝑡 ∈ Cat ↦ (Base‘𝑡) / 𝑏⟨( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))⟩)
df-cofu 17920func = (𝑔 ∈ V, 𝑓 ∈ V ↦ ⟨((1st𝑔) ∘ (1st𝑓)), (𝑥 ∈ dom dom (2nd𝑓), 𝑦 ∈ dom dom (2nd𝑓) ↦ ((((1st𝑓)‘𝑥)(2nd𝑔)((1st𝑓)‘𝑦)) ∘ (𝑥(2nd𝑓)𝑦)))⟩)
df-resf 17921f = (𝑓 ∈ V, ∈ V ↦ ⟨((1st𝑓) ↾ dom dom ), (𝑥 ∈ dom ↦ (((2nd𝑓)‘𝑥) ↾ (𝑥)))⟩)
cful 17965class Full
cfth 17966class Faith
df-full 17967 Full = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝑑)(𝑓𝑦)))})
df-fth 17968 Faith = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun (𝑥𝑔𝑦))})
cnat 18005class Nat
cfuc 18006class FuncCat
df-nat 18007 Nat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ (1st𝑓) / 𝑟(1st𝑔) / 𝑠{𝑎X𝑥 ∈ (Base‘𝑡)((𝑟𝑥)(Hom ‘𝑢)(𝑠𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎𝑦)(⟨(𝑟𝑥), (𝑟𝑦)⟩(comp‘𝑢)(𝑠𝑦))((𝑥(2nd𝑓)𝑦)‘)) = (((𝑥(2nd𝑔)𝑦)‘)(⟨(𝑟𝑥), (𝑠𝑥)⟩(comp‘𝑢)(𝑠𝑦))(𝑎𝑥))}))
df-fuc 18008 FuncCat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {⟨(Base‘ndx), (𝑡 Func 𝑢)⟩, ⟨(Hom ‘ndx), (𝑡 Nat 𝑢)⟩, ⟨(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ∈ (𝑡 Func 𝑢) ↦ (1st𝑣) / 𝑓(2nd𝑣) / 𝑔(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏𝑥)(⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩(comp‘𝑢)((1st)‘𝑥))(𝑎𝑥)))))⟩})
cinito 18044class InitO
ctermo 18045class TermO
czeroo 18046class ZeroO
df-inito 18047InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑎(Hom ‘𝑐)𝑏)})
df-termo 18048TermO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃! ∈ (𝑏(Hom ‘𝑐)𝑎)})
df-zeroo 18049ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐)))
cdoma 18083class doma
ccoda 18084class coda
carw 18085class Arrow
choma 18086class Homa
df-doma 18087doma = (1st ∘ 1st )
df-coda 18088coda = (2nd ∘ 1st )
df-homa 18089Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥))))
df-arw 18090Arrow = (𝑐 ∈ Cat ↦ ran (Homa𝑐))
cida 18116class Ida
ccoa 18117class compa
df-ida 18118Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ ⟨𝑥, 𝑥, ((Id‘𝑐)‘𝑥)⟩))
df-coa 18119compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ { ∈ (Arrow‘𝑐) ∣ (coda) = (doma𝑔)} ↦ ⟨(doma𝑓), (coda𝑔), ((2nd𝑔)(⟨(doma𝑓), (doma𝑔)⟩(comp‘𝑐)(coda𝑔))(2nd𝑓))⟩))
csetc 18138class SetCat
df-setc 18139SetCat = (𝑢 ∈ V ↦ {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))⟩})
ccatc 18161class CatCat
df-catc 18162CatCat = (𝑢 ∈ V ↦ (𝑢 ∩ Cat) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 Func 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔func 𝑓)))⟩})
cestrc 18186class ExtStrCat
df-estrc 18187ExtStrCat = (𝑢 ∈ V ↦ {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd𝑣))), 𝑓 ∈ ((Base‘(2nd𝑣)) ↑m (Base‘(1st𝑣))) ↦ (𝑔𝑓)))⟩})
cxpc 18233class ×c
c1stf 18234class 1stF
c2ndf 18235class 2ndF
cprf 18236class ⟨,⟩F
df-xpc 18237 ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
df-1stf 18238 1stF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏⟨(1st𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))⟩)
df-2ndf 18239 2ndF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏⟨(2nd𝑏), (𝑥𝑏, 𝑦𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))⟩)
df-prf 18240 ⟨,⟩F = (𝑓 ∈ V, 𝑔 ∈ V ↦ dom (1st𝑓) / 𝑏⟨(𝑥𝑏 ↦ ⟨((1st𝑓)‘𝑥), ((1st𝑔)‘𝑥)⟩), (𝑥𝑏, 𝑦𝑏 ↦ ( ∈ dom (𝑥(2nd𝑓)𝑦) ↦ ⟨((𝑥(2nd𝑓)𝑦)‘), ((𝑥(2nd𝑔)𝑦)‘)⟩))⟩)
cevlf 18275class evalF
ccurf 18276class curryF
cuncf 18277class uncurryF
cdiag 18278class Δfunc
df-evlf 18279 evalF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ ⟨(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (Base‘𝑐) ↦ ((1st𝑓)‘𝑥)), (𝑥 ∈ ((𝑐 Func 𝑑) × (Base‘𝑐)), 𝑦 ∈ ((𝑐 Func 𝑑) × (Base‘𝑐)) ↦ (1st𝑥) / 𝑚(1st𝑦) / 𝑛(𝑎 ∈ (𝑚(𝑐 Nat 𝑑)𝑛), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ((𝑎‘(2nd𝑦))(⟨((1st𝑚)‘(2nd𝑥)), ((1st𝑚)‘(2nd𝑦))⟩(comp‘𝑑)((1st𝑛)‘(2nd𝑦)))(((2nd𝑥)(2nd𝑚)(2nd𝑦))‘𝑔))))⟩)
df-curf 18280 curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦ (1st𝑒) / 𝑐(2nd𝑒) / 𝑑⟨(𝑥 ∈ (Base‘𝑐) ↦ ⟨(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(⟨𝑥, 𝑦⟩(2nd𝑓)⟨𝑥, 𝑧⟩)𝑔)))⟩), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(⟨𝑥, 𝑧⟩(2nd𝑓)⟨𝑦, 𝑧⟩)((Id‘𝑑)‘𝑧)))))⟩)
df-uncf 18281 uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓func ((𝑐‘0) 1stF (𝑐‘1))) ⟨,⟩F ((𝑐‘0) 2ndF (𝑐‘1)))))
df-diag 18282Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (⟨𝑐, 𝑑⟩ curryF (𝑐 1stF 𝑑)))
chof 18314class HomF
cyon 18315class Yon
df-hof 18316HomF = (𝑐 ∈ Cat ↦ ⟨(Homf𝑐), (Base‘𝑐) / 𝑏(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st𝑦)(Hom ‘𝑐)(1st𝑥)), 𝑔 ∈ ((2nd𝑥)(Hom ‘𝑐)(2nd𝑦)) ↦ ( ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd𝑦)))(⟨(1st𝑦), (1st𝑥)⟩(comp‘𝑐)(2nd𝑦))𝑓))))⟩)
df-yon 18317Yon = (𝑐 ∈ Cat ↦ (⟨𝑐, (oppCat‘𝑐)⟩ curryF (HomF‘(oppCat‘𝑐))))
codu 18352class ODual
df-odu 18353ODual = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(le‘ndx), (le‘𝑤)⟩))
cproset 18359class Proset
cdrs 18360class Dirset
df-proset 18361 Proset = {𝑓[(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧))}
df-drs 18362Dirset = {𝑓 ∈ Proset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑧𝑦𝑟𝑧))}
cpo 18374class Poset
cplt 18375class lt
club 18376class lub
cglb 18377class glb
cjn 18378class join
cmee 18379class meet
df-poset 18380Poset = {𝑓 ∣ ∃𝑏𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦𝑦𝑟𝑧) → 𝑥𝑟𝑧)))}
df-plt 18397lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I ))
df-lub 18413lub = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑦(le‘𝑝)𝑧𝑥(le‘𝑝)𝑧))}))
df-glb 18414glb = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦𝑠 𝑧(le‘𝑝)𝑦𝑧(le‘𝑝)𝑥))}))
df-join 18415join = (𝑝 ∈ V ↦ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (lub‘𝑝)𝑧})
df-meet 18416meet = (𝑝 ∈ V ↦ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧})
ctos 18483class Toset
df-toset 18484Toset = {𝑓 ∈ Poset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]𝑥𝑏𝑦𝑏 (𝑥𝑟𝑦𝑦𝑟𝑥)}
cp0 18490class 0.
cp1 18491class 1.
df-p0 184920. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝)))
df-p1 184931. = (𝑝 ∈ V ↦ ((lub‘𝑝)‘(Base‘𝑝)))
clat 18498class Lat
df-lat 18499Lat = {𝑝 ∈ Poset ∣ (dom (join‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)) ∧ dom (meet‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)))}
ccla 18565class CLat
df-clat 18566CLat = {𝑝 ∈ Poset ∣ (dom (lub‘𝑝) = 𝒫 (Base‘𝑝) ∧ dom (glb‘𝑝) = 𝒫 (Base‘𝑝))}
cdlat 18587class DLat
df-dlat 18588DLat = {𝑘 ∈ Lat ∣ [(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]𝑥𝑏𝑦𝑏𝑧𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))}
cipo 18594class toInc
df-ipo 18595toInc = (𝑓 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑓𝑥𝑦)} / 𝑜({⟨(Base‘ndx), 𝑓⟩, ⟨(TopSet‘ndx), (ordTop‘𝑜)⟩} ∪ {⟨(le‘ndx), 𝑜⟩, ⟨(oc‘ndx), (𝑥𝑓 {𝑦𝑓 ∣ (𝑦𝑥) = ∅})⟩}))
cps 18631class PosetRel
ctsr 18632class TosetRel
df-ps 18633PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟𝑟) ⊆ 𝑟 ∧ (𝑟𝑟) = ( I ↾ 𝑟))}
df-tsr 18634 TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟𝑟)}
cdir 18661class DirRel
ctail 18662class tail
df-dir 18663DirRel = {𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ 𝑟) ⊆ 𝑟) ∧ ((𝑟𝑟) ⊆ 𝑟 ∧ ( 𝑟 × 𝑟) ⊆ (𝑟𝑟)))}
df-tail 18664tail = (𝑟 ∈ DirRel ↦ (𝑥 𝑟 ↦ (𝑟 “ {𝑥})))
cplusf 18672class +𝑓
cmgm 18673class Mgm
df-plusf 18674+𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)𝑦)))
df-mgm 18675Mgm = {𝑔[(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏 (𝑥𝑜𝑦) ∈ 𝑏}
cmgmhm 18725class MgmHom
csubmgm 18726class SubMgm
df-mgmhm 18727 MgmHom = (𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦))})
df-submgm 18728SubMgm = (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡})
csgrp 18753class Smgrp
df-sgrp 18754Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑜]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
cmnd 18769class Mnd
df-mnd 18770Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑥𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)}
cmhm 18816class MndHom
csubmnd 18817class SubMnd
df-mhm 18818 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
df-submnd 18819SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g𝑠) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡)})
cfrmd 18882class freeMnd
cvrmd 18883class varFMnd
df-frmd 18884freeMnd = (𝑖 ∈ V ↦ {⟨(Base‘ndx), Word 𝑖⟩, ⟨(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))⟩})
df-vrmd 18885varFMnd = (𝑖 ∈ V ↦ (𝑗𝑖 ↦ ⟨“𝑗”⟩))
cefmnd 18903class EndoFMnd
df-efmnd 18904EndoFMnd = (𝑥 ∈ V ↦ (𝑥m 𝑥) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑥 × {𝒫 𝑥}))⟩})
cgrp 18973class Grp
cminusg 18974class invg
csg 18975class -g
df-grp 18976Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔)}
df-minusg 18977invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑤 ∈ (Base‘𝑔)(𝑤(+g𝑔)𝑥) = (0g𝑔))))
df-sbg 18978-g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))))
cmg 19107class .g
df-mulg 19108.g = (𝑔 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑔) ↦ if(𝑛 = 0, (0g𝑔), seq1((+g𝑔), (ℕ × {𝑥})) / 𝑠if(0 < 𝑛, (𝑠𝑛), ((invg𝑔)‘(𝑠‘-𝑛))))))
csubg 19160class SubGrp
cnsg 19161class NrmSGrp
cqg 19162class ~QG
df-subg 19163SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Grp})
df-nsg 19164NrmSGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣ [(Base‘𝑤) / 𝑏][(+g𝑤) / 𝑝]𝑥𝑏𝑦𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)})
df-eqg 19165 ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg𝑟)‘𝑥)(+g𝑟)𝑦) ∈ 𝑖)})
cghm 19252class GrpHom
df-ghm 19253 GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔[(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥𝑤𝑦𝑤 (𝑔‘(𝑥(+g𝑠)𝑦)) = ((𝑔𝑥)(+g𝑡)(𝑔𝑦)))})
cgim 19297class GrpIso
cgic 19298class 𝑔
df-gim 19299 GrpIso = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)})
df-gic 19300𝑔 = ( GrpIso “ (V ∖ 1o))
cga 19329class GrpAct
df-ga 19330 GrpAct = (𝑔 ∈ Grp, 𝑠 ∈ V ↦ (Base‘𝑔) / 𝑏{𝑚 ∈ (𝑠m (𝑏 × 𝑠)) ∣ ∀𝑥𝑠 (((0g𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦𝑏𝑧𝑏 ((𝑦(+g𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))})
ccntz 19355class Cntz
ccntr 19356class Cntr
df-cntz 19357Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦𝑠 (𝑥(+g𝑚)𝑦) = (𝑦(+g𝑚)𝑥)}))
df-cntr 19358Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚)))
coppg 19385class oppg
df-oppg 19386oppg = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), tpos (+g𝑤)⟩))
csymg 19410class SymGrp
df-symg 19411SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}))
cpmtr 19483class pmTrsp
df-pmtr 19484pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑𝑦 ≈ 2o} ↦ (𝑧𝑑 ↦ if(𝑧𝑝, (𝑝 ∖ {𝑧}), 𝑧))))
cpsgn 19531class pmSgn
cevpm 19532class pmEven
df-psgn 19533pmSgn = (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
df-evpm 19534pmEven = (𝑑 ∈ V ↦ ((pmSgn‘𝑑) “ {1}))
cod 19566class od
cgex 19567class gEx
cpgp 19568class pGrp
cslw 19569class pSyl
df-od 19570od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ {𝑛 ∈ ℕ ∣ (𝑛(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))))
df-gex 19571gEx = (𝑔 ∈ V ↦ {𝑛 ∈ ℕ ∣ ∀𝑥 ∈ (Base‘𝑔)(𝑛(.g𝑔)𝑥) = (0g𝑔)} / 𝑖if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))
df-pgp 19572 pGrp = {⟨𝑝, 𝑔⟩ ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝𝑛))}
df-slw 19573 pSyl = (𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ { ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((𝑘𝑝 pGrp (𝑔s 𝑘)) ↔ = 𝑘)})
clsm 19676class LSSum
cpj1 19677class proj1
df-lsm 19678LSSum = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥𝑡, 𝑦𝑢 ↦ (𝑥(+g𝑤)𝑦))))
df-pj1 19679proj1 = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (𝑥𝑡𝑦𝑢 𝑧 = (𝑥(+g𝑤)𝑦)))))
cefg 19748class ~FG
cfrgp 19749class freeGrp
cvrgp 19750class varFGrp
df-efg 19751 ~FG = (𝑖 ∈ V ↦ {𝑟 ∣ (𝑟 Er Word (𝑖 × 2o) ∧ ∀𝑥 ∈ Word (𝑖 × 2o)∀𝑛 ∈ (0...(♯‘𝑥))∀𝑦𝑖𝑧 ∈ 2o 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑦, 𝑧⟩⟨𝑦, (1o𝑧)⟩”⟩⟩))})
df-frgp 19752freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o)) /s ( ~FG𝑖)))
df-vrgp 19753varFGrp = (𝑖 ∈ V ↦ (𝑗𝑖 ↦ [⟨“⟨𝑗, ∅⟩”⟩]( ~FG𝑖)))
ccmn 19822class CMnd
cabl 19823class Abel
df-cmn 19824CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g𝑔)𝑏) = (𝑏(+g𝑔)𝑎)}
df-abl 19825Abel = (Grp ∩ CMnd)
ccyg 19919class CycGrp
df-cyg 19920CycGrp = {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g𝑔)𝑥)) = (Base‘𝑔)}
cdprd 20037class DProd
cdpj 20038class dProj
df-dprd 20039 DProd = (𝑔 ∈ Grp, 𝑠 ∈ { ∣ (:dom ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom (∀𝑦 ∈ (dom ∖ {𝑥})(𝑥) ⊆ ((Cntz‘𝑔)‘(𝑦)) ∧ ((𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘ ( “ (dom ∖ {𝑥})))) = {(0g𝑔)}))} ↦ ran (𝑓 ∈ {X𝑥 ∈ dom 𝑠(𝑠𝑥) ∣ finSupp (0g𝑔)} ↦ (𝑔 Σg 𝑓)))
df-dpj 20040dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠𝑖)(proj1𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖}))))))
csimpg 20134class SimpGrp
df-simpg 20135SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈ 2o}
cmgp 20161class mulGrp
df-mgp 20162mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), (.r𝑤)⟩))
crng 20179class Rng
df-rng 20180Rng = {𝑓 ∈ Abel ∣ ((mulGrp‘𝑓) ∈ Smgrp ∧ [(Base‘𝑓) / 𝑏][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡]𝑥𝑏𝑦𝑏𝑧𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))}
cur 20208class 1r
df-ur 202091r = (0g ∘ mulGrp)
csrg 20213class SRing
df-srg 20214SRing = {𝑓 ∈ CMnd ∣ ((mulGrp‘𝑓) ∈ Mnd ∧ [(Base‘𝑓) / 𝑟][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡][(0g𝑓) / 𝑛]𝑥𝑟 (∀𝑦𝑟𝑧𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))}
crg 20260class Ring
ccrg 20261class CRing
df-ring 20262Ring = {𝑓 ∈ Grp ∣ ((mulGrp‘𝑓) ∈ Mnd ∧ [(Base‘𝑓) / 𝑟][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡]𝑥𝑟𝑦𝑟𝑧𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))}
df-cring 20263CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd}
coppr 20359class oppr
df-oppr 20360oppr = (𝑓 ∈ V ↦ (𝑓 sSet ⟨(.r‘ndx), tpos (.r𝑓)⟩))
cdsr 20380class r
cui 20381class Unit
cir 20382class Irred
df-dvdsr 20383r = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r𝑤)𝑥) = 𝑦)})
df-unit 20384Unit = (𝑤 ∈ V ↦ (((∥r𝑤) ∩ (∥r‘(oppr𝑤))) “ {(1r𝑤)}))
df-irred 20385Irred = (𝑤 ∈ V ↦ ((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏{𝑧𝑏 ∣ ∀𝑥𝑏𝑦𝑏 (𝑥(.r𝑤)𝑦) ≠ 𝑧})
cinvr 20413class invr
df-invr 20414invr = (𝑟 ∈ V ↦ (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟))))
cdvr 20426class /r
df-dvr 20427/r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r𝑟)((invr𝑟)‘𝑦))))
crpm 20458class RPrime
df-rprm 20459RPrime = (𝑤 ∈ V ↦ (Base‘𝑤) / 𝑏{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑤) ∪ {(0g𝑤)})) ∣ ∀𝑥𝑏𝑦𝑏 [(∥r𝑤) / 𝑑](𝑝𝑑(𝑥(.r𝑤)𝑦) → (𝑝𝑑𝑥𝑝𝑑𝑦))})
crnghm 20460class RngHom
crngim 20461class RngIso
df-rnghm 20462 RngHom = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦)))})
df-rngim 20463 RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ 𝑓 ∈ (𝑠 RngHom 𝑟)})
crh 20495class RingHom
crs 20496class RingIso
cric 20497class 𝑟
df-rhm 20498 RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ (Base‘𝑟) / 𝑣(Base‘𝑠) / 𝑤{𝑓 ∈ (𝑤m 𝑣) ∣ ((𝑓‘(1r𝑟)) = (1r𝑠) ∧ ∀𝑥𝑣𝑦𝑣 ((𝑓‘(𝑥(+g𝑟)𝑦)) = ((𝑓𝑥)(+g𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥)(.r𝑠)(𝑓𝑦))))})
df-rim 20499 RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
df-ric 20501𝑟 = ( RingIso “ (V ∖ 1o))
cnzr 20538class NzRing
df-nzr 20539NzRing = {𝑟 ∈ Ring ∣ (1r𝑟) ≠ (0g𝑟)}
clring 20564class LRing
df-lring 20565LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g𝑟)𝑦) = (1r𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))}
csubrng 20571class SubRng
df-subrng 20572SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤s 𝑠) ∈ Rng})
csubrg 20595class SubRing
df-subrg 20596SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤s 𝑠) ∈ Ring ∧ (1r𝑤) ∈ 𝑠)})
crgspn 20636class RingSpan
df-rgspn 20637RingSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (SubRing‘𝑤) ∣ 𝑠𝑡}))
crngc 20642class RngCat
df-rngc 20643RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHom ↾ ((𝑢 ∩ Rng) × (𝑢 ∩ Rng)))))
cringc 20671class RingCat
df-ringc 20672RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RingHom ↾ ((𝑢 ∩ Ring) × (𝑢 ∩ Ring)))))
crlreg 20717class RLReg
cdomn 20718class Domn
cidom 20719class IDomn
df-rlreg 20720RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r𝑟)𝑦) = (0g𝑟) → 𝑦 = (0g𝑟))})
df-domn 20721Domn = {𝑟 ∈ NzRing ∣ [(Base‘𝑟) / 𝑏][(0g𝑟) / 𝑧]𝑥𝑏𝑦𝑏 ((𝑥(.r𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧𝑦 = 𝑧))}
df-idom 20722IDomn = (CRing ∩ Domn)
cdr 20755class DivRing
cfield 20756class Field
df-drng 20757DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖ {(0g𝑟)})}
df-field 20758Field = (DivRing ∩ CRing)
csdrg 20813class SubDRing
df-sdrg 20814SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤s 𝑠) ∈ DivRing})
cabv 20835class AbsVal
df-abv 20836AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m (Base‘𝑟)) ∣ ∀𝑥 ∈ (Base‘𝑟)(((𝑓𝑥) = 0 ↔ 𝑥 = (0g𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r𝑟)𝑦)) = ((𝑓𝑥) · (𝑓𝑦)) ∧ (𝑓‘(𝑥(+g𝑟)𝑦)) ≤ ((𝑓𝑥) + (𝑓𝑦))))})
cstf 20864class *rf
csr 20865class *-Ring
df-staf 20866*rf = (𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟𝑓)‘𝑥)))
df-srng 20867*-Ring = {𝑓[(*rf𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr𝑓)) ∧ 𝑖 = 𝑖)}
clmod 20884class LMod
cscaf 20885class ·sf
df-lmod 20886LMod = {𝑔 ∈ Grp ∣ [(Base‘𝑔) / 𝑣][(+g𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][( ·𝑠𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤)))}
df-scaf 20887 ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
clss 20956class LSubSp
df-lss 20957LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ (𝒫 (Base‘𝑤) ∖ {∅}) ∣ ∀𝑥 ∈ (Base‘(Scalar‘𝑤))∀𝑎𝑠𝑏𝑠 ((𝑥( ·𝑠𝑤)𝑎)(+g𝑤)𝑏) ∈ 𝑠})
clspn 20996class LSpan
df-lsp 20997LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ (LSubSp‘𝑤) ∣ 𝑠𝑡}))
clmhm 21045class LMHom
clmim 21046class LMIso
clmic 21047class 𝑚
df-lmhm 21048 LMHom = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠𝑠)𝑦)) = (𝑥( ·𝑠𝑡)(𝑓𝑦)))})
df-lmim 21049 LMIso = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑔 ∈ (𝑠 LMHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)})
df-lmic 21050𝑚 = ( LMIso “ (V ∖ 1o))
clbs 21100class LBasis
df-lbs 21101LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣ [(LSpan‘𝑤) / 𝑛][(Scalar‘𝑤) / 𝑠]((𝑛𝑏) = (Base‘𝑤) ∧ ∀𝑥𝑏𝑦 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑦( ·𝑠𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))})
clvec 21128class LVec
df-lvec 21129LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈ DivRing}
csra 21197class subringAlg
crglmod 21198class ringLMod
df-sra 21199subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet ⟨(Scalar‘ndx), (𝑤s 𝑠)⟩) sSet ⟨( ·𝑠 ‘ndx), (.r𝑤)⟩) sSet ⟨(·𝑖‘ndx), (.r𝑤)⟩)))
df-rgmod 21200ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤)))
clidl 21243class LIdeal
crsp 21244class RSpan
df-lidl 21245LIdeal = (LSubSp ∘ ringLMod)
df-rsp 21246RSpan = (LSpan ∘ ringLMod)
c2idl 21286class 2Ideal
df-2idl 212872Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩ (LIdeal‘(oppr𝑟))))
clpidl 21357class LPIdeal
clpir 21358class LPIR
df-lpidl 21359LPIdeal = (𝑤 ∈ Ring ↦ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})})
df-lpir 21360LPIR = {𝑤 ∈ Ring ∣ (LIdeal‘𝑤) = (LPIdeal‘𝑤)}
cpid 21373class PID
df-pid 21374PID = (IDomn ∩ LPIR)
cpsmet 21375class PsMet
cxmet 21376class ∞Met
cmet 21377class Met
cbl 21378class ball
cfbas 21379class fBas
cfg 21380class filGen
cmopn 21381class MetOpen
cmetu 21382class metUnif
df-psmet 21383PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*m (𝑥 × 𝑥)) ∣ ∀𝑦𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧𝑥𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
df-xmet 21384∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*m (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))})
df-met 21385Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑m (𝑥 × 𝑥)) ∣ ∀𝑦𝑥𝑧𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))})
df-bl 21386ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧}))
df-mopn 21387MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
df-fbas 21388fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑥 ∩ 𝒫 (𝑦𝑧)) ≠ ∅)})
df-fg 21389filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅})
df-metu 21390metUnif = (𝑑 ran PsMet ↦ ((dom dom 𝑑 × dom dom 𝑑)filGenran (𝑎 ∈ ℝ+ ↦ (𝑑 “ (0[,)𝑎)))))
ccnfld 21391class fld
df-cnfld 21392fld = (({⟨(Base‘ndx), ℂ⟩, ⟨(+g‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))⟩, ⟨(.r‘ndx), (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))⟩} ∪ {⟨(*𝑟‘ndx), ∗⟩}) ∪ ({⟨(TopSet‘ndx), (MetOpen‘(abs ∘ − ))⟩, ⟨(le‘ndx), ≤ ⟩, ⟨(dist‘ndx), (abs ∘ − )⟩} ∪ {⟨(UnifSet‘ndx), (metUnif‘(abs ∘ − ))⟩}))
czring 21484class ring
df-zring 21485ring = (ℂflds ℤ)
czrh 21537class ℤRHom
czlm 21538class ℤMod
cchr 21539class chr
czn 21540class ℤ/n
df-zrh 21541ℤRHom = (𝑟 ∈ V ↦ (ℤring RingHom 𝑟))
df-zlm 21542ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet ⟨(Scalar‘ndx), ℤring⟩) sSet ⟨( ·𝑠 ‘ndx), (.g𝑔)⟩))
df-chr 21543chr = (𝑔 ∈ V ↦ ((od‘𝑔)‘(1r𝑔)))
df-zn 21544ℤ/nℤ = (𝑛 ∈ ℕ0ring / 𝑧(𝑧 /s (𝑧 ~QG ((RSpan‘𝑧)‘{𝑛}))) / 𝑠(𝑠 sSet ⟨(le‘ndx), ((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓((𝑓 ∘ ≤ ) ∘ 𝑓)⟩))
crefld 21649class fld
df-refld 21650fld = (ℂflds ℝ)
cphl 21669class PreHil
cipf 21670class ·if
df-phl 21671PreHil = {𝑔 ∈ LVec ∣ [(Base‘𝑔) / 𝑣][(·𝑖𝑔) / ][(Scalar‘𝑔) / 𝑓](𝑓 ∈ *-Ring ∧ ∀𝑥𝑣 ((𝑦𝑣 ↦ (𝑦𝑥)) ∈ (𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥𝑥) = (0g𝑓) → 𝑥 = (0g𝑔)) ∧ ∀𝑦𝑣 ((*𝑟𝑓)‘(𝑥𝑦)) = (𝑦𝑥)))}
df-ipf 21672·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖𝑔)𝑦)))
cocv 21705class ocv
ccss 21706class ClSubSp
cthl 21707class toHL
df-ocv 21708ocv = ( ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘) ↦ {𝑥 ∈ (Base‘) ∣ ∀𝑦𝑠 (𝑥(·𝑖)𝑦) = (0g‘(Scalar‘))}))
df-css 21709ClSubSp = ( ∈ V ↦ {𝑠𝑠 = ((ocv‘)‘((ocv‘)‘𝑠))})
df-thl 21710toHL = ( ∈ V ↦ ((toInc‘(ClSubSp‘)) sSet ⟨(oc‘ndx), (ocv‘)⟩))
cpj 21747class proj
chil 21748class Hil
cobs 21749class OBasis
df-pj 21750proj = ( ∈ V ↦ ((𝑥 ∈ (LSubSp‘) ↦ (𝑥(proj1)((ocv‘)‘𝑥))) ∩ (V × ((Base‘) ↑m (Base‘)))))
df-hil 21751Hil = { ∈ PreHil ∣ dom (proj‘) = (ClSubSp‘)}
df-obs 21752OBasis = ( ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘) ∣ (∀𝑥𝑏𝑦𝑏 (𝑥(·𝑖)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘)), (0g‘(Scalar‘))) ∧ ((ocv‘)‘𝑏) = {(0g)})})
cdsmm 21778class m
df-dsmm 21779m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓X𝑥 ∈ dom 𝑟(Base‘(𝑟𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓𝑥) ≠ (0g‘(𝑟𝑥))} ∈ Fin}))
cfrlm 21793class freeLMod
df-frlm 21794 freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟m (𝑖 × {(ringLMod‘𝑟)})))
cuvc 21829class unitVec
df-uvc 21830 unitVec = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗𝑖 ↦ (𝑘𝑖 ↦ if(𝑘 = 𝑗, (1r𝑟), (0g𝑟)))))
clindf 21851class LIndF
clinds 21852class LIndS
df-lindf 21853 LIndF = {⟨𝑓, 𝑤⟩ ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]𝑥 ∈ dom 𝑓𝑘 ∈ ((Base‘𝑠) ∖ {(0g𝑠)}) ¬ (𝑘( ·𝑠𝑤)(𝑓𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))}
df-linds 21854LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤})
casa 21897class AssAlg
casp 21898class AlgSpan
cascl 21899class algSc
df-assa 21900AssAlg = {𝑤 ∈ (LMod ∩ Ring) ∣ [(Scalar‘𝑤) / 𝑓]𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[( ·𝑠𝑤) / 𝑠][(.r𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))}
df-asp 21901AlgSpan = (𝑤 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡}))
df-ascl 21902algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠𝑤)(1r𝑤))))
cmps 21951class mPwSer
cmvr 21952class mVar
cmpl 21953class mPoly
cltb 21954class <bag
copws 21955class ordPwSer
df-psr 21956 mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑m 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦r𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘f𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘f (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
df-mvr 21957 mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r𝑟), (0g𝑟)))))
df-mpl 21958 mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑖 mPwSer 𝑟) / 𝑤(𝑤s {𝑓 ∈ (Base‘𝑤) ∣ 𝑓 finSupp (0g𝑟)}))
df-ltbag 21959 <bag = (𝑟 ∈ V, 𝑖 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∧ ∃𝑧𝑖 ((𝑥𝑧) < (𝑦𝑧) ∧ ∀𝑤𝑖 (𝑧𝑟𝑤 → (𝑥𝑤) = (𝑦𝑤))))})
df-opsr 21960 ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ (𝑖 mPwSer 𝑠) / 𝑝(𝑝 sSet ⟨(le‘ndx), {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑]𝑧𝑑 ((𝑥𝑧)(lt‘𝑠)(𝑦𝑧) ∧ ∀𝑤𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥𝑤) = (𝑦𝑤))) ∨ 𝑥 = 𝑦))}⟩)))
ces 22123class evalSub
cevl 22124class eval
df-evls 22125 evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦ (Base‘𝑠) / 𝑏(𝑟 ∈ (SubRing‘𝑠) ↦ (𝑖 mPoly (𝑠s 𝑟)) / 𝑤(𝑓 ∈ (𝑤 RingHom (𝑠s (𝑏m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥𝑟 ↦ ((𝑏m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠s 𝑟))) = (𝑥𝑖 ↦ (𝑔 ∈ (𝑏m 𝑖) ↦ (𝑔𝑥)))))))
df-evl 22126 eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟)))
cslv 22159class selectVars
cmhp 22160class mHomP
cpsd 22161class mPSDer
cai 22162class AlgInd
df-selv 22163 selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ((𝑖𝑗) mPoly 𝑟) / 𝑢(𝑗 mPoly 𝑢) / 𝑡(algSc‘𝑡) / 𝑐(𝑐 ∘ (algSc‘𝑢)) / 𝑑((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑𝑓))‘(𝑥𝑖 ↦ if(𝑥𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖𝑗) mVar 𝑟)‘𝑥))))))))
df-mhp 22167 mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g𝑟)) ⊆ {𝑔 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ∣ ((ℂflds0) Σg 𝑔) = 𝑛}}))
df-psd 22187 mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ { ∈ (ℕ0m 𝑖) ∣ ( “ ℕ) ∈ Fin} ↦ (((𝑘𝑥) + 1)(.g𝑟)(𝑓‘(𝑘f + (𝑦𝑖 ↦ if(𝑦 = 𝑥, 1, 0)))))))))
df-algind 22200 AlgInd = (𝑤 ∈ V, 𝑘 ∈ 𝒫 (Base‘𝑤) ↦ {𝑣 ∈ 𝒫 (Base‘𝑤) ∣ Fun (𝑓 ∈ (Base‘(𝑣 mPoly (𝑤s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)))})
cps1 22201class PwSer1
cv1 22202class var1
cpl1 22203class Poly1
cco1 22204class coe1
ctp1 22205class toPoly1
df-psr1 22206PwSer1 = (𝑟 ∈ V ↦ ((1o ordPwSer 𝑟)‘∅))
df-vr1 22207var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅))
df-ply1 22208Poly1 = (𝑟 ∈ V ↦ ((PwSer1𝑟) ↾s (Base‘(1o mPoly 𝑟))))
df-coe1 22209coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (𝑓‘(1o × {𝑛}))))
df-toply1 22210toPoly1 = (𝑓 ∈ V ↦ (𝑛 ∈ (ℕ0m 1o) ↦ (𝑓‘(𝑛‘∅))))
ces1 22342class evalSub1
ce1 22343class eval1
df-evls1 22344 evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦ (Base‘𝑠) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ ((1o evalSub 𝑠)‘𝑟)))
df-evl1 22345eval1 = (𝑟 ∈ V ↦ (Base‘𝑟) / 𝑏((𝑥 ∈ (𝑏m (𝑏m 1o)) ↦ (𝑥 ∘ (𝑦𝑏 ↦ (1o × {𝑦})))) ∘ (1o eval 𝑟)))
cmmul 22419class maMul
df-mamu 22420 maMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ (1st ‘(1st𝑜)) / 𝑚(2nd ‘(1st𝑜)) / 𝑛(2nd𝑜) / 𝑝(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖𝑚, 𝑘𝑝 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑗𝑦𝑘)))))))
cmat 22436class Mat
df-mat 22437 Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet ⟨(.r‘ndx), (𝑟 maMul ⟨𝑛, 𝑛, 𝑛⟩)⟩))
cdmat 22519class DMat
cscmat 22520class ScMat
df-dmat 22521 DMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))})
df-scmat 22522 ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠𝑎)(1r𝑎))})
cmvmul 22571class maVecMul
df-mvmul 22572 maVecMul = (𝑟 ∈ V, 𝑜 ∈ V ↦ (1st𝑜) / 𝑚(2nd𝑜) / 𝑛(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑖𝑚 ↦ (𝑟 Σg (𝑗𝑛 ↦ ((𝑖𝑥𝑗)(.r𝑟)(𝑦𝑗)))))))
cmarrep 22587class matRRep
cmatrepV 22588class matRepV
df-marrep 22589 matRRep = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑠 ∈ (Base‘𝑟) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g𝑟)), (𝑖𝑚𝑗))))))
df-marepv 22590 matRepV = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑘𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑗 = 𝑘, (𝑣𝑖), (𝑖𝑚𝑗))))))
csubma 22607class subMat
df-subma 22608 subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗)))))
cmdat 22615class maDet
df-mdet 22616 maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r𝑟)((mulGrp‘𝑟) Σg (𝑥𝑛 ↦ ((𝑝𝑥)𝑚𝑥))))))))
cmadu 22663class maAdju
cminmar1 22664class minMatR1
df-madu 22665 maAdju = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖𝑛, 𝑗𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘𝑛, 𝑙𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r𝑟), (0g𝑟)), (𝑘𝑚𝑙)))))))
df-minmar1 22666 minMatR1 = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘𝑛, 𝑙𝑛 ↦ (𝑖𝑛, 𝑗𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r𝑟), (0g𝑟)), (𝑖𝑚𝑗))))))
ccpmat 22734class ConstPolyMat
cmat2pmat 22735class matToPolyMat
ccpmat2mat 22736class cPolyMatToMat
df-cpmat 22737 ConstPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ∣ ∀𝑖𝑛𝑗𝑛𝑘 ∈ ℕ ((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g𝑟)})
df-mat2pmat 22738 matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((algSc‘(Poly1𝑟))‘(𝑥𝑚𝑦)))))
df-cpmat2mat 22739 cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥𝑛, 𝑦𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0))))
cdecpmat 22793class decompPMat
df-decpmat 22794 decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘)))
cpm2mp 22823class pMatToMatPoly
df-pm2mp 22824 pMatToMatPoly = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1𝑟))) ↦ (𝑛 Mat 𝑟) / 𝑎(Poly1𝑎) / 𝑞(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1𝑎)))))))
cchpmat 22857class CharPlyMat
df-chpmat 22858 CharPlyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1𝑟))‘(((var1𝑟)( ·𝑠 ‘(𝑛 Mat (Poly1𝑟)))(1r‘(𝑛 Mat (Poly1𝑟))))(-g‘(𝑛 Mat (Poly1𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚)))))
ctop 22924class Top
df-top 22925Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥 𝑦𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ∈ 𝑥)}
ctopon 22941class TopOn
df-topon 22942TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = 𝑗})
ctps 22963class TopSp
df-topsp 22964TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))}
ctb 22977class TopBases
df-bases 22978TopBases = {𝑥 ∣ ∀𝑦𝑥𝑧𝑥 (𝑦𝑧) ⊆ (𝑥 ∩ 𝒫 (𝑦𝑧))}
ccld 23049class Clsd
cnt 23050class int
ccl 23051class cls
df-cld 23052Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ( 𝑗𝑥) ∈ 𝑗})
df-ntr 23053int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 (𝑗 ∩ 𝒫 𝑥)))
df-cls 23054cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥𝑦}))
cnei 23130class nei
df-nei 23131nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦 ∈ 𝒫 𝑗 ∣ ∃𝑔𝑗 (𝑥𝑔𝑔𝑦)}))
clp 23167class limPt
cperf 23168class Perf
df-lp 23169limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑦𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))}))
df-perf 23170Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘ 𝑗) = 𝑗}
ccn 23257class Cn
ccnp 23258class CnP
clm 23259class 𝑡
df-cn 23260 Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 (𝑓𝑦) ∈ 𝑗})
df-cnp 23261 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑦𝑘 ((𝑓𝑥) ∈ 𝑦 → ∃𝑔𝑗 (𝑥𝑔 ∧ (𝑓𝑔) ⊆ 𝑦))}))
df-lm 23262𝑡 = (𝑗 ∈ Top ↦ {⟨𝑓, 𝑥⟩ ∣ (𝑓 ∈ ( 𝑗pm ℂ) ∧ 𝑥 𝑗 ∧ ∀𝑢𝑗 (𝑥𝑢 → ∃𝑦 ∈ ran ℤ(𝑓𝑦):𝑦𝑢))})
ct0 23339class Kol2
ct1 23340class Fre
cha 23341class Haus
creg 23342class Reg
cnrm 23343class Nrm
ccnrm 23344class CNrm
cpnrm 23345class PNrm
df-t0 23346Kol2 = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗(∀𝑜𝑗 (𝑥𝑜𝑦𝑜) → 𝑥 = 𝑦)}
df-t1 23347Fre = {𝑥 ∈ Top ∣ ∀𝑎 𝑥{𝑎} ∈ (Clsd‘𝑥)}
df-haus 23348Haus = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗(𝑥𝑦 → ∃𝑛𝑗𝑚𝑗 (𝑥𝑛𝑦𝑚 ∧ (𝑛𝑚) = ∅))}
df-reg 23349Reg = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)}
df-nrm 23350Nrm = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧𝑗 (𝑦𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)}
df-cnrm 23351CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 𝑗(𝑗t 𝑥) ∈ Nrm}
df-pnrm 23352PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗m ℕ) ↦ ran 𝑓)}
ccmp 23419class Comp
df-cmp 23420Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥( 𝑥 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
cconn 23444class Conn
df-conn 23445Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, 𝑗}}
c1stc 23470class 1stω
c2ndc 23471class 2ndω
df-1stc 234721stω = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧𝑗 (𝑥𝑧𝑥 (𝑦 ∩ 𝒫 𝑧)))}
df-2ndc 234732ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)}
clly 23497class Locally 𝐴
cnlly 23498class 𝑛-Locally 𝐴
df-lly 23499Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦𝑢 ∧ (𝑗t 𝑢) ∈ 𝐴)}
df-nlly 23500𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥𝑗𝑦𝑥𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗t 𝑢) ∈ 𝐴}
cref 23535class Ref
cptfin 23536class PtFin
clocfin 23537class LocFin
df-ref 23538Ref = {⟨𝑥, 𝑦⟩ ∣ ( 𝑦 = 𝑥 ∧ ∀𝑧𝑥𝑤𝑦 𝑧𝑤)}
df-ptfin 23539PtFin = {𝑥 ∣ ∀𝑦 𝑥{𝑧𝑥𝑦𝑧} ∈ Fin}
df-locfin 23540LocFin = (𝑥 ∈ Top ↦ {𝑦 ∣ ( 𝑥 = 𝑦 ∧ ∀𝑝 𝑥𝑛𝑥 (𝑝𝑛 ∧ {𝑠𝑦 ∣ (𝑠𝑛) ≠ ∅} ∈ Fin))})
ckgen 23566class 𝑘Gen
df-kgen 23567𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 𝑗 ∣ ∀𝑘 ∈ 𝒫 𝑗((𝑗t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝑗t 𝑘))})
ctx 23593class ×t
cxko 23594class ko
df-tx 23595 ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥𝑟, 𝑦𝑠 ↦ (𝑥 × 𝑦))))
df-xko 23596ko = (𝑠 ∈ Top, 𝑟 ∈ Top ↦ (topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 𝑟 ∣ (𝑟t 𝑥) ∈ Comp}, 𝑣𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓𝑘) ⊆ 𝑣}))))
ckq 23726class KQ
df-kq 23727KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 𝑗 ↦ {𝑦𝑗𝑥𝑦})))
chmeo 23786class Homeo
chmph 23787class
df-hmeo 23788Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ 𝑓 ∈ (𝑘 Cn 𝑗)})
df-hmph 23789 ≃ = (Homeo “ (V ∖ 1o))
cfil 23878class Fil
df-fil 23879Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥𝑓)})
cufil 23932class UFil
cufl 23933class UFL
df-ufil 23934UFil = (𝑔 ∈ V ↦ {𝑓 ∈ (Fil‘𝑔) ∣ ∀𝑥 ∈ 𝒫 𝑔(𝑥𝑓 ∨ (𝑔𝑥) ∈ 𝑓)})
df-ufl 23935UFL = {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓𝑔}
cfm 23966class FilMap
cflim 23967class fLim
cflf 23968class fLimf
cfcls 23969class fClus
cfcf 23970class fClusf
df-fm 23971 FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡𝑦 ↦ (𝑓𝑡)))))
df-flim 23972 fLim = (𝑗 ∈ Top, 𝑓 ran Fil ↦ {𝑥 𝑗 ∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓𝑓 ⊆ 𝒫 𝑗)})
df-flf 23973 fLimf = (𝑥 ∈ Top, 𝑦 ran Fil ↦ (𝑓 ∈ ( 𝑥m 𝑦) ↦ (𝑥 fLim (( 𝑥 FilMap 𝑓)‘𝑦))))
df-fcls 23974 fClus = (𝑗 ∈ Top, 𝑓 ran Fil ↦ if( 𝑗 = 𝑓, 𝑥𝑓 ((cls‘𝑗)‘𝑥), ∅))
df-fcf 23975 fClusf = (𝑗 ∈ Top, 𝑓 ran Fil ↦ (𝑔 ∈ ( 𝑗m 𝑓) ↦ (𝑗 fClus (( 𝑗 FilMap 𝑔)‘𝑓))))
ccnext 24092class CnExt
df-cnext 24093CnExt = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ ( 𝑘pm 𝑗) ↦ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓))))
ctmd 24103class TopMnd
ctgp 24104class TopGrp
df-tmd 24105TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣ [(TopOpen‘𝑓) / 𝑗](+𝑓𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)}
df-tgp 24106TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣ [(TopOpen‘𝑓) / 𝑗](invg𝑓) ∈ (𝑗 Cn 𝑗)}
ctsu 24159class tsums
df-tsms 24160 tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ (𝒫 dom 𝑓 ∩ Fin) / 𝑠(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧𝑠 ↦ {𝑦𝑠𝑧𝑦})))‘(𝑦𝑠 ↦ (𝑤 Σg (𝑓𝑦)))))
ctrg 24189class TopRing
ctdrg 24190class TopDRing
ctlm 24191class TopMod
ctvc 24192class TopVec
df-trg 24193TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣ (mulGrp‘𝑟) ∈ TopMnd}
df-tdrg 24194TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣ ((mulGrp‘𝑟) ↾s (Unit‘𝑟)) ∈ TopGrp}
df-tlm 24195TopMod = {𝑤 ∈ (TopMnd ∩ LMod) ∣ ((Scalar‘𝑤) ∈ TopRing ∧ ( ·sf𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t (TopOpen‘𝑤)) Cn (TopOpen‘𝑤)))}
df-tvc 24196TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈ TopDRing}
cust 24233class UnifOn
df-ust 24234UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
cutop 24264class unifTop
df-utop 24265unifTop = (𝑢 ran UnifOn ↦ {𝑎 ∈ 𝒫 dom 𝑢 ∣ ∀𝑥𝑎𝑣𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎})
cuss 24287class UnifSt
cusp 24288class UnifSp
ctus 24289class toUnifSp
df-uss 24290UnifSt = (𝑓 ∈ V ↦ ((UnifSet‘𝑓) ↾t ((Base‘𝑓) × (Base‘𝑓))))
df-usp 24291UnifSp = {𝑓 ∣ ((UnifSt‘𝑓) ∈ (UnifOn‘(Base‘𝑓)) ∧ (TopOpen‘𝑓) = (unifTop‘(UnifSt‘𝑓)))}
df-tus 24292toUnifSp = (𝑢 ran UnifOn ↦ ({⟨(Base‘ndx), dom 𝑢⟩, ⟨(UnifSet‘ndx), 𝑢⟩} sSet ⟨(TopSet‘ndx), (unifTop‘𝑢)⟩))
cucn 24309class Cnu
df-ucn 24310 Cnu = (𝑢 ran UnifOn, 𝑣 ran UnifOn ↦ {𝑓 ∈ (dom 𝑣m dom 𝑢) ∣ ∀𝑠𝑣𝑟𝑢𝑥 ∈ dom 𝑢𝑦 ∈ dom 𝑢(𝑥𝑟𝑦 → (𝑓𝑥)𝑠(𝑓𝑦))})
ccfilu 24320class CauFilu
df-cfilu 24321CauFilu = (𝑢 ran UnifOn ↦ {𝑓 ∈ (fBas‘dom 𝑢) ∣ ∀𝑣𝑢𝑎𝑓 (𝑎 × 𝑎) ⊆ 𝑣})
ccusp 24331class CUnifSp
df-cusp 24332CUnifSp = {𝑤 ∈ UnifSp ∣ ∀𝑐 ∈ (Fil‘(Base‘𝑤))(𝑐 ∈ (CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)}
cxms 24352class ∞MetSp
cms 24353class MetSp
ctms 24354class toMetSp
df-xms 24355∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) = (MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))}
df-ms 24356MetSp = {𝑓 ∈ ∞MetSp ∣ ((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))) ∈ (Met‘(Base‘𝑓))}
df-tms 24357toMetSp = (𝑑 ran ∞Met ↦ ({⟨(Base‘ndx), dom dom 𝑑⟩, ⟨(dist‘ndx), 𝑑⟩} sSet ⟨(TopSet‘ndx), (MetOpen‘𝑑)⟩))
cnm 24614class norm
cngp 24615class NrmGrp
ctng 24616class toNrmGrp
cnrg 24617class NrmRing
cnlm 24618class NrmMod
cnvc 24619class NrmVec
df-nm 24620norm = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g𝑤))))
df-ngp 24621NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣ ((norm‘𝑔) ∘ (-g𝑔)) ⊆ (dist‘𝑔)}
df-tng 24622 toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet ⟨(dist‘ndx), (𝑓 ∘ (-g𝑔))⟩) sSet ⟨(TopSet‘ndx), (MetOpen‘(𝑓 ∘ (-g𝑔)))⟩))
df-nrg 24623NrmRing = {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)}
df-nlm 24624NrmMod = {𝑤 ∈ (NrmGrp ∩ LMod) ∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)))}
df-nvc 24625NrmVec = (NrmMod ∩ LVec)
cnmo 24751class normOp
cnghm 24752class NGHom
cnmhm 24753class NMHom
df-nmo 24754 normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, < )))
df-nghm 24755 NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ ((𝑠 normOp 𝑡) “ ℝ))
df-nmhm 24756 NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡)))
cii 24926class II
ccncf 24927class cn
df-ii 24928II = (MetOpen‘((abs ∘ − ) ↾ ((0[,]1) × (0[,]1))))
df-cncf 24929cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏m 𝑎) ∣ ∀𝑥𝑎𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑎 ((abs‘(𝑥𝑦)) < 𝑑 → (abs‘((𝑓𝑥) − (𝑓𝑦))) < 𝑒)})
chtpy 25024class Htpy
cphtpy 25025class PHtpy
cphtpc 25026class ph
df-htpy 25027 Htpy = (𝑥 ∈ Top, 𝑦 ∈ Top ↦ (𝑓 ∈ (𝑥 Cn 𝑦), 𝑔 ∈ (𝑥 Cn 𝑦) ↦ { ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 𝑥((𝑠0) = (𝑓𝑠) ∧ (𝑠1) = (𝑔𝑠))}))
df-phtpy 25028PHtpy = (𝑥 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑥), 𝑔 ∈ (II Cn 𝑥) ↦ { ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0𝑠) = (𝑓‘0) ∧ (1𝑠) = (𝑓‘1))}))
df-phtpc 25049ph = (𝑥 ∈ Top ↦ {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)})
cpco 25058class *𝑝
comi 25059class Ω1
comn 25060class Ω𝑛
cpi1 25061class π1
cpin 25062class πn
df-pco 25063*𝑝 = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))))
df-om1 25064 Ω1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ {⟨(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}⟩, ⟨(+g‘ndx), (*𝑝𝑗)⟩, ⟨(TopSet‘ndx), (𝑗ko II)⟩})
df-omn 25065 Ω𝑛 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ seq0(((𝑥 ∈ V, 𝑝 ∈ V ↦ ⟨((TopOpen‘(1st𝑥)) Ω1 (2nd𝑥)), ((0[,]1) × {(2nd𝑥)})⟩) ∘ 1st ), ⟨{⟨(Base‘ndx), 𝑗⟩, ⟨(TopSet‘ndx), 𝑗⟩}, 𝑦⟩))
df-pi1 25066 π1 = (𝑗 ∈ Top, 𝑦 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph𝑗)))
df-pin 25067 πn = (𝑗 ∈ Top, 𝑝 𝑗 ↦ (𝑛 ∈ ℕ0 ↦ ((1st ‘((𝑗 Ω𝑛 𝑝)‘𝑛)) /s if(𝑛 = 0, {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}, ( ≃ph‘(TopOpen‘(1st ‘((𝑗 Ω𝑛 𝑝)‘(𝑛 − 1)))))))))
cclm 25120class ℂMod
df-clm 25121ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))}
ccvs 25181class ℂVec
df-cvs 25182ℂVec = (ℂMod ∩ LVec)
ccph 25225class ℂPreHil
ctcph 25226class toℂPreHil
df-cph 25227ℂPreHil = {𝑤 ∈ (PreHil ∩ NrmMod) ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂflds 𝑘) ∧ (√ “ (𝑘 ∩ (0[,)+∞))) ⊆ 𝑘 ∧ (norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥))))}
df-tcph 25228toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖𝑤)𝑥)))))
ccfil 25311class CauFil
ccau 25312class Cau
ccmet 25313class CMet
df-cfil 25314CauFil = (𝑑 ran ∞Met ↦ {𝑓 ∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+𝑦𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)})
df-cau 25315Cau = (𝑑 ran ∞Met ↦ {𝑓 ∈ (dom dom 𝑑pm ℂ) ∣ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑓𝑗)(ball‘𝑑)𝑥)})
df-cmet 25316CMet = (𝑥 ∈ V ↦ {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅})
ccms 25391class CMetSp
cbn 25392class Ban
chl 25393class ℂHil
df-cms 25394CMetSp = {𝑤 ∈ MetSp ∣ [(Base‘𝑤) / 𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)}
df-bn 25395Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣ (Scalar‘𝑤) ∈ CMetSp}
df-hl 25396ℂHil = (Ban ∩ ℂPreHil)
crrx 25442class ℝ^
cehl 25443class 𝔼hil
df-rrx 25444ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖)))
df-ehl 25445𝔼hil = (𝑛 ∈ ℕ0 ↦ (ℝ^‘(1...𝑛)))
covol 25522class vol*
cvol 25523class vol
df-ovol 25524vol* = (𝑥 ∈ 𝒫 ℝ ↦ inf({𝑦 ∈ ℝ* ∣ ∃𝑓 ∈ (( ≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − ) ∘ 𝑓)), ℝ*, < ))}, ℝ*, < ))
df-vol 25525vol = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦𝑥)) + (vol*‘(𝑦𝑥)))})
cmbf 25674class MblFn
citg1 25675class 1
citg2 25676class 2
cibl 25677class 𝐿1
citg 25678class 𝐴𝐵 d𝑥
df-mbf 25679MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)}
df-itg1 256801 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(𝑓 “ {𝑥}))))
df-itg2 256812 = (𝑓 ∈ ((0[,]+∞) ↑m ℝ) ↦ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔r𝑓𝑥 = (∫1𝑔))}, ℝ*, < ))
df-ibl 25682𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘((𝑓𝑥) / (i↑𝑘))) / 𝑦if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ}
df-itg 25683𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ (ℜ‘(𝐵 / (i↑𝑘))) / 𝑦if((𝑥𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0))))
c0p 25729class 0𝑝
df-0p 257300𝑝 = (ℂ × {0})
cdit 25907class ⨜[𝐴𝐵]𝐶 d𝑥
df-ditg 25908⨜[𝐴𝐵]𝐶 d𝑥 = if(𝐴𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥)
climc 25923class lim
cdv 25924class D
cdvn 25925class D𝑛
ccpn 25926class 𝓑C𝑛
df-limc 25927 lim = (𝑓 ∈ (ℂ ↑pm ℂ), 𝑥 ∈ ℂ ↦ {𝑦[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓𝑧))) ∈ (((𝑗t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)})
df-dv 25928 D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓𝑧) − (𝑓𝑥)) / (𝑧𝑥))) lim 𝑥)))
df-dvn 25929 D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ), (ℕ0 × {𝑓})))
df-cpn 25930𝓑C𝑛 = (𝑠 ∈ 𝒫 ℂ ↦ (𝑥 ∈ ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑥) ∈ (dom 𝑓cn→ℂ)}))
cmdg 26118class mDeg
cdg1 26119class deg1
df-mdeg 26120 mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran ( ∈ (𝑓 supp (0g𝑟)) ↦ (ℂfld Σg )), ℝ*, < )))
df-deg1 26121deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟))
cmn1 26191class Monic1p
cuc1p 26192class Unic1p
cq1p 26193class quot1p
cr1p 26194class rem1p
cig1p 26195class idlGen1p
df-mon1 26196Monic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) = (1r𝑟))})
df-uc1p 26197Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈ (Base‘(Poly1𝑟)) ∣ (𝑓 ≠ (0g‘(Poly1𝑟)) ∧ ((coe1𝑓)‘((deg1𝑟)‘𝑓)) ∈ (Unit‘𝑟))})
df-q1p 26198quot1p = (𝑟 ∈ V ↦ (Poly1𝑟) / 𝑝(Base‘𝑝) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑞𝑏 ((deg1𝑟)‘(𝑓(-g𝑝)(𝑞(.r𝑝)𝑔))) < ((deg1𝑟)‘𝑔))))
df-r1p 26199rem1p = (𝑟 ∈ V ↦ (Base‘(Poly1𝑟)) / 𝑏(𝑓𝑏, 𝑔𝑏 ↦ (𝑓(-g‘(Poly1𝑟))((𝑓(quot1p𝑟)𝑔)(.r‘(Poly1𝑟))𝑔))))
df-ig1p 26200idlGen1p = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ if(𝑖 = {(0g‘(Poly1𝑟))}, (0g‘(Poly1𝑟)), (𝑔 ∈ (𝑖 ∩ (Monic1p𝑟))((deg1𝑟)‘𝑔) = inf(((deg1𝑟) “ (𝑖 ∖ {(0g‘(Poly1𝑟))})), ℝ, < )))))
cply 26249class Poly
cidp 26250class Xp
ccoe 26251class coeff
cdgr 26252class deg
df-ply 26253Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑥 ∪ {0}) ↑m0)𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))})
df-idp 26254Xp = ( I ↾ ℂ)
df-coe 26255coeff = (𝑓 ∈ (Poly‘ℂ) ↦ (𝑎 ∈ (ℂ ↑m0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))))
df-dgr 26256deg = (𝑓 ∈ (Poly‘ℂ) ↦ sup(((coeff‘𝑓) “ (ℂ ∖ {0})), ℕ0, < ))
cquot 26358class quot
df-quot 26359 quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦ (𝑞 ∈ (Poly‘ℂ)[(𝑓f − (𝑔f · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))))
caa 26382class 𝔸
df-aa 26383𝔸 = 𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓 “ {0})
ctayl 26420class Tayl
cana 26421class Ana
df-tayl 26422 Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ (𝑛 ∈ (ℕ0 ∪ {+∞}), 𝑎 𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ 𝑥 ∈ ℂ ({𝑥} × (ℂfld tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦ (((((𝑠 D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥𝑎)↑𝑘)))))))
df-ana 26423Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ∀𝑥 ∈ dom 𝑓 𝑥 ∈ ((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))})
culm 26445class 𝑢
df-ulm 26446𝑢 = (𝑠 ∈ V ↦ {⟨𝑓, 𝑦⟩ ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ𝑛)⟶(ℂ ↑m 𝑠) ∧ 𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ (ℤ𝑛)∀𝑘 ∈ (ℤ𝑗)∀𝑧𝑠 (abs‘(((𝑓𝑘)‘𝑧) − (𝑦𝑧))) < 𝑥)})
clog 26622class log
ccxp 26623class 𝑐
df-log 26624log = (exp ↾ (ℑ “ (-π(,]π)))
df-cxp 26625𝑐 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥)))))
clogb 26833class logb
df-logb 26834 logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑦) / (log‘𝑥)))
casin 26931class arcsin
cacos 26932class arccos
catan 26933class arctan
df-asin 26934arcsin = (𝑥 ∈ ℂ ↦ (-i · (log‘((i · 𝑥) + (√‘(1 − (𝑥↑2)))))))
df-acos 26935arccos = (𝑥 ∈ ℂ ↦ ((π / 2) − (arcsin‘𝑥)))
df-atan 26936arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))
carea 27024class area
df-area 27025area = (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ) ∣ (∀𝑥 ∈ ℝ (𝑡 “ {𝑥}) ∈ (vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑡 “ {𝑥}))) ∈ 𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)
cem 27061class γ
df-em 27062γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 / 𝑘))))
czeta 27082class ζ
df-zeta 27083ζ = (𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 − (2↑𝑐(1 − 𝑠))) · (𝑓𝑠)) = Σ𝑛 ∈ ℕ0𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1))))
clgam 27085class log Γ
cgam 27086class Γ
cigam 27087class 1/Γ
df-lgam 27088log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖ ℕ)) ↦ (Σ𝑚 ∈ ℕ ((𝑧 · (log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧)))
df-gam 27089Γ = (exp ∘ log Γ)
df-igam 270901/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 / (Γ‘𝑥))))
ccht 27160class θ
cvma 27161class Λ
cchp 27162class ψ
cppi 27163class π
cmu 27164class μ
csgm 27165class σ
df-cht 27166θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝))
df-vma 27167Λ = (𝑥 ∈ ℕ ↦ {𝑝 ∈ ℙ ∣ 𝑝𝑥} / 𝑠if((♯‘𝑠) = 1, (log‘ 𝑠), 0))
df-chp 27168ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(Λ‘𝑛))
df-ppi 27169π = (𝑥 ∈ ℝ ↦ (♯‘((0[,]𝑥) ∩ ℙ)))
df-mu 27170μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝𝑥}))))
df-sgm 27171 σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝𝑛} (𝑘𝑐𝑥))
cdchr 27302class DChr
df-dchr 27303DChr = (𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑛) / 𝑧{𝑥 ∈ ((mulGrp‘𝑧) MndHom (mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))⟩})
clgs 27364class /L
df-lgs 27365 /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · , (𝑚 ∈ ℕ ↦ if(𝑚 ∈ ℙ, (if(𝑚 = 2, if(2 ∥ 𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)), ((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛)))))
csur 27710class No
cslt 27711class <s
cbday 27712class bday
df-no 27713 No = {𝑓 ∣ ∃𝑎 ∈ On 𝑓:𝑎⟶{1o, 2o}}
df-slt 27714 <s = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 No 𝑔 No ) ∧ ∃𝑥 ∈ On (∀𝑦𝑥 (𝑓𝑦) = (𝑔𝑦) ∧ (𝑓𝑥){⟨1o, ∅⟩, ⟨1o, 2o⟩, ⟨∅, 2o⟩} (𝑔𝑥)))}
df-bday 27715 bday = (𝑥 No ↦ dom 𝑥)
csle 27815class ≤s
df-sle 27816 ≤s = (( No × No ) ∖ <s )
csslt 27851class <<s
df-sslt 27852 <<s = {⟨𝑎, 𝑏⟩ ∣ (𝑎 No 𝑏 No ∧ ∀𝑥𝑎𝑦𝑏 𝑥 <s 𝑦)}
cscut 27853class |s
df-scut 27854 |s = (𝑎 ∈ 𝒫 No , 𝑏 ∈ ( <<s “ {𝑎}) ↦ (𝑥 ∈ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday 𝑥) = ( bday “ {𝑦 No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)})))
c0s 27893class 0s
c1s 27894class 1s
df-0s 27895 0s = (∅ |s ∅)
df-1s 27896 1s = ({ 0s } |s ∅)
cmade 27907class M
cold 27908class O
cnew 27909class N
cleft 27910class L
cright 27911class R
df-made 27912 M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫 ran 𝑓 × 𝒫 ran 𝑓))))
df-old 27913 O = (𝑥 ∈ On ↦ ( M “ 𝑥))
df-new 27914 N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥)))
df-left 27915 L = (𝑥 No ↦ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑦 <s 𝑥})
df-right 27916 R = (𝑥 No ↦ {𝑦 ∈ ( O ‘( bday 𝑥)) ∣ 𝑥 <s 𝑦})
cnorec 27996class norec (𝐹)
df-norec 27997 norec (𝐹) = frecs({⟨𝑥, 𝑦⟩ ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐹)
cnorec2 28007class norec2 (𝐹)
df-norec2 28008 norec2 (𝐹) = frecs({⟨𝑎, 𝑏⟩ ∣ (𝑎 ∈ ( No × No ) ∧ 𝑏 ∈ ( No × No ) ∧ (((1st𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st𝑏) ∨ (1st𝑎) = (1st𝑏)) ∧ ((2nd𝑎){⟨𝑐, 𝑑⟩ ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd𝑏) ∨ (2nd𝑎) = (2nd𝑏)) ∧ 𝑎𝑏))}, ( No × No ), 𝐹)
cadds 28018class +s
df-adds 28019 +s = norec2 ((𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st𝑥))𝑦 = (𝑙𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st𝑥))𝑦 = (𝑟𝑎(2nd𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd𝑥))𝑧 = ((1st𝑥)𝑎𝑟)}))))
cnegs 28077class -us
csubs 28078class -s
df-negs 28079 -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥)))))
df-subs 28080 -s = (𝑥 No , 𝑦 No ↦ (𝑥 +s ( -us𝑦)))
cmuls 28158class ·s
df-muls 28159 ·s = norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦ (1st𝑧) / 𝑥(2nd𝑧) / 𝑦(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))}))))
cdivs 28239class /su
df-divs 28240 /su = (𝑥 No , 𝑦 ∈ ( No ∖ { 0s }) ↦ (𝑧 No (𝑦 ·s 𝑧) = 𝑥))
cabss 28287class abss
df-abss 28288abss = (𝑥 No ↦ if( 0s ≤s 𝑥, 𝑥, ( -us𝑥)))
cons 28300class Ons
df-ons 28301Ons = {𝑥 No ∣ ( R ‘𝑥) = ∅}
cseqs 28315class seqs𝑀( + , 𝐹)
df-seqs 28316seqs𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))⟩), ⟨𝑀, (𝐹𝑀)⟩) “ ω)
cnn0s 28344class 0s
cnns 28345class s
df-n0s 283460s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )), 0s ) “ ω)
df-nns 28347s = (ℕ0s ∖ { 0s })
czs 28390class s
df-zs 28391s = ( -s “ (ℕs × ℕs))
c2s 28420class 2s
df-2s 284212s = ({ 1s } |s ∅)
cexps 28422class s
df-exps 28423s = (𝑥 No , 𝑦 ∈ ℤs ↦ if(𝑦 = 0s , 1s , if( 0s <s 𝑦, (seqs 1s ( ·s , (ℕs × {𝑥}))‘𝑦), ( 1s /su (seqs 1s ( ·s , (ℕs × {𝑥}))‘( -us𝑦))))))
czs12 28424class s[1/2]
df-zs12 28425s[1/2] = {𝑥 ∣ ∃𝑦 ∈ ℤs𝑧 ∈ ℕ0s 𝑥 = (𝑦 /su (2ss𝑧))}
creno 28451class s
df-reno 28452s = {𝑥 No ∣ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝑥𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 +s ( 1s /su 𝑛))}))}
cstrkg 28461class TarskiG
cstrkgc 28462class TarskiGC
cstrkgb 28463class TarskiGB
cstrkgcb 28464class TarskiGCB
cstrkgld 28465class DimTarskiG
cstrkge 28466class TarskiGE
citv 28467class Itv
clng 28468class LineG
df-itv 28469Itv = Slot 16
df-lng 28470LineG = Slot 17
df-trkgc 28482TarskiGC = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥𝑝𝑦𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))}
df-trkgb 28483TarskiGB = {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](∀𝑥𝑝𝑦𝑝 (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑝𝑡 ∈ 𝒫 𝑝(∃𝑎𝑝𝑥𝑠𝑦𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏𝑝𝑥𝑠𝑦𝑡 𝑏 ∈ (𝑥𝑖𝑦)))}
df-trkgcb 28484TarskiGCB = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑎𝑝𝑏𝑝𝑐𝑝𝑣𝑝 (((𝑥𝑦𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥𝑝𝑦𝑝𝑎𝑝𝑏𝑝𝑧𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)))}
df-trkge 28485TarskiGE = {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖]𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥𝑢) → ∃𝑎𝑝𝑏𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))}
df-trkgld 28486DimTarskiG≥ = {⟨𝑔, 𝑛⟩ ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]𝑓(𝑓:(1..^𝑛)–1-1𝑝 ∧ ∃𝑥𝑝𝑦𝑝𝑧𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))}
df-trkg 28487TarskiG = ((TarskiGC ∩ TarskiGB) ∩ (TarskiGCB ∩ {𝑓[(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})}))
ccgrg 28544class cgrG
df-cgrg 28545cgrG = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ)) ∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎𝑗 ∈ dom 𝑎((𝑎𝑖)(dist‘𝑔)(𝑎𝑗)) = ((𝑏𝑖)(dist‘𝑔)(𝑏𝑗))))})
cismt 28566class Ismt
df-ismt 28567Ismt = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓𝑎)(dist‘)(𝑓𝑏)) = (𝑎(dist‘𝑔)𝑏))})
cleg 28616class ≤G
df-leg 28617≤G = (𝑔 ∈ V ↦ {⟨𝑒, 𝑓⟩ ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]𝑥𝑝𝑦𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))})
chlg 28634class hlG
df-hlg 28635hlG = (𝑔 ∈ V ↦ (𝑐 ∈ (Base‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎𝑐𝑏𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))}))
cmir 28686class pInvG
df-mir 28687pInvG = (𝑔 ∈ V ↦ (𝑚 ∈ (Base‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑚(dist‘𝑔)𝑏) = (𝑚(dist‘𝑔)𝑎) ∧ 𝑚 ∈ (𝑏(Itv‘𝑔)𝑎))))))
crag 28727class ∟G
df-rag 28728∟G = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))})
cperpg 28729class ⟂G
df-perpg 28730⟂G = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎𝑏)∀𝑢𝑎𝑣𝑏 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝑔))})
chpg 28791class hpG
df-hpg 28792hpG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]𝑐𝑝 (((𝑎 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝𝑑) ∧ 𝑐 ∈ (𝑝𝑑)) ∧ ∃𝑡𝑑 𝑡 ∈ (𝑏𝑖𝑐)))}))
cmid 28806class midG
clmi 28807class lInvG
df-mid 28808midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))))
df-lmi 28809lInvG = (𝑔 ∈ V ↦ (𝑚 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑚 ∧ (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏))))))
ccgra 28841class cgrA
df-cgra 28842cgrA = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝m (0..^3)) ∧ 𝑏 ∈ (𝑝m (0..^3))) ∧ ∃𝑥𝑝𝑦𝑝 (𝑎(cgrG‘𝑔)⟨“𝑥(𝑏‘1)𝑦”⟩ ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))})
cinag 28869class inA
cleag 28870class
df-inag 28871inA = (𝑔 ∈ V ↦ {⟨𝑝, 𝑡⟩ ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))})
df-leag 28880 = (𝑔 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥(inA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)(𝑏‘2)”⟩ ∧ ⟨“(𝑎‘0)(𝑎‘1)(𝑎‘2)”⟩(cgrA‘𝑔)⟨“(𝑏‘0)(𝑏‘1)𝑥”⟩))})
ceqlg 28899class eqltrG
df-eqlg 28900eqltrG = (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)⟨“(𝑥‘1)(𝑥‘2)(𝑥‘0)”⟩})
cttg 28907class toTG
df-ttg 28908toTG = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g𝑤)𝑥) = (𝑘( ·𝑠𝑤)(𝑦(-g𝑤)𝑥))}) / 𝑖((𝑤 sSet ⟨(Itv‘ndx), 𝑖⟩) sSet ⟨(LineG‘ndx), (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})⟩))
cee 28929class 𝔼
cbtwn 28930class Btwn
ccgr 28931class Cgr
df-ee 28932𝔼 = (𝑛 ∈ ℕ ↦ (ℝ ↑m (1...𝑛)))
df-btwn 28933 Btwn = {⟨⟨𝑥, 𝑧⟩, 𝑦⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑦𝑖) = (((1 − 𝑡) · (𝑥𝑖)) + (𝑡 · (𝑧𝑖))))}
df-cgr 28934Cgr = {⟨𝑥, 𝑦⟩ ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st𝑥)‘𝑖) − ((2nd𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st𝑦)‘𝑖) − ((2nd𝑦)‘𝑖))↑2))}
ceeng 29018class EEG
df-eeng 29019EEG = (𝑛 ∈ ℕ ↦ ({⟨(Base‘ndx), (𝔼‘𝑛)⟩, ⟨(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥𝑖) − (𝑦𝑖))↑2))⟩} ∪ {⟨(Itv‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ 𝑧 Btwn ⟨𝑥, 𝑦⟩})⟩, ⟨(LineG‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn ⟨𝑥, 𝑦⟩ ∨ 𝑥 Btwn ⟨𝑧, 𝑦⟩ ∨ 𝑦 Btwn ⟨𝑥, 𝑧⟩)})⟩}))
cedgf 29029class .ef
df-edgf 29030.ef = Slot 18
cvtx 29039class Vtx
ciedg 29040class iEdg
df-vtx 29041Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st𝑔), (Base‘𝑔)))
df-iedg 29042iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd𝑔), (.ef‘𝑔)))
cedg 29090class Edg
df-edg 29091Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔))
cuhgr 29099class UHGraph
cushgr 29100class USHGraph
df-uhgr 29101UHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})}
df-ushgr 29102USHGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→(𝒫 𝑣 ∖ {∅})}
cupgr 29123class UPGraph
cumgr 29124class UMGraph
df-upgr 29125UPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}}
df-umgr 29126UMGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
cuspgr 29191class USPGraph
cusgr 29192class USGraph
df-uspgr 29193USPGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) ≤ 2}}
df-usgr 29194USGraph = {𝑔[(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣ (♯‘𝑥) = 2}}
csubgr 29310class SubGraph
df-subgr 29311 SubGraph = {⟨𝑠, 𝑔⟩ ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))}
cfusgr 29359class FinUSGraph
df-fusgr 29360FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin}
cnbgr 29375class NeighbVtx
df-nbgr 29376 NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})
cuvtx 29428class UnivVtx
df-uvtx 29429UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)})
ccplgr 29452class ComplGraph
ccusgr 29453class ComplUSGraph
df-cplgr 29454ComplGraph = {𝑔 ∣ (UnivVtx‘𝑔) = (Vtx‘𝑔)}
df-cusgr 29455ComplUSGraph = (USGraph ∩ ComplGraph)
cvtxdg 29509class VtxDeg
df-vtxdg 29510VtxDeg = (𝑔 ∈ V ↦ (Vtx‘𝑔) / 𝑣(iEdg‘𝑔) / 𝑒(𝑢𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒𝑢 ∈ (𝑒𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) = {𝑢}}))))
crgr 29599class RegGraph
crusgr 29600class RegUSGraph
df-rgr 29601 RegGraph = {⟨𝑔, 𝑘⟩ ∣ (𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ (Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)}
df-rusgr 29602 RegUSGraph = {⟨𝑔, 𝑘⟩ ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)}
cewlks 29639class EdgWalks
cwlks 29640class Walks
cwlkson 29641class WalksOn
df-ewlks 29642 EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0* ↦ {𝑓[(iEdg‘𝑔) / 𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈ (1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓𝑘)))))})
df-wlks 29643Walks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓𝑘))))})
df-wlkson 29644WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)}))
ctrls 29734class Trails
ctrlson 29735class TrailsOn
df-trls 29736Trails = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun 𝑓)})
df-trlson 29737TrailsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(WalksOn‘𝑔)𝑏)𝑝𝑓(Trails‘𝑔)𝑝)}))
cpths 29756class Paths
cspths 29757class SPaths
cpthson 29758class PathsOn
cspthson 29759class SPathsOn
df-pths 29760Paths = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun (𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) = ∅)})
df-spths 29761SPaths = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun 𝑝)})
df-pthson 29762PathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝𝑓(Paths‘𝑔)𝑝)}))
df-spthson 29763SPathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝𝑓(SPaths‘𝑔)𝑝)}))
cclwlks 29816class ClWalks
df-clwlks 29817ClWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))})
ccrcts 29830class Circuits
ccycls 29831class Cycles
df-crcts 29832Circuits = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))})
df-cycls 29833Cycles = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Paths‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))})
cwwlks 29871class WWalks
cwwlksn 29872class WWalksN
cwwlksnon 29873class WWalksNOn
cwwspthsn 29874class WSPathsN
cwwspthsnon 29875class WSPathsNOn
df-wwlks 29876WWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔))})
df-wwlksn 29877 WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)})
df-wwlksnon 29878 WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤𝑛) = 𝑏)}))
df-wspthsn 29879 WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤})
df-wspthsnon 29880 WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤}))
cclwwlk 30026class ClWWalks
df-clwwlk 30027ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈ (0..^((♯‘𝑤) − 1)){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))})
cclwwlkn 30069class ClWWalksN
df-clwwlkn 30070 ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛})
cclwwlknon 30132class ClWWalksNOn
df-clwwlknon 30133ClWWalksNOn = (𝑔 ∈ V ↦ (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣}))
cconngr 30231class ConnGraph
df-conngr 30232ConnGraph = {𝑔[(Vtx‘𝑔) / 𝑣]𝑘𝑣𝑛𝑣𝑓𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝}
ceupth 30242class EulerPaths
df-eupth 30243EulerPaths = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓(Trails‘𝑔)𝑝𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))})
cfrgr 30303class FriendGraph
df-frgr 30304 FriendGraph = {𝑔 ∈ USGraph ∣ [(Vtx‘𝑔) / 𝑣][(Edg‘𝑔) / 𝑒]𝑘𝑣𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒}
ax-flt 30517((𝑁 ∈ (ℤ‘3) ∧ (𝑋 ∈ ℕ ∧ 𝑌 ∈ ℕ ∧ 𝑍 ∈ ℕ)) → ((𝑋𝑁) + (𝑌𝑁)) ≠ (𝑍𝑁))
cplig 30519class Plig
df-plig 30520Plig = {𝑥 ∣ (∀𝑎 𝑥𝑏 𝑥(𝑎𝑏 → ∃!𝑙𝑥 (𝑎𝑙𝑏𝑙)) ∧ ∀𝑙𝑥𝑎 𝑥𝑏 𝑥(𝑎𝑏𝑎𝑙𝑏𝑙) ∧ ∃𝑎 𝑥𝑏 𝑥𝑐 𝑥𝑙𝑥 ¬ (𝑎𝑙𝑏𝑙𝑐𝑙))}
cgr 30534class GrpOp
cgi 30535class GId
cgn 30536class inv
cgs 30537class /𝑔
df-grpo 30538GrpOp = {𝑔 ∣ ∃𝑡(𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥𝑡𝑦𝑡𝑧𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢𝑡𝑥𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦𝑡 (𝑦𝑔𝑥) = 𝑢))}
df-gid 30539GId = (𝑔 ∈ V ↦ (𝑢 ∈ ran 𝑔𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥)))
df-ginv 30540inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔))))
df-gdiv 30541 /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦))))
cablo 30589class AbelOp
df-ablo 30590AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)}
cvc 30603class CVecOLD
df-vc 30604CVecOLD = {⟨𝑔, 𝑠⟩ ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))}
cnv 30629class NrmCVec
cpv 30630class +𝑣
cba 30631class BaseSet
cns 30632class ·𝑠OLD
cn0v 30633class 0vec
cnsb 30634class 𝑣
cnmcv 30635class normCV
cims 30636class IndMet
df-nv 30637NrmCVec = {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ (⟨𝑔, 𝑠⟩ ∈ CVecOLD𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛𝑥) + (𝑛𝑦))))}
df-va 30640 +𝑣 = (1st ∘ 1st )
df-ba 30641BaseSet = (𝑥 ∈ V ↦ ran ( +𝑣𝑥))
df-sm 30642 ·𝑠OLD = (2nd ∘ 1st )
df-0v 306430vec = (GId ∘ +𝑣 )
df-vs 30644𝑣 = ( /𝑔 ∘ +𝑣 )
df-nmcv 30645normCV = 2nd
df-ims 30646IndMet = (𝑢 ∈ NrmCVec ↦ ((normCV𝑢) ∘ ( −𝑣𝑢)))
cdip 30745class ·𝑖OLD
df-dip 30746·𝑖OLD = (𝑢 ∈ NrmCVec ↦ (𝑥 ∈ (BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) · (((normCV𝑢)‘(𝑥( +𝑣𝑢)((i↑𝑘)( ·𝑠OLD𝑢)𝑦)))↑2)) / 4)))
css 30766class SubSp
df-ssp 30767SubSp = (𝑢 ∈ NrmCVec ↦ {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ ( +𝑣𝑢) ∧ ( ·𝑠OLD𝑤) ⊆ ( ·𝑠OLD𝑢) ∧ (normCV𝑤) ⊆ (normCV𝑢))})
clno 30785class LnOp
cnmoo 30786class normOpOLD
cblo 30787class BLnOp
c0o 30788class 0op
df-lno 30789 LnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD𝑢)𝑦)( +𝑣𝑢)𝑧)) = ((𝑥( ·𝑠OLD𝑤)(𝑡𝑦))( +𝑣𝑤)(𝑡𝑧))})
df-nmoo 30790 normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV𝑤)‘(𝑡𝑧)))}, ℝ*, < )))
df-blo 30791 BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞})
df-0o 30792 0op = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ ((BaseSet‘𝑢) × {(0vec𝑤)}))
caj 30793class adj
chmo 30794class HmOp
df-aj 30795adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {⟨𝑡, 𝑠⟩ ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡𝑥)(·𝑖OLD𝑤)𝑦) = (𝑥(·𝑖OLD𝑢)(𝑠𝑦)))})
df-hmo 30796HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡})
ccphlo 30857class CPreHilOLD
df-ph 30858CPreHilOLD = (NrmCVec ∩ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))})
ccbn 30907class CBan
df-cbn 30908CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈ (CMet‘(BaseSet‘𝑢))}
chlo 30930class CHilOLD
df-hlo 30931CHilOLD = (CBan ∩ CPreHilOLD)
The list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here
chba 30964class
cva 30965class +
csm 30966class ·
csp 30967class ·ih
cno 30968class norm
c0v 30969class 0
cmv 30970class
ccauold 30971class Cauchy
chli 30972class 𝑣
csh 30973class S
cch 30974class C
cort 30975class
cph 30976class +
cspn 30977class span
chj 30978class
chsup 30979class
c0h 30980class 0
ccm 30981class 𝐶
cpjh 30982class proj
chos 30983class +op
chot 30984class ·op
chod 30985class op
chfs 30986class +fn
chft 30987class ·fn
ch0o 30988class 0hop
chio 30989class Iop
cnop 30990class normop
ccop 30991class ContOp
clo 30992class LinOp
cbo 30993class BndLinOp
cuo 30994class UniOp
cho 30995class HrmOp
cnmf 30996class normfn
cnl 30997class null
ccnfn 30998class ContFn
clf 30999class LinFn
cado 31000class adj
cbr 31001class bra
ck 31002class ketbra
cleo 31003class op
cei 31004class eigvec
cel 31005class eigval
cspc 31006class Lambda
cst 31007class States
chst 31008class CHStates
ccv 31009class
cat 31010class HAtoms
cmd 31011class 𝑀
cdmd 31012class 𝑀*
df-hnorm 31013norm = (𝑥 ∈ dom dom ·ih ↦ (√‘(𝑥 ·ih 𝑥)))
df-hba 31014 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
df-h0v 310150 = (0vec‘⟨⟨ + , · ⟩, norm⟩)
df-hvsub 31016 = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 + (-1 · 𝑦)))
df-hlim 31017𝑣 = {⟨𝑓, 𝑤⟩ ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑧) − 𝑤)) < 𝑥)}
df-hcau 31018Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ) ∣ ∀𝑥 ∈ ℝ+𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ𝑦)(norm‘((𝑓𝑦) − (𝑓𝑧))) < 𝑥}
ax-hilex 31044 ℋ ∈ V
ax-hfvadd 31045 + :( ℋ × ℋ)⟶ ℋ
ax-hvcom 31046((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
ax-hvass 31047((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)))
ax-hv0cl 310480 ∈ ℋ
ax-hvaddid 31049(𝐴 ∈ ℋ → (𝐴 + 0) = 𝐴)
ax-hfvmul 31050 · :(ℂ × ℋ)⟶ ℋ
ax-hvmulid 31051(𝐴 ∈ ℋ → (1 · 𝐴) = 𝐴)
ax-hvmulass 31052((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)))
ax-hvdistr1 31053((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶)))
ax-hvdistr2 31054((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) · 𝐶) = ((𝐴 · 𝐶) + (𝐵 · 𝐶)))
ax-hvmul0 31055(𝐴 ∈ ℋ → (0 · 𝐴) = 0)
ax-hfi 31124 ·ih :( ℋ × ℋ)⟶ℂ
ax-his1 31127((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵 ·ih 𝐴)))
ax-his2 31128((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶)))
ax-his3 31129((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶)))
ax-his4 31130((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0) → 0 < (𝐴 ·ih 𝐴))
ax-hcompl 31247(𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹𝑣 𝑥)
df-sh 31252 S = { ∈ 𝒫 ℋ ∣ (0 ∧ ( + “ ( × )) ⊆ ∧ ( · “ (ℂ × )) ⊆ )}
df-ch 31266 C = {S ∣ ( ⇝𝑣 “ (m ℕ)) ⊆ }
df-oc 31297⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣ ∀𝑧𝑥 (𝑦 ·ih 𝑧) = 0})
df-ch0 312980 = {0}
df-shs 31353 + = (𝑥S , 𝑦S ↦ ( + “ (𝑥 × 𝑦)))
df-span 31354span = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦S𝑥𝑦})
df-chj 31355 = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦ (⊥‘(⊥‘(𝑥𝑦))))
df-chsup 31356 = (𝑥 ∈ 𝒫 𝒫 ℋ ↦ (⊥‘(⊥‘ 𝑥)))
df-pjh 31440proj = (C ↦ (𝑥 ∈ ℋ ↦ (𝑧𝑦 ∈ (⊥‘)𝑥 = (𝑧 + 𝑦))))
df-cm 31628 𝐶 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥C𝑦C ) ∧ 𝑥 = ((𝑥𝑦) ∨ (𝑥 ∩ (⊥‘𝑦))))}
df-hosum 31775 +op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))))
df-homul 31776 ·op = (𝑓 ∈ ℂ, 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))))
df-hodif 31777op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) − (𝑔𝑥))))
df-hfsum 31778 +fn = (𝑓 ∈ (ℂ ↑m ℋ), 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))))
df-hfmul 31779 ·fn = (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔𝑥))))
df-h0op 31793 0hop = (proj‘0)
df-iop 31794 Iop = (proj‘ ℋ)
df-nmop 31884normop = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑥 = (norm‘(𝑡𝑧)))}, ℝ*, < ))
df-cnop 31885ContOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (norm‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
df-lnop 31886LinOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))}
df-bdop 31887BndLinOp = {𝑡 ∈ LinOp ∣ (normop𝑡) < +∞}
df-unop 31888UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih (𝑡𝑦)) = (𝑥 ·ih 𝑦))}
df-hmop 31889HrmOp = {𝑡 ∈ ( ℋ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ (𝑥 ·ih (𝑡𝑦)) = ((𝑡𝑥) ·ih 𝑦)}
df-nmfn 31890normfn = (𝑡 ∈ (ℂ ↑m ℋ) ↦ sup({𝑥 ∣ ∃𝑧 ∈ ℋ ((norm𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑧)))}, ℝ*, < ))
df-nlfn 31891null = (𝑡 ∈ (ℂ ↑m ℋ) ↦ (𝑡 “ {0}))
df-cnfn 31892ContFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
df-lnfn 31893LinFn = {𝑡 ∈ (ℂ ↑m ℋ) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℋ ∀𝑧 ∈ ℋ (𝑡‘((𝑥 · 𝑦) + 𝑧)) = ((𝑥 · (𝑡𝑦)) + (𝑡𝑧))}
df-adjh 31894adj = {⟨𝑡, 𝑢⟩ ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡𝑥) ·ih 𝑦) = (𝑥 ·ih (𝑢𝑦)))}
df-bra 31895bra = (𝑥 ∈ ℋ ↦ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥)))
df-kb 31896 ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦) · 𝑥)))
df-leop 31897op = {⟨𝑡, 𝑢⟩ ∣ ((𝑢op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢op 𝑡)‘𝑥) ·ih 𝑥))}
df-eigvec 31898eigvec = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ( ℋ ∖ 0) ∣ ∃𝑧 ∈ ℂ (𝑡𝑥) = (𝑧 · 𝑥)})
df-eigval 31899eigval = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ (eigvec‘𝑡) ↦ (((𝑡𝑥) ·ih 𝑥) / ((norm𝑥)↑2))))
df-spec 31900Lambda = (𝑡 ∈ ( ℋ ↑m ℋ) ↦ {𝑥 ∈ ℂ ∣ ¬ (𝑡op (𝑥 ·op ( I ↾ ℋ))): ℋ–1-1→ ℋ})
df-st 32256States = {𝑓 ∈ ((0[,]1) ↑m C ) ∣ ((𝑓‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))))}
df-hst 32257CHStates = {𝑓 ∈ ( ℋ ↑m C ) ∣ ((norm‘(𝑓‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑓𝑥) ·ih (𝑓𝑦)) = 0 ∧ (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)))))}
df-cv 32324 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥C𝑦C ) ∧ (𝑥𝑦 ∧ ¬ ∃𝑧C (𝑥𝑧𝑧𝑦)))}
df-md 32325 𝑀 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥C𝑦C ) ∧ ∀𝑧C (𝑧𝑦 → ((𝑧 𝑥) ∩ 𝑦) = (𝑧 (𝑥𝑦))))}
df-dmd 32326 𝑀* = {⟨𝑥, 𝑦⟩ ∣ ((𝑥C𝑦C ) ∧ ∀𝑧C (𝑦𝑧 → ((𝑧𝑥) ∨ 𝑦) = (𝑧 ∩ (𝑥 𝑦))))}
df-at 32383HAtoms = {𝑥C ∣ 0 𝑥}
The list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here
w2reu 32521wff ∃!𝑥𝐴 , 𝑦𝐵𝜑
df-2reu 32522(∃!𝑥𝐴 , 𝑦𝐵𝜑 ↔ (∃!𝑥𝐴𝑦𝐵 𝜑 ∧ ∃!𝑦𝐵𝑥𝐴 𝜑))
cdp2 32852class 𝐴𝐵
df-dp2 32853𝐴𝐵 = (𝐴 + (𝐵 / 10))
cdp 32869class .
df-dp 32870. = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ 𝑥𝑦)
cxdiv 32898class /𝑒
df-xdiv 32899 /𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ (ℝ ∖ {0}) ↦ (𝑧 ∈ ℝ* (𝑦 ·e 𝑧) = 𝑥))
cmnt 32967class Monot
cmgc 32968class MGalConn
df-mnt 32969Monot = (𝑣 ∈ V, 𝑤 ∈ V ↦ (Base‘𝑣) / 𝑎{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥𝑎𝑦𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓𝑥)(le‘𝑤)(𝑓𝑦))})
df-mgc 32970MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦ (Base‘𝑣) / 𝑎(Base‘𝑤) / 𝑏{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑏m 𝑎) ∧ 𝑔 ∈ (𝑎m 𝑏)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑓𝑥)(le‘𝑤)𝑦𝑥(le‘𝑣)(𝑔𝑦)))})
cchn 32993class ( < Chain𝐴)
df-chn 32994( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
ax-xrssca 33003fld = (Scalar‘ℝ*𝑠)
ax-xrsvsca 33004 ·e = ( ·𝑠 ‘ℝ*𝑠)
comnd 33071class oMnd
cogrp 33072class oGrp
df-omnd 33073oMnd = {𝑔 ∈ Mnd ∣ [(Base‘𝑔) / 𝑣][(+g𝑔) / 𝑝][(le‘𝑔) / 𝑙](𝑔 ∈ Toset ∧ ∀𝑎𝑣𝑏𝑣𝑐𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))}
df-ogrp 33074oGrp = (Grp ∩ oMnd)
ctocyc 33123class toCyc
df-tocyc 33124toCyc = (𝑑 ∈ V ↦ (𝑤 ∈ {𝑢 ∈ Word 𝑑𝑢:dom 𝑢1-1𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
csgns 33175class sgns
df-sgns 33176sgns = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g𝑟), 0, if((0g𝑟)(lt‘𝑟)𝑥, 1, -1))))
cinftm 33180class
carchi 33181class Archi
df-inftm 33182⋘ = (𝑤 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g𝑤)𝑥)(lt‘𝑤)𝑦))})
df-archi 33183Archi = {𝑤 ∣ (⋘‘𝑤) = ∅}
cslmd 33203class SLMod
df-slmd 33204SLMod = {𝑔 ∈ CMnd ∣ [(Base‘𝑔) / 𝑣][(+g𝑔) / 𝑎][( ·𝑠𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞𝑘𝑟𝑘𝑥𝑣𝑤𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r𝑓)𝑠𝑤) = 𝑤 ∧ ((0g𝑓)𝑠𝑤) = (0g𝑔))))}
cerl 33254class ~RL
crloc 33255class RLocal
df-erl 33256 ~RL = (𝑟 ∈ V, 𝑠 ∈ V ↦ (.r𝑟) / 𝑥((Base‘𝑟) × 𝑠) / 𝑤{⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ∃𝑡𝑠 (𝑡𝑥(((1st𝑎)𝑥(2nd𝑏))(-g𝑟)((1st𝑏)𝑥(2nd𝑎)))) = (0g𝑟))})
df-rloc 33257 RLocal = (𝑟 ∈ V, 𝑠 ∈ V ↦ (.r𝑟) / 𝑥((Base‘𝑟) × 𝑠) / 𝑤((({⟨(Base‘ndx), 𝑤⟩, ⟨(+g‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨(((1st𝑎)𝑥(2nd𝑏))(+g𝑟)((1st𝑏)𝑥(2nd𝑎))), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ ⟨((1st𝑎)𝑥(1st𝑏)), ((2nd𝑎)𝑥(2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑟)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎𝑤 ↦ ⟨(𝑘( ·𝑠𝑟)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑤𝑏𝑤) ∧ ((1st𝑎)𝑥(2nd𝑏))(le‘𝑟)((1st𝑏)𝑥(2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑤, 𝑏𝑤 ↦ (((1st𝑎)𝑥(2nd𝑏))(dist‘𝑟)((1st𝑏)𝑥(2nd𝑎))))⟩}) /s (𝑟 ~RL 𝑠)))
ceuf 33286class EuclF
df-euf 33287EuclF = Slot 21
cedom 33290class EDomn
df-edom 33291EDomn = {𝑑 ∈ IDomn ∣ [(EuclF‘𝑑) / 𝑒][(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g𝑑)})) ⊆ (0[,)+∞) ∧ ∀𝑎𝑣𝑏 ∈ (𝑣 ∖ {(0g𝑑)})∃𝑞𝑣𝑟𝑣 (𝑎 = ((𝑏(.r𝑑)𝑞)(+g𝑑)𝑟) ∧ (𝑟 = (0g𝑑) ∨ (𝑒𝑟) < (𝑒𝑏))))}
cfrac 33298class Frac
df-frac 33299 Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟)))
cfldgen 33306class fldGen
df-fldgen 33307 fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ {𝑎 ∈ (SubDRing‘𝑓) ∣ 𝑠𝑎})
corng 33319class oRing
cofld 33320class oField
df-orng 33321oRing = {𝑟 ∈ (Ring ∩ oGrp) ∣ [(Base‘𝑟) / 𝑣][(0g𝑟) / 𝑧][(.r𝑟) / 𝑡][(le‘𝑟) / 𝑙]𝑎𝑣𝑏𝑣 ((𝑧𝑙𝑎𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))}
df-ofld 33322oField = (Field ∩ oRing)
cresv 33344class v
df-resv 33345v = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet ⟨(Scalar‘ndx), ((Scalar‘𝑤) ↾s 𝑥)⟩)))
cprmidl 33457class PrmIdeal
df-prmidl 33458PrmIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(.r𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
cmxidl 33481class MaxIdeal
df-mxidl 33482MaxIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = (Base‘𝑟))))})
cidlsrg 33522class IDLsrg
df-idlsrg 33523IDLsrg = (𝑟 ∈ V ↦ (LIdeal‘𝑟) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (LSSum‘𝑟)⟩, ⟨(.r‘ndx), (𝑖𝑏, 𝑗𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝑏 ↦ {𝑗𝑏 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝑏𝑖𝑗)}⟩}))
cufd 33560class UFD
df-ufd 33561UFD = {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖ {{(0g𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅}
cldim 33640class dim
df-dim 33641dim = (𝑓 ∈ V ↦ (♯ “ (LBasis‘𝑓)))
cfldext 33680class /FldExt
cfinext 33681class /FinExt
calgext 33682class /AlgExt
cextdg 33683class [:]
df-fldext 33684/FldExt = {⟨𝑒, 𝑓⟩ ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))}
df-extdg 33685[:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦ (dim‘((subringAlg ‘𝑒)‘(Base‘𝑓))))
df-finext 33686/FinExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈ ℕ0)}
df-algext 33687/AlgExt = {⟨𝑒, 𝑓⟩ ∣ (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1𝑓)(((eval1𝑓)‘𝑝)‘𝑥) = (0g𝑒))}
cirng 33712class IntgRing
df-irng 33713 IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ 𝑓 ∈ (Monic1p‘(𝑟s 𝑠))(((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g𝑟)}))
cminply 33721class minPoly
df-minply 33722 minPoly = (𝑒 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒s 𝑓))‘{𝑝 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑝)‘𝑥) = (0g𝑒)})))
cconstr 33749class Constr
df-constr 33750Constr = (rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1}) “ ω)
csmat 33768class subMat1
df-smat 33769subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ ⟨if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))⟩))))
clmat 33786class litMat
df-lmat 33787litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1))))
ccref 33817class CovHasRef𝐴
df-cref 33818CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗( 𝑗 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑗𝐴)𝑧Ref𝑦)}
cldlf 33827class Ldlf
df-ldlf 33828Ldlf = CovHasRef{𝑥𝑥 ≼ ω}
cpcmp 33830class Paracomp
df-pcmp 33831Paracomp = {𝑗𝑗 ∈ CovHasRef(LocFin‘𝑗)}
crspec 33837class Spec
df-rspec 33838Spec = (𝑟 ∈ Ring ↦ ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟)))
cmetid 33861class ~Met
cpstm 33862class pstoMet
df-metid 33863~Met = (𝑑 ran PsMet ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ dom dom 𝑑𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)})
df-pstm 33864pstoMet = (𝑑 ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met𝑑)) ↦ {𝑧 ∣ ∃𝑥𝑎𝑦𝑏 𝑧 = (𝑥𝑑𝑦)}))
chcmp 33931class HCmp
df-hcmp 33932HCmp = {⟨𝑢, 𝑤⟩ ∣ ((𝑢 ran UnifOn ∧ 𝑤 ∈ CUnifSp) ∧ ((UnifSt‘𝑤) ↾t dom 𝑢) = 𝑢 ∧ ((cls‘(TopOpen‘𝑤))‘dom 𝑢) = (Base‘𝑤))}
cqqh 33947class ℚHom
df-qqh 33948ℚHom = (𝑟 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ ((ℤRHom‘𝑟) “ (Unit‘𝑟)) ↦ ⟨(𝑥 / 𝑦), (((ℤRHom‘𝑟)‘𝑥)(/r𝑟)((ℤRHom‘𝑟)‘𝑦))⟩))
crrh 33970class ℝHom
crrext 33971class ℝExt
df-rrh 33972ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran (,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟)))
df-rrext 33976 ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣ (((ℤMod‘𝑟) ∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) = (metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))}
cxrh 33993class *Hom
df-xrh 33994*Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))))
cmntop 33999class ManTop
df-mntop 34000ManTop = {⟨𝑛, 𝑗⟩ ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω ∧ 𝑗 ∈ Haus ∧ 𝑗 ∈ Locally [(TopOpen‘(𝔼hil𝑛))] ≃ ))}
cind 34005class 𝟭
df-ind 34006𝟭 = (𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥𝑜 ↦ if(𝑥𝑎, 1, 0))))
cesum 34022class Σ*𝑘𝐴𝐵
df-esum 34023Σ*𝑘𝐴𝐵 = ((ℝ*𝑠s (0[,]+∞)) tsums (𝑘𝐴𝐵))
cofc 34090class f/c 𝑅
df-ofc 34091f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓𝑥)𝑅𝑐)))
csiga 34103class sigAlgebra
df-siga 34104sigAlgebra = (𝑜 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜𝑠 ∧ ∀𝑥𝑠 (𝑜𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → 𝑥𝑠)))})
csigagen 34133class sigaGen
df-sigagen 34134sigaGen = (𝑥 ∈ V ↦ {𝑠 ∈ (sigAlgebra‘ 𝑥) ∣ 𝑥𝑠})
cbrsiga 34176class 𝔅
df-brsiga 34177𝔅 = (sigaGen‘(topGen‘ran (,)))
csx 34183class ×s
df-sx 34184 ×s = (𝑠 ∈ V, 𝑡 ∈ V ↦ (sigaGen‘ran (𝑥𝑠, 𝑦𝑡 ↦ (𝑥 × 𝑦))))
cmeas 34190class measures
df-meas 34191measures = (𝑠 ran sigAlgebra ↦ {𝑚 ∣ (𝑚:𝑠⟶(0[,]+∞) ∧ (𝑚‘∅) = 0 ∧ ∀𝑥 ∈ 𝒫 𝑠((𝑥 ≼ ω ∧ Disj 𝑦𝑥 𝑦) → (𝑚 𝑥) = Σ*𝑦𝑥(𝑚𝑦)))})
cdde 34227class δ
df-dde 34228δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0))
cae 34232class a.e.
cfae 34233class ~ a.e.
df-ae 34234a.e. = {⟨𝑎, 𝑚⟩ ∣ (𝑚‘( dom 𝑚𝑎)) = 0}
df-fae 34240~ a.e. = (𝑟 ∈ V, 𝑚 ran measures ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚)})
cmbfm 34244class MblFnM
df-mbfm 34245MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
coms 34287class toOMeas
df-oms 34288toOMeas = (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < )))
ccarsg 34297class toCaraSiga
df-carsg 34298toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)})
citgm 34323class itgm
csitm 34324class sitm
csitg 34325class sitg
df-sitg 34326sitg = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)))))
df-sitm 34327sitm = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑤)𝑔))))
df-itgm 34349itgm = (𝑤 ∈ V, 𝑚 ran measures ↦ (((metUnif‘(𝑤sitm𝑚))CnExt(UnifSt‘𝑤))‘(𝑤sitg𝑚)))
csseq 34379class seqstr
df-sseq 34380seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})))))
cfib 34392class Fibci
df-fib 34393Fibci = (⟨“01”⟩seqstr(𝑤 ∈ (Word ℕ0 ∩ (♯ “ (ℤ‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1)))))
cprb 34403class Prob
df-prob 34404Prob = {𝑝 ran measures ∣ (𝑝 dom 𝑝) = 1}
ccprob 34427class cprob
df-cndprob 34428cprob = (𝑝 ∈ Prob ↦ (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎𝑏)) / (𝑝𝑏))))
crrv 34436class rRndVar
df-rrv 34437rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅))
corvc 34451class RV/𝑐𝑅
df-orvc 34452RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (𝑥 “ {𝑦𝑦𝑅𝑎}))
crepr 34616class repr
df-repr 34617repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐𝑎) = 𝑚}))
cvts 34643class vts
df-vts 34644vts = (𝑙 ∈ (ℂ ↑m ℕ), 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙𝑎) · (exp‘((i · (2 · π)) · (𝑎 · 𝑥))))))
ax-hgt749 34652𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((10↑27) ≤ 𝑛 → ∃ ∈ ((0[,)+∞) ↑m ℕ)∃𝑘 ∈ ((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘𝑚) ≤ (1.079955) ∧ ∀𝑚 ∈ ℕ (𝑚) ≤ (1.414) ∧ ((0.00042248) · (𝑛↑2)) ≤ ∫(0(,)1)(((((Λ ∘f · )vts𝑛)‘𝑥) · ((((Λ ∘f · 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i · (2 · π)) · (-𝑛 · 𝑥)))) d𝑥))
ax-ros335 34653𝑥 ∈ ℝ+ (ψ‘𝑥) < ((1.03883) · 𝑥)
ax-ros336 34654𝑥 ∈ ℝ+ ((ψ‘𝑥) − (θ‘𝑥)) < ((1.4262) · (√‘𝑥))
cstrkg2d 34672class TarskiG2D
df-trkg2d 34673TarskiG2D = {𝑓[(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥𝑝𝑦𝑝𝑧𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥𝑝𝑦𝑝𝑧𝑝𝑢𝑝𝑣𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))}
cafs 34677class AFS
df-afs 34678AFS = (𝑔 ∈ TarskiG ↦ {⟨𝑒, 𝑓⟩ ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / ][(Itv‘𝑔) / 𝑖]𝑎𝑝𝑏𝑝𝑐𝑝𝑑𝑝𝑥𝑝𝑦𝑝𝑧𝑝𝑤𝑝 (𝑒 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑓 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 ∈ (𝑎𝑖𝑐) ∧ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ((𝑎𝑏) = (𝑥𝑦) ∧ (𝑏𝑐) = (𝑦𝑧)) ∧ ((𝑎𝑑) = (𝑥𝑤) ∧ (𝑏𝑑) = (𝑦𝑤))))})
clpad 34682class leftpad
df-lpad 34683 leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦ (((0..^(𝑙 − (♯‘𝑤))) × {𝑐}) ++ 𝑤)))
w-bnj17 34693wff (𝜑𝜓𝜒𝜃)
df-bnj17 34694((𝜑𝜓𝜒𝜃) ↔ ((𝜑𝜓𝜒) ∧ 𝜃))
c-bnj14 34695class pred(𝑋, 𝐴, 𝑅)
df-bnj14 34696 pred(𝑋, 𝐴, 𝑅) = {𝑦𝐴𝑦𝑅𝑋}
w-bnj13 34697wff 𝑅 Se 𝐴
df-bnj13 34698(𝑅 Se 𝐴 ↔ ∀𝑥𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V)
w-bnj15 34699wff 𝑅 FrSe 𝐴
df-bnj15 34700(𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴𝑅 Se 𝐴))
c-bnj18 34701class trCl(𝑋, 𝐴, 𝑅)
df-bnj18 34702 trCl(𝑋, 𝐴, 𝑅) = 𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖ {∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))} 𝑖 ∈ dom 𝑓(𝑓𝑖)
w-bnj19 34703wff TrFo(𝐵, 𝐴, 𝑅)
df-bnj19 34704( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑥𝐵 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐵)
cacycgr 35140class AcyclicGraph
df-acycgr 35141AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓𝑝(𝑓(Cycles‘𝑔)𝑝𝑓 ≠ ∅)}
ax-7d 35157(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
ax-8d 35158(𝑥 = 𝑦 → (𝑥 = 𝑧𝑦 = 𝑧))
ax-9d1 35159 ¬ ∀𝑥 ¬ 𝑥 = 𝑥
ax-9d2 35160 ¬ ∀𝑥 ¬ 𝑥 = 𝑦
ax-10d 35161(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
ax-11d 35162(𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
cretr 35215class Retr
df-retr 35216 Retr = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟𝑠)(𝑗 Htpy 𝑗)( I ↾ 𝑗)) ≠ ∅})
cpconn 35217class PConn
csconn 35218class SConn
df-pconn 35219PConn = {𝑗 ∈ Top ∣ ∀𝑥 𝑗𝑦 𝑗𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}
df-sconn 35220SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph𝑗)((0[,]1) × {(𝑓‘0)}))}
ccvm 35253class CovMap
df-cvm 35254 CovMap = (𝑐 ∈ Top, 𝑗 ∈ Top ↦ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 𝑗𝑘𝑗 (𝑥𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})( 𝑠 = (𝑓𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝑓𝑢) ∈ ((𝑐t 𝑢)Homeo(𝑗t 𝑘)))))})
cgoe 35331class 𝑔
cgna 35332class 𝑔
cgol 35333class 𝑔𝑁𝑈
csat 35334class Sat
cfmla 35335class Fmla
csate 35336class Sat
cprv 35337class
df-goel 35338𝑔 = (𝑥 ∈ (ω × ω) ↦ ⟨∅, 𝑥⟩)
df-gona 35339𝑔 = (𝑥 ∈ (V × V) ↦ ⟨1o, 𝑥⟩)
df-goal 35340𝑔𝑁𝑈 = ⟨2o, ⟨𝑁, 𝑈⟩⟩
df-sat 35341 Sat = (𝑚 ∈ V, 𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢𝑓 (∃𝑣𝑓 (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑚m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚m ω) ∣ ∀𝑧𝑚 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})), {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚m ω) ∣ (𝑎𝑖)𝑒(𝑎𝑗)})}) ↾ suc ω))
df-sate 35342 Sat = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢))
df-fmla 35343Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat ∅)‘𝑛))
df-prv 35344⊧ = {⟨𝑚, 𝑢⟩ ∣ (𝑚 Sat 𝑢) = (𝑚m ω)}
cgon 35430class ¬𝑔𝑈
cgoa 35431class 𝑔
cgoi 35432class 𝑔
cgoo 35433class 𝑔
cgob 35434class 𝑔
cgoq 35435class =𝑔
cgox 35436class 𝑔𝑁𝑈
df-gonot 35437¬𝑔𝑈 = (𝑈𝑔𝑈)
df-goan 35438𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ¬𝑔(𝑢𝑔𝑣))
df-goim 35439𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢𝑔¬𝑔𝑣))
df-goor 35440𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (¬𝑔𝑢𝑔 𝑣))
df-gobi 35441𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢𝑔 𝑣)∧𝑔(𝑣𝑔 𝑢)))
df-goeq 35442=𝑔 = (𝑢 ∈ ω, 𝑣 ∈ ω ↦ suc (𝑢𝑣) / 𝑤𝑔𝑤((𝑤𝑔𝑢) ↔𝑔 (𝑤𝑔𝑣)))
df-goex 35443𝑔𝑁𝑈 = ¬𝑔𝑔𝑁¬𝑔𝑈
cgze 35444class AxExt
cgzr 35445class AxRep
cgzp 35446class AxPow
cgzu 35447class AxUn
cgzg 35448class AxReg
cgzi 35449class AxInf
cgzf 35450class ZF
df-gzext 35451AxExt = (∀𝑔2o((2o𝑔∅) ↔𝑔 (2o𝑔1o)) →𝑔 (∅=𝑔1o))
df-gzrep 35452AxRep = (𝑢 ∈ (Fmla‘ω) ↦ (∀𝑔3o𝑔1o𝑔2o(∀𝑔1o𝑢𝑔 (2o=𝑔1o)) →𝑔𝑔1o𝑔2o((2o𝑔1o) ↔𝑔𝑔3o((3o𝑔∅)∧𝑔𝑔1o𝑢))))
df-gzpow 35453AxPow = ∃𝑔1o𝑔2o(∀𝑔1o((1o𝑔2o) ↔𝑔 (1o𝑔∅)) →𝑔 (2o𝑔1o))
df-gzun 35454AxUn = ∃𝑔1o𝑔2o(∃𝑔1o((2o𝑔1o)∧𝑔(1o𝑔∅)) →𝑔 (2o𝑔1o))
df-gzreg 35455AxReg = (∃𝑔1o(1o𝑔∅) →𝑔𝑔1o((1o𝑔∅)∧𝑔𝑔2o((2o𝑔1o) →𝑔 ¬𝑔(2o𝑔∅))))
df-gzinf 35456AxInf = ∃𝑔1o((∅∈𝑔1o)∧𝑔𝑔2o((2o𝑔1o) →𝑔𝑔∅((2o𝑔∅)∧𝑔(∅∈𝑔1o))))
df-gzf 35457ZF = {𝑚 ∣ ((Tr 𝑚𝑚⊧AxExt ∧ 𝑚⊧AxPow) ∧ (𝑚⊧AxUn ∧ 𝑚⊧AxReg ∧ 𝑚⊧AxInf) ∧ ∀𝑢 ∈ (Fmla‘ω)𝑚⊧(AxRep‘𝑢))}
cmcn 35458class mCN
cmvar 35459class mVR
cmty 35460class mType
cmvt 35461class mVT
cmtc 35462class mTC
cmax 35463class mAx
cmrex 35464class mREx
cmex 35465class mEx
cmdv 35466class mDV
cmvrs 35467class mVars
cmrsub 35468class mRSubst
cmsub 35469class mSubst
cmvh 35470class mVH
cmpst 35471class mPreSt
cmsr 35472class mStRed
cmsta 35473class mStat
cmfs 35474class mFS
cmcls 35475class mCls
cmpps 35476class mPPSt
cmthm 35477class mThm
df-mcn 35478mCN = Slot 1
df-mvar 35479mVR = Slot 2
df-mty 35480mType = Slot 3
df-mtc 35481mTC = Slot 4
df-mmax 35482mAx = Slot 5
df-mvt 35483mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡))
df-mrex 35484mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡)))
df-mex 35485mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡)))
df-mdv 35486mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ))
df-mvrs 35487mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd𝑒) ∩ (mVR‘𝑡))))
df-mrsub 35488mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg ((𝑣 ∈ ((mCN‘𝑡) ∪ (mVR‘𝑡)) ↦ if(𝑣 ∈ dom 𝑓, (𝑓𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)))))
df-msub 35489mSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ ⟨(1st𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd𝑒))⟩)))
df-mvh 35490mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩))
df-mpst 35491mPreSt = (𝑡 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ 𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) × (mEx‘𝑡)))
df-msr 35492mStRed = (𝑡 ∈ V ↦ (𝑠 ∈ (mPreSt‘𝑡) ↦ (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ ((mVars‘𝑡) “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
df-msta 35493mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡))
df-mfs 35494mFS = {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ ((mType‘𝑡) “ {𝑣}) ∈ Fin))}
df-mcls 35495mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑐 ∣ (( ∪ ran (mVH‘𝑡)) ⊆ 𝑐 ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠𝑝) ∈ 𝑐)))}))
df-mpps 35496mPPSt = (𝑡 ∈ V ↦ {⟨⟨𝑑, ⟩, 𝑎⟩ ∣ (⟨𝑑, , 𝑎⟩ ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)))})
df-mthm 35497mThm = (𝑡 ∈ V ↦ ((mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡))))
cm0s 35583class m0St
cmsa 35584class mSA
cmwgfs 35585class mWGFS
cmsy 35586class mSyn
cmesy 35587class mESyn
cmgfs 35588class mGFS
cmtree 35589class mTree
cmst 35590class mST
cmsax 35591class mSAX
cmufs 35592class mUFS
df-m0s 35593m0St = (𝑎 ∈ V ↦ ⟨∅, ∅, 𝑎⟩)
df-msa 35594mSA = (𝑡 ∈ V ↦ {𝑎 ∈ (mEx‘𝑡) ∣ ((m0St‘𝑎) ∈ (mAx‘𝑡) ∧ (1st𝑎) ∈ (mVT‘𝑡) ∧ Fun ((2nd𝑎) ↾ (mVR‘𝑡)))})
df-mwgfs 35595mWGFS = {𝑡 ∈ mFS ∣ ∀𝑑𝑎((⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) ∧ (1st𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))}
df-msyn 35596mSyn = Slot 6
df-mesyn 35597mESyn = (𝑡 ∈ V ↦ (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒)))
df-mgfs 35598mGFS = {𝑡 ∈ mWGFS ∣ ((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ∀𝑒 ∈ ( ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))}
df-mtree 35599mTree = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ∈ 𝒫 (mEx‘𝑡) ↦ {𝑟 ∣ (∀𝑒 ∈ ran (mVH‘𝑡)𝑒𝑟⟨(m0St‘𝑒), ∅⟩ ∧ ∀𝑒 𝑒𝑟⟨((mStRed‘𝑡)‘⟨𝑑, , 𝑒⟩), ∅⟩ ∧ ∀𝑚𝑜𝑝(⟨𝑚, 𝑜, 𝑝⟩ ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ((mVars‘𝑡) “ (𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠𝑒)})) ⊆ 𝑟)))}))
df-mst 35600mST = (𝑡 ∈ V ↦ ((∅(mTree‘𝑡)∅) ↾ ((mEx‘𝑡) ↾ (mVT‘𝑡))))
df-msax 35601mSAX = (𝑡 ∈ V ↦ (𝑝 ∈ (mSA‘𝑡) ↦ ((mVH‘𝑡) “ ((mVars‘𝑡)‘𝑝))))
df-mufs 35602mUFS = {𝑡 ∈ mGFS ∣ Fun (mST‘𝑡)}
cmuv 35603class mUV
cmvl 35604class mVL
cmvsb 35605class mVSubst
cmfsh 35606class mFresh
cmfr 35607class mFRel
cmevl 35608class mEval
cmdl 35609class mMdl
cusyn 35610class mUSyn
cgmdl 35611class mGMdl
cmitp 35612class mItp
cmfitp 35613class mFromItp
df-muv 35614mUV = Slot 7
df-mfsh 35615mFresh = Slot 19
df-mevl 35616mEval = Slot 20
df-mvl 35617mVL = (𝑡 ∈ V ↦ X𝑣 ∈ (mVR‘𝑡)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑣)}))
df-mvsb 35618mVSubst = (𝑡 ∈ V ↦ {⟨⟨𝑠, 𝑚⟩, 𝑥⟩ ∣ ((𝑠 ∈ ran (mSubst‘𝑡) ∧ 𝑚 ∈ (mVL‘𝑡)) ∧ ∀𝑣 ∈ (mVR‘𝑡)𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) ∧ 𝑥 = (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)))))})
df-mfrel 35619mFRel = (𝑡 ∈ V ↦ {𝑟 ∈ 𝒫 ((mUV‘𝑡) × (mUV‘𝑡)) ∣ (𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))})
df-mdl 35620mMdl = {𝑡 ∈ mFS ∣ [(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚𝑣 ((∀𝑒𝑥 (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑢 “ {(1st𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑦)⟩𝑛(𝑚𝑦) ∧ ∀𝑑𝑎(⟨𝑑, , 𝑎⟩ ∈ (mAx‘𝑡) → ((∀𝑦𝑧(𝑦𝑑𝑧 → (𝑚𝑦)𝑓(𝑚𝑧)) ∧ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(⟨𝑠, 𝑚⟩(mVSubst‘𝑡)𝑦 → (𝑛 “ {⟨𝑚, (𝑠𝑒)⟩}) = (𝑛 “ {⟨𝑦, 𝑒⟩})) ∧ ∀𝑝𝑣𝑒𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {⟨𝑚, 𝑒⟩}) = (𝑛 “ {⟨𝑝, 𝑒⟩})) ∧ ∀𝑦𝑢𝑒𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {⟨𝑚, 𝑒⟩}) ⊆ (𝑓 “ {𝑦})))))}
df-musyn 35621mUSyn = (𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦ ⟨((mSyn‘𝑡)‘(1st𝑣)), (2nd𝑣)⟩))
df-gmdl 35622mGMdl = {𝑡 ∈ (mGFS ∩ mMdl) ∣ (∀𝑐 ∈ (mTC‘𝑡)((mUV‘𝑡) “ {𝑐}) ⊆ ((mUV‘𝑡) “ {((mSyn‘𝑡)‘𝑐)}) ∧ ∀𝑣 ∈ (mUV‘𝑐)∀𝑤 ∈ (mUV‘𝑐)(𝑣(mFresh‘𝑡)𝑤𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) ∧ ∀𝑚 ∈ (mVL‘𝑡)∀𝑒 ∈ (mEx‘𝑡)((mEval‘𝑡) “ {⟨𝑚, 𝑒⟩}) = (((mEval‘𝑡) “ {⟨𝑚, ((mESyn‘𝑡)‘𝑒)⟩}) ∩ ((mUV‘𝑡) “ {(1st𝑒)})))}
df-mitp 35623mItp = (𝑡 ∈ V ↦ (𝑎 ∈ (mSA‘𝑡) ↦ (𝑔X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) ↦ (℩𝑥𝑚 ∈ (mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎))))))
df-mfitp 35624mFromItp = (𝑡 ∈ V ↦ (𝑓X𝑎 ∈ (mSA‘𝑡)(((mUV‘𝑡) “ {((1st𝑡)‘𝑎)}) ↑m X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (𝑛 ∈ ((mUV‘𝑡) ↑pm ((mVL‘𝑡) × (mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)⟨𝑚, ((mVH‘𝑡)‘𝑣)⟩𝑛(𝑚𝑣) ∧ ∀𝑒𝑎𝑔(𝑒(mST‘𝑡)⟨𝑎, 𝑔⟩ → ⟨𝑚, 𝑒𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {⟨𝑚, 𝑒⟩}) = ((𝑛 “ {⟨𝑚, ((mESyn‘𝑡)‘𝑒)⟩}) ∩ ((mUV‘𝑡) “ {(1st𝑒)}))))))
ccpms 35625class cplMetSp
chlb 35626class HomLimB
chlim 35627class HomLim
cpfl 35628class polyFld
csf1 35629class splitFld1
csf 35630class splitFld
cpsl 35631class polySplitLim
df-cplmet 35632 cplMetSp = (𝑤 ∈ V ↦ ((𝑤s ℕ) ↾s (Cau‘(dist‘𝑤))) / 𝑟(Base‘𝑟) / 𝑣{⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ (𝑓 ↾ (ℤ𝑗)):(ℤ𝑗)⟶((𝑔𝑗)(ball‘(dist‘𝑤))𝑥))} / 𝑒((𝑟 /s 𝑒) sSet {⟨(dist‘ndx), {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ∃𝑝𝑣𝑞𝑣 ((𝑥 = [𝑝]𝑒𝑦 = [𝑞]𝑒) ∧ (𝑝f (dist‘𝑟)𝑞) ⇝ 𝑧)}⟩}))
df-homlimb 35633 HomLimB = (𝑓 ∈ V ↦ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓𝑛)) / 𝑣 {𝑠 ∣ (𝑠 Er 𝑣 ∧ (𝑥𝑣 ↦ ⟨((1st𝑥) + 1), ((𝑓‘(1st𝑥))‘(2nd𝑥))⟩) ⊆ 𝑠)} / 𝑒⟨(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓𝑛) ↦ [⟨𝑛, 𝑥⟩]𝑒))⟩)
df-homlim 35634 HomLim = (𝑟 ∈ V, 𝑓 ∈ V ↦ ( HomLimB ‘𝑓) / 𝑒(1st𝑒) / 𝑣(2nd𝑒) / 𝑔({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔𝑛), 𝑦 ∈ dom (𝑔𝑛) ↦ ⟨⟨((𝑔𝑛)‘𝑥), ((𝑔𝑛)‘𝑦)⟩, ((𝑔𝑛)‘(𝑥(+g‘(𝑟𝑛))𝑦))⟩)⟩, ⟨(.r‘ndx), 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔𝑛), 𝑦 ∈ dom (𝑔𝑛) ↦ ⟨⟨((𝑔𝑛)‘𝑥), ((𝑔𝑛)‘𝑦)⟩, ((𝑔𝑛)‘(𝑥(.r‘(𝑟𝑛))𝑦))⟩)⟩} ∪ {⟨(TopOpen‘ndx), {𝑠 ∈ 𝒫 𝑣 ∣ ∀𝑛 ∈ ℕ ((𝑔𝑛) “ 𝑠) ∈ (TopOpen‘(𝑟𝑛))}⟩, ⟨(dist‘ndx), 𝑛 ∈ ℕ ran (𝑥 ∈ dom ((𝑔𝑛)‘𝑛), 𝑦 ∈ dom ((𝑔𝑛)‘𝑛) ↦ ⟨⟨((𝑔𝑛)‘𝑥), ((𝑔𝑛)‘𝑦)⟩, (𝑥(dist‘(𝑟𝑛))𝑦)⟩)⟩, ⟨(le‘ndx), 𝑛 ∈ ℕ ((𝑔𝑛) ∘ ((le‘(𝑟𝑛)) ∘ (𝑔𝑛)))⟩}))
df-plfl 35635 polyFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (Poly1𝑟) / 𝑠((RSpan‘𝑠)‘{𝑝}) / 𝑖(𝑐 ∈ (Base‘𝑟) ↦ [(𝑐( ·𝑠𝑠)(1r𝑠))](𝑠 ~QG 𝑖)) / 𝑓(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡((𝑡 toNrmGrp (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟))) sSet ⟨(le‘ndx), (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞)) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))⟩), 𝑓⟩)
df-sfl1 35642 splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))))
df-sfl 35643 splitFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (℩𝑥𝑓(𝑓 Isom < , (lt‘𝑟)((1...(♯‘𝑝)), 𝑝) ∧ 𝑥 = (seq0((𝑒 ∈ V, 𝑔 ∈ V ↦ ((𝑟 splitFld1 𝑒)‘𝑔)), (𝑓 ∪ {⟨0, ⟨𝑟, ( I ↾ (Base‘𝑟))⟩⟩}))‘(♯‘𝑝)))))
df-psl 35644 polySplitLim = (𝑟 ∈ V, 𝑝 ∈ ((𝒫 (Base‘𝑟) ∩ Fin) ↑m ℕ) ↦ (1st ∘ seq0((𝑔 ∈ V, 𝑞 ∈ V ↦ (1st𝑔) / 𝑒(1st𝑒) / 𝑠(𝑠 splitFld ran (𝑥𝑞 ↦ (𝑥 ∘ (2nd𝑔)))) / 𝑓𝑓, ((2nd𝑔) ∘ (2nd𝑓))⟩), (𝑝 ∪ {⟨0, ⟨⟨𝑟, ∅⟩, ( I ↾ (Base‘𝑟))⟩⟩}))) / 𝑓((1st ∘ (𝑓 shift 1)) HomLim (2nd𝑓)))
czr 35645class ZRing
cgf 35646class GF
cgfo 35647class GF
ceqp 35648class ~Qp
crqp 35649class /Qp
cqp 35650class Qp
czp 35651class Zp
cqpa 35652class _Qp
ccp 35653class Cp
df-zrng 35654ZRing = (𝑟 ∈ V ↦ (𝑟 IntgRing ran (ℤRHom‘𝑟)))
df-gf 35655 GF = (𝑝 ∈ ℙ, 𝑛 ∈ ℕ ↦ (ℤ/nℤ‘𝑝) / 𝑟(1st ‘(𝑟 splitFld {(Poly1𝑟) / 𝑠(var1𝑟) / 𝑥(((𝑝𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g𝑠)𝑥)})))
df-gfoo 35656GF = (𝑝 ∈ ℙ ↦ (ℤ/nℤ‘𝑝) / 𝑟(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {(Poly1𝑟) / 𝑠(var1𝑟) / 𝑥(((𝑝𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g𝑠)𝑥)})))
df-eqp 35657~Qp = (𝑝 ∈ ℙ ↦ {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑m ℤ) ∧ ∀𝑛 ∈ ℤ Σ𝑘 ∈ (ℤ‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)})
df-rqp 35658/Qp = (𝑝 ∈ ℙ ↦ (~Qp ∩ {𝑓 ∈ (ℤ ↑m ℤ) ∣ ∃𝑥 ∈ ran ℤ(𝑓 “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑦(𝑦 × (𝑦 ∩ (ℤ ↑m (0...(𝑝 − 1)))))))
df-qp 35659Qp = (𝑝 ∈ ℙ ↦ { ∈ (ℤ ↑m (0...(𝑝 − 1))) ∣ ∃𝑥 ∈ ran ℤ( “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑏(({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ ((/Qp‘𝑝)‘(𝑓f + 𝑔)))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ ((/Qp‘𝑝)‘(𝑛 ∈ ℤ ↦ Σ𝑘 ∈ ℤ ((𝑓𝑘) · (𝑔‘(𝑛𝑘))))))⟩} ∪ {⟨(le‘ndx), {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝑏 ∧ Σ𝑘 ∈ ℤ ((𝑓‘-𝑘) · ((𝑝 + 1)↑-𝑘)) < Σ𝑘 ∈ ℤ ((𝑔‘-𝑘) · ((𝑝 + 1)↑-𝑘)))}⟩}) toNrmGrp (𝑓𝑏 ↦ if(𝑓 = (ℤ × {0}), 0, (𝑝↑-inf((𝑓 “ (ℤ ∖ {0})), ℝ, < ))))))
df-zp 35660Zp = (ZRing ∘ Qp)
df-qpa 35661_Qp = (𝑝 ∈ ℙ ↦ (Qp‘𝑝) / 𝑟(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈ (Poly1𝑟) ∣ ((𝑟deg1𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1𝑓)(𝑑 “ (ℤ ∖ {0})) ⊆ (0...𝑛))})))
df-cp 35662Cp = ( cplMetSp ∘ _Qp)
ccloneop 35688class CloneOp
df-cloneop 35689CloneOp = (𝑎 ∈ V ↦ {𝑥 ∣ ∃𝑛 ∈ (ω ∖ 1o)𝑥 ∈ (𝑎m (𝑎m 𝑛))})
cprj 35690class prj
df-prj 35691prj = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑖𝑛 ↦ (𝑥 ∈ (𝑎m 𝑛) ↦ (𝑥𝑖))))
csuppos 35692class suppos
df-suppos 35693suppos = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑚 ∈ (ω ∖ 1o) ↦ (𝑓 ∈ (𝑎m (𝑎m 𝑛)), 𝑔 ∈ ((𝑎m (𝑎m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎m 𝑚) ↦ (𝑓‘(𝑖𝑛 ↦ ((𝑔𝑖)‘𝑥)))))))
cwsuc 35805class wsuc(𝑅, 𝐴, 𝑋)
cwlim 35806class WLim(𝑅, 𝐴)
df-wsuc 35807wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(𝑅, 𝐴, 𝑋), 𝐴, 𝑅)
df-wlim 35808WLim(𝑅, 𝐴) = {𝑥𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))}
ctxp 35825class (𝐴𝐵)
cpprod 35826class pprod(𝑅, 𝑆)
csset 35827class SSet
ctrans 35828class Trans
cbigcup 35829class Bigcup
cfix 35830class Fix 𝐴
climits 35831class Limits
cfuns 35832class Funs
csingle 35833class Singleton
csingles 35834class Singletons
cimage 35835class Image𝐴
ccart 35836class Cart
cimg 35837class Img
cdomain 35838class Domain
crange 35839class Range
capply 35840class Apply
ccup 35841class Cup
ccap 35842class Cap
csuccf 35843class Succ
cfunpart 35844class Funpart𝐹
cfullfn 35845class FullFun𝐹
crestrict 35846class Restrict
cub 35847class UB𝑅
clb 35848class LB𝑅
df-txp 35849(𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
df-pprod 35850pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V × V))) ⊗ (𝐵 ∘ (2nd ↾ (V × V))))
df-sset 35851 SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E )))
df-trans 35852 Trans = (V ∖ ran (( E ∘ E ) ∖ E ))
df-bigcup 35853 Bigcup = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗ V)))
df-fix 35854 Fix 𝐴 = dom (𝐴 ∩ I )
df-limits 35855 Limits = ((On ∩ Fix Bigcup ) ∖ {∅})
df-funs 35856 Funs = (𝒫 (V × V) ∖ Fix ( E ∘ ((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘ E )))
df-singleton 35857Singleton = ((V × V) ∖ ran ((V ⊗ E ) △ ( I ⊗ V)))
df-singles 35858 Singletons = ran Singleton
df-image 35859Image𝐴 = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ∘ 𝐴) ⊗ V)))
df-cart 35860Cart = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (pprod( E , E ) ⊗ V)))
df-img 35861Img = (Image((2nd ∘ 1st ) ↾ (1st ↾ (V × V))) ∘ Cart)
df-domain 35862Domain = Image(1st ↾ (V × V))
df-range 35863Range = Image(2nd ↾ (V × V))
df-cup 35864Cup = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((1st ∘ E ) ∪ (2nd ∘ E )) ⊗ V)))
df-cap 35865Cap = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((1st ∘ E ) ∩ (2nd ∘ E )) ⊗ V)))
df-restrict 35866Restrict = (Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st )))))
df-succf 35867Succ = (Cup ∘ ( I ⊗ Singleton))
df-apply 35868Apply = (( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))
df-funpart 35869Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons )))
df-fullfun 35870FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) × {∅}))
df-ub 35871UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ E ))
df-lb 35872LB𝑅 = UB𝑅
caltop 35951class 𝐴, 𝐵
caltxp 35952class (𝐴 ×× 𝐵)
df-altop 35953𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}}
df-altxp 35954(𝐴 ×× 𝐵) = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟪𝑥, 𝑦⟫}
cofs 35977class OuterFiveSeg
df-ofs 35978 OuterFiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑥, 𝑦⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))}
ctransport 36024class TransportTo
df-transport 36025TransportTo = {⟨⟨𝑝, 𝑞⟩, 𝑥⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st𝑞) ≠ (2nd𝑞)) ∧ 𝑥 = (𝑟 ∈ (𝔼‘𝑛)((2nd𝑞) Btwn ⟨(1st𝑞), 𝑟⟩ ∧ ⟨(2nd𝑞), 𝑟⟩Cgr𝑝)))}
cifs 36030class InnerFiveSeg
ccgr3 36031class Cgr3
ccolin 36032class Colinear
cfs 36033class FiveSeg
df-colinear 36034 Colinear = {⟨⟨𝑏, 𝑐⟩, 𝑎⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn ⟨𝑏, 𝑐⟩ ∨ 𝑏 Btwn ⟨𝑐, 𝑎⟩ ∨ 𝑐 Btwn ⟨𝑎, 𝑏⟩))}
df-ifs 36035 InnerFiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ ((𝑏 Btwn ⟨𝑎, 𝑐⟩ ∧ 𝑦 Btwn ⟨𝑥, 𝑧⟩) ∧ (⟨𝑎, 𝑐⟩Cgr⟨𝑥, 𝑧⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑦, 𝑧⟩) ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑐, 𝑑⟩Cgr⟨𝑧, 𝑤⟩)))}
df-cgr3 36036Cgr3 = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))}
df-fs 36037 FiveSeg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = ⟨⟨𝑎, 𝑏⟩, ⟨𝑐, 𝑑⟩⟩ ∧ 𝑞 = ⟨⟨𝑥, 𝑦⟩, ⟨𝑧, 𝑤⟩⟩ ∧ (𝑎 Colinear ⟨𝑏, 𝑐⟩ ∧ ⟨𝑎, ⟨𝑏, 𝑐⟩⟩Cgr3⟨𝑥, ⟨𝑦, 𝑧⟩⟩ ∧ (⟨𝑎, 𝑑⟩Cgr⟨𝑥, 𝑤⟩ ∧ ⟨𝑏, 𝑑⟩Cgr⟨𝑦, 𝑤⟩)))}
csegle 36101class Seg
df-segle 36102 Seg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))}
coutsideof 36114class OutsideOf
df-outsideof 36115OutsideOf = ( Colinear ∖ Btwn )
cline2 36129class Line
cray 36130class Ray
clines2 36131class LinesEE
df-line2 36132Line = {⟨⟨𝑎, 𝑏⟩, 𝑙⟩ ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎𝑏) ∧ 𝑙 = [⟨𝑎, 𝑏⟩] Colinear )}
df-ray 36133Ray = {⟨⟨𝑝, 𝑎⟩, 𝑟⟩ ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf⟨𝑎, 𝑥⟩})}
df-lines2 36134LinesEE = ran Line
cfwddif 36153class
df-fwddif 36154 △ = (𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓𝑥))))
cfwddifn 36155class n
df-fwddifn 36156n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ ↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛𝑘)) · (𝑓‘(𝑥 + 𝑘))))))
chf 36167class Hf
df-hf 36168 Hf = (𝑅1 “ ω)
cfne 36331class Fne
df-fne 36332Fne = {⟨𝑥, 𝑦⟩ ∣ ( 𝑥 = 𝑦 ∧ ∀𝑧𝑥 𝑧 (𝑦 ∩ 𝒫 𝑧))}
w3nand 36392wff (𝜑𝜓𝜒)
df-3nand 36393((𝜑𝜓𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒)))
cgcdOLD 36454class gcdOLD (𝐴, 𝐵)
df-gcdOLD 36455 gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, < )
cprvb 36592wff Prv 𝜑
ax-prv1 36593𝜑       Prv 𝜑
ax-prv2 36594(Prv (𝜑𝜓) → (Prv 𝜑 → Prv 𝜓))
ax-prv3 36595(Prv 𝜑 → Prv Prv 𝜑)
wmoo 36646wff ∃**𝑥𝜑
df-bj-mo 36647(∃**𝑥𝜑 ↔ ∀𝑧𝑦𝑥(𝜑𝑥 = 𝑦))
wnnf 36718wff Ⅎ'𝑥𝜑
df-bj-nnf 36719(Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑𝜑) ∧ (𝜑 → ∀𝑥𝜑)))
bj-cgab 36928class {𝐴𝑥𝜑}
df-bj-gab 36929{𝐴𝑥𝜑} = {𝑦 ∣ ∃𝑥(𝐴 = 𝑦𝜑)}
wrnf 36936wff 𝑥𝐴𝜑
df-bj-rnf 36937(Ⅎ𝑥𝐴𝜑 ↔ (∃𝑥𝐴 𝜑 → ∀𝑥𝐴 𝜑))
bj-csngl 36960class sngl 𝐴
df-bj-sngl 36961sngl 𝐴 = {𝑥 ∣ ∃𝑦𝐴 𝑥 = {𝑦}}
bj-ctag 36969class tag 𝐴
df-bj-tag 36970tag 𝐴 = (sngl 𝐴 ∪ {∅})
bj-cproj 36985class (𝐴 Proj 𝐵)
df-bj-proj 36986(𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})}
bj-c1upl 36992class 𝐴
df-bj-1upl 36993𝐴⦆ = ({∅} × tag 𝐴)
bj-cpr1 36995class pr1 𝐴
df-bj-pr1 36996pr1 𝐴 = (∅ Proj 𝐴)
bj-c2uple 37005class 𝐴, 𝐵
df-bj-2upl 37006𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag 𝐵))
bj-cpr2 37009class pr2 𝐴
df-bj-pr2 37010pr2 𝐴 = (1o Proj 𝐴)
ax-bj-sn 37028𝑥𝑦𝑧(𝑧𝑦𝑧 = 𝑥)
ax-bj-bun 37032𝑥𝑦𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡𝑦))
ax-bj-adj 37037𝑥𝑦𝑧𝑡(𝑡𝑧 ↔ (𝑡𝑥𝑡 = 𝑦))
celwise 37074class elwise
df-elwise 37075elwise = (𝑜 ∈ V ↦ (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∣ ∃𝑢𝑥𝑣𝑦 𝑧 = (𝑢𝑜𝑣)}))
cmoore 37098class Moore
df-bj-moore 37099Moore = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥( 𝑥 𝑦) ∈ 𝑥}
cmpt3 37115class (𝑥𝐴, 𝑦𝐵, 𝑧𝐶𝐷)
df-bj-mpt3 37116(𝑥𝐴, 𝑦𝐵, 𝑧𝐶𝐷) = {⟨𝑠, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵𝑧𝐶 (𝑠 = ⟨𝑥, 𝑦, 𝑧⟩ ∧ 𝑡 = 𝐷)}
csethom 37117class Set
df-bj-sethom 37118 Set⟶ = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓𝑓:𝑥𝑦})
ctophom 37119class Top
df-bj-tophom 37120 Top⟶ = (𝑥 ∈ TopSp, 𝑦 ∈ TopSp ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (TopOpen‘𝑦)(𝑓𝑢) ∈ (TopOpen‘𝑥)})
cmgmhom 37121class Mgm
df-bj-mgmhom 37122 Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g𝑥)𝑣)) = ((𝑓𝑢)(+g𝑦)(𝑓𝑣))})
ctopmgmhom 37123class TopMgm
df-bj-topmgmhom 37124 TopMgm⟶ = (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top𝑦) ∩ (𝑥 Mgm𝑦)))
ccur- 37125class curry_
df-bj-cur 37126curry_ = (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ ((𝑥 × 𝑦) Set𝑧) ↦ (𝑎𝑥 ↦ (𝑏𝑦 ↦ (𝑓‘⟨𝑎, 𝑏⟩)))))
cunc- 37127class uncurry_
df-bj-unc 37128uncurry_ = (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ (𝑥 Set⟶ (𝑦 Set𝑧)) ↦ (𝑎𝑥, 𝑏𝑦 ↦ ((𝑓𝑎)‘𝑏))))
cstrset 37129class [𝐵 / 𝐴]struct𝑆
df-strset 37130[𝐵 / 𝐴]struct𝑆 = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {⟨(𝐴‘ndx), 𝐵⟩})
cdiag2 37167class Id
df-bj-diag 37168Id = (𝑥 ∈ V ↦ ( I ↾ 𝑥))
cimdir 37173class 𝒫*
df-imdir 37174𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ (𝑟𝑥) = 𝑦)}))
ciminv 37186class 𝒫*
df-iminv 37187𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑎𝑦𝑏) ∧ 𝑥 = (𝑟𝑦))}))
cfractemp 37191class {R
df-bj-fractemp 37192{R = (𝑥R ↦ (𝑦R ((𝑦 = 0R ∨ (0R <R 𝑦𝑦 <R 1R)) ∧ ∃𝑛 ∈ ω ([⟨{𝑧Q𝑧 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R +R 𝑦) = 𝑥)))
cinftyexpitau 37193class +∞e
df-bj-inftyexpitau 37194+∞e = (𝑥 ∈ ℝ ↦ ⟨({R‘(1st𝑥)), {R}⟩)
cccinftyN 37195class ∞N
df-bj-ccinftyN 37196∞N = ran +∞e
chalf 37198class 1/2
df-bj-onehalf 371991/2 = (𝑥R (𝑥 +R 𝑥) = 1R)
cinftyexpi 37201class +∞ei
df-bj-inftyexpi 37202+∞ei = (𝑥 ∈ (-π(,]π) ↦ ⟨𝑥, ℂ⟩)
cccinfty 37206class
df-bj-ccinfty 37207 = ran +∞ei
cccbar 37210class ℂ̅
df-bj-ccbar 37211ℂ̅ = (ℂ ∪ ℂ)
cpinfty 37214class +∞
df-bj-pinfty 37215+∞ = (+∞ei‘0)
cminfty 37218class -∞
df-bj-minfty 37219-∞ = (+∞ei‘π)
crrbar 37223class ℝ̅
df-bj-rrbar 37224ℝ̅ = (ℝ ∪ {-∞, +∞})
cinfty 37225class
df-bj-infty 37226∞ = 𝒫
ccchat 37227class ℂ̂
df-bj-cchat 37228ℂ̂ = (ℂ ∪ {∞})
crrhat 37229class ℝ̂
df-bj-rrhat 37230ℝ̂ = (ℝ ∪ {∞})
caddcc 37232class +ℂ̅
df-bj-addc 37233 +ℂ̅ = (𝑥 ∈ (((ℂ × ℂ̅) ∪ (ℂ̅ × ℂ)) ∪ ((ℂ̂ × ℂ̂) ∪ ( I ↾ ℂ))) ↦ if(((1st𝑥) = ∞ ∨ (2nd𝑥) = ∞), ∞, if((1st𝑥) ∈ ℂ, if((2nd𝑥) ∈ ℂ, ⟨((1st ‘(1st𝑥)) +R (1st ‘(2nd𝑥))), ((2nd ‘(1st𝑥)) +R (2nd ‘(2nd𝑥)))⟩, (2nd𝑥)), (1st𝑥))))
coppcc 37234class -ℂ̅
df-bj-oppc 37235-ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 +ℂ̅ 𝑦) = 0), (+∞e‘(𝑥 +ℂ̅ ⟨1/2, 0R⟩)))))
cltxr 37236class <ℝ̅
df-bj-lt 37237<ℝ̅ = ({𝑥 ∈ (ℝ̅ × ℝ̅) ∣ ∃𝑦𝑧(((1st𝑥) = ⟨𝑦, 0R⟩ ∧ (2nd𝑥) = ⟨𝑧, 0R⟩) ∧ 𝑦 <R 𝑧)} ∪ ((({-∞} × ℝ) ∪ (ℝ × {+∞})) ∪ ({-∞} × {+∞})))
carg 37238class Arg
df-bj-arg 37239Arg = (𝑥 ∈ (ℂ̅ ∖ {0}) ↦ if(𝑥 ∈ ℂ, (ℑ‘(log‘𝑥)), if(𝑥<ℝ̅0, π, (((1st𝑥) / (2 · π)) − π))))
cmulc 37240class ·ℂ̅
df-bj-mulc 37241 ·ℂ̅ = (𝑥 ∈ ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦ if(((1st𝑥) = 0 ∨ (2nd𝑥) = 0), 0, if(((1st𝑥) = ∞ ∨ (2nd𝑥) = ∞), ∞, if(𝑥 ∈ (ℂ × ℂ), ((1st𝑥) · (2nd𝑥)), (+∞e‘(((Arg‘(1st𝑥)) +ℂ̅ (Arg‘(2nd𝑥))) / τ))))))
cinvc 37242class -1ℂ̅
df-bj-invc 37243-1ℂ̅ = (𝑥 ∈ (ℂ̅ ∪ ℂ̂) ↦ if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ, (𝑦 ∈ ℂ (𝑥 ·ℂ̅ 𝑦) = 1), 0)))
ciomnn 37244class iω↪ℕ
df-bj-iomnn 37245iω↪ℕ = ((𝑛 ∈ ω ↦ ⟨[⟨{𝑟Q𝑟 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R , 0R⟩) ∪ {⟨ω, +∞⟩})
cnnbar 37255class ℕ̅
df-bj-nnbar 37256ℕ̅ = (ℕ0 ∪ {+∞})
czzbar 37257class ℤ̅
df-bj-zzbar 37258ℤ̅ = (ℤ ∪ {-∞, +∞})
czzhat 37259class ℤ̂
df-bj-zzhat 37260ℤ̂ = (ℤ ∪ {∞})
cdivc 37261class
df-bj-divc 37262 = {⟨𝑥, 𝑦⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ ((ℂ̅ × ℂ̅) ∪ (ℂ̂ × ℂ̂)) ∧ ∃𝑛 ∈ (ℤ̅ ∪ ℤ̂)(𝑛 ·ℂ̅ 𝑥) = 𝑦)}
cfinsum 37278class FinSum
df-bj-finsum 37279 FinSum = (𝑥 ∈ {⟨𝑦, 𝑧⟩ ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠𝑚 ∈ ℕ0𝑓(𝑓:(1...𝑚)–1-1-onto→dom (2nd𝑥) ∧ 𝑠 = (seq1((+g‘(1st𝑥)), (𝑛 ∈ ℕ ↦ ((2nd𝑥)‘(𝑓𝑛))))‘𝑚))))
crrvec 37287class ℝ-Vec
df-bj-rvec 37288ℝ-Vec = (LMod ∩ (Scalar “ {ℝfld}))
cend 37308class End
df-bj-end 37309End = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ {⟨(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)⟩, ⟨(+g‘ndx), (⟨𝑥, 𝑥⟩(comp‘𝑐)𝑥)⟩}))
cfinxp 37378class (𝑈↑↑𝑁)
df-finxp 37379(𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩))), ⟨𝑁, 𝑦⟩)‘𝑁))}
ax-luk1 37414((𝜑𝜓) → ((𝜓𝜒) → (𝜑𝜒)))
ax-luk2 37415((¬ 𝜑𝜑) → 𝜑)
ax-luk3 37416(𝜑 → (¬ 𝜑𝜓))
ax-wl-13v 37488(¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
ax-wl-cleq 37495(𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
ax-wl-clel 37496(𝐴𝐵 ↔ ∃𝑥(𝑥 = 𝐴𝑥𝐵))
ax-wl-11v 37577(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
ctotbnd 37765class TotBnd
cbnd 37766class Bnd
df-totbnd 37767TotBnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑥 ∧ ∀𝑏𝑣𝑦𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑))})
df-bnd 37778Bnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑦𝑥𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟)})
cismty 37797class Ismty
df-ismty 37798 Ismty = (𝑚 ran ∞Met, 𝑛 ran ∞Met ↦ {𝑓 ∣ (𝑓:dom dom 𝑚1-1-onto→dom dom 𝑛 ∧ ∀𝑥 ∈ dom dom 𝑚𝑦 ∈ dom dom 𝑚(𝑥𝑚𝑦) = ((𝑓𝑥)𝑛(𝑓𝑦)))})
crrn 37824class n
df-rrn 37825n = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ ↑m 𝑖), 𝑦 ∈ (ℝ ↑m 𝑖) ↦ (√‘Σ𝑘𝑖 (((𝑥𝑘) − (𝑦𝑘))↑2))))
cass 37841class Ass
df-ass 37842Ass = {𝑔 ∣ ∀𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))}
cexid 37843class ExId
df-exid 37844 ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)}
cmagm 37847class Magma
df-mgmOLD 37848Magma = {𝑔 ∣ ∃𝑡 𝑔:(𝑡 × 𝑡)⟶𝑡}
csem 37859class SemiGrp
df-sgrOLD 37860SemiGrp = (Magma ∩ Ass)
cmndo 37865class MndOp
df-mndo 37866MndOp = (SemiGrp ∩ ExId )
cghomOLD 37882class GrpOpHom
df-ghomOLD 37883 GrpOpHom = (𝑔 ∈ GrpOp, ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ∧ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑓𝑥)(𝑓𝑦)) = (𝑓‘(𝑥𝑔𝑦)))})
crngo 37893class RingOps
df-rngo 37894RingOps = {⟨𝑔, ⟩ ∣ ((𝑔 ∈ AbelOp ∧ :(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔𝑧 ∈ ran 𝑔(((𝑥𝑦)𝑧) = (𝑥(𝑦𝑧)) ∧ (𝑥(𝑦𝑔𝑧)) = ((𝑥𝑦)𝑔(𝑥𝑧)) ∧ ((𝑥𝑔𝑦)𝑧) = ((𝑥𝑧)𝑔(𝑦𝑧))) ∧ ∃𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔((𝑥𝑦) = 𝑦 ∧ (𝑦𝑥) = 𝑦)))}
cdrng 37947class DivRingOps
df-drngo 37948DivRingOps = {⟨𝑔, ⟩ ∣ (⟨𝑔, ⟩ ∈ RingOps ∧ ( ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)}
crngohom 37959class RingOpsHom
crngoiso 37960class RingOpsIso
crisc 37961class 𝑟
df-rngohom 37962 RingOpsHom = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (ran (1st𝑠) ↑m ran (1st𝑟)) ∣ ((𝑓‘(GId‘(2nd𝑟))) = (GId‘(2nd𝑠)) ∧ ∀𝑥 ∈ ran (1st𝑟)∀𝑦 ∈ ran (1st𝑟)((𝑓‘(𝑥(1st𝑟)𝑦)) = ((𝑓𝑥)(1st𝑠)(𝑓𝑦)) ∧ (𝑓‘(𝑥(2nd𝑟)𝑦)) = ((𝑓𝑥)(2nd𝑠)(𝑓𝑦))))})
df-rngoiso 37975 RingOpsIso = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (𝑟 RingOpsHom 𝑠) ∣ 𝑓:ran (1st𝑟)–1-1-onto→ran (1st𝑠)})
df-risc 37982𝑟 = {⟨𝑟, 𝑠⟩ ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠))}
ccm2 37988class Com2
df-com2 37989Com2 = {⟨𝑔, ⟩ ∣ ∀𝑎 ∈ ran 𝑔𝑏 ∈ ran 𝑔(𝑎𝑏) = (𝑏𝑎)}
cfld 37990class Fld
df-fld 37991Fld = (DivRingOps ∩ Com2)
ccring 37992class CRingOps
df-crngo 37993CRingOps = (RingOps ∩ Com2)
cidl 38006class Idl
cpridl 38007class PrIdl
cmaxidl 38008class MaxIdl
df-idl 38009Idl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ 𝒫 ran (1st𝑟) ∣ ((GId‘(1st𝑟)) ∈ 𝑖 ∧ ∀𝑥𝑖 (∀𝑦𝑖 (𝑥(1st𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st𝑟)((𝑧(2nd𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd𝑟)𝑧) ∈ 𝑖)))})
df-pridl 38010PrIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥𝑎𝑦𝑏 (𝑥(2nd𝑟)𝑦) ∈ 𝑖 → (𝑎𝑖𝑏𝑖)))})
df-maxidl 38011MaxIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖𝑗 → (𝑗 = 𝑖𝑗 = ran (1st𝑟))))})
cprrng 38045class PrRing
cdmn 38046class Dmn
df-prrngo 38047PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st𝑟))} ∈ (PrIdl‘𝑟)}
df-dmn 38048Dmn = (PrRing ∩ Com2)
cigen 38058class IdlGen
df-igen 38059 IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st𝑟) ↦ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠𝑗})
cxrn 38173class (𝐴𝐵)
ccoss 38174class 𝑅
ccoels 38175class 𝐴
crels 38176class Rels
cssr 38177class S
crefs 38178class Refs
crefrels 38179class RefRels
wrefrel 38180wff RefRel 𝑅
ccnvrefs 38181class CnvRefs
ccnvrefrels 38182class CnvRefRels
wcnvrefrel 38183wff CnvRefRel 𝑅
csyms 38184class Syms
csymrels 38185class SymRels
wsymrel 38186wff SymRel 𝑅
ctrs 38187class Trs
ctrrels 38188class TrRels
wtrrel 38189wff TrRel 𝑅
ceqvrels 38190class EqvRels
weqvrel 38191wff EqvRel 𝑅
ccoeleqvrels 38192class CoElEqvRels
wcoeleqvrel 38193wff CoElEqvRel 𝐴
credunds 38194class Redunds
wredund 38195wff 𝐴 Redund ⟨𝐵, 𝐶
wredundp 38196wff redund (𝜑, 𝜓, 𝜒)
cdmqss 38197class DomainQss
wdmqs 38198wff 𝑅 DomainQs 𝐴
cers 38199class Ers
werALTV 38200wff 𝑅 ErALTV 𝐴
ccomembers 38201class CoMembErs
wcomember 38202wff CoMembEr 𝐴
cfunss 38203class Funss
cfunsALTV 38204class FunsALTV
wfunALTV 38205wff FunALTV 𝐹
cdisjss 38206class Disjss
cdisjs 38207class Disjs
wdisjALTV 38208wff Disj 𝑅
celdisjs 38209class ElDisjs
weldisj 38210wff ElDisj 𝐴
wantisymrel 38211wff AntisymRel 𝑅
cparts 38212class Parts
wpart 38213wff 𝑅 Part 𝐴
cmembparts 38214class MembParts
wmembpart 38215wff MembPart 𝐴
df-xrn 38365(𝐴𝐵) = (((1st ↾ (V × V)) ∘ 𝐴) ∩ ((2nd ↾ (V × V)) ∘ 𝐵))
df-coss 38405𝑅 = {⟨𝑥, 𝑦⟩ ∣ ∃𝑢(𝑢𝑅𝑥𝑢𝑅𝑦)}
df-coels 38406𝐴 = ≀ ( E ↾ 𝐴)
df-rels 38479 Rels = 𝒫 (V × V)
df-ssr 38492 S = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
df-refs 38504 Refs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
df-refrels 38505 RefRels = ( Refs ∩ Rels )
df-refrel 38506( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
df-cnvrefs 38519 CnvRefs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
df-cnvrefrels 38520 CnvRefRels = ( CnvRefs ∩ Rels )
df-cnvrefrel 38521( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
df-syms 38536 Syms = {𝑥(𝑥 ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
df-symrels 38537 SymRels = ( Syms ∩ Rels )
df-symrel 38538( SymRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
df-trs 38566 Trs = {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))}
df-trrels 38567 TrRels = ( Trs ∩ Rels )
df-trrel 38568( TrRel 𝑅 ↔ (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅))
df-eqvrels 38578 EqvRels = (( RefRels ∩ SymRels ) ∩ TrRels )
df-eqvrel 38579( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅))
df-coeleqvrels 38580 CoElEqvRels = {𝑎 ∣ ≀ ( E ↾ 𝑎) ∈ EqvRels }
df-coeleqvrel 38581( CoElEqvRel 𝐴 ↔ EqvRel ≀ ( E ↾ 𝐴))
df-redunds 38617 Redunds = {⟨⟨𝑦, 𝑧⟩, 𝑥⟩ ∣ (𝑥𝑦 ∧ (𝑥𝑧) = (𝑦𝑧))}
df-redund 38618(𝐴 Redund ⟨𝐵, 𝐶⟩ ↔ (𝐴𝐵 ∧ (𝐴𝐶) = (𝐵𝐶)))
df-redundp 38619( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ ((𝜑𝜒) ↔ (𝜓𝜒))))
df-dmqss 38632 DomainQss = {⟨𝑥, 𝑦⟩ ∣ (dom 𝑥 / 𝑥) = 𝑦}
df-dmqs 38633(𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴)
df-ers 38657 Ers = ( DomainQss ↾ EqvRels )
df-erALTV 38658(𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅𝑅 DomainQs 𝐴))
df-comembers 38659 CoMembErs = {𝑎 ∣ ≀ ( E ↾ 𝑎) Ers 𝑎}
df-comember 38660( CoMembEr 𝐴 ↔ ≀ ( E ↾ 𝐴) ErALTV 𝐴)
df-funss 38674 Funss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels }
df-funsALTV 38675 FunsALTV = ( Funss ∩ Rels )
df-funALTV 38676( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))
df-disjss 38697 Disjss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels }
df-disjs 38698 Disjs = ( Disjss ∩ Rels )
df-disjALTV 38699( Disj 𝑅 ↔ ( CnvRefRel ≀ 𝑅 ∧ Rel 𝑅))
df-eldisjs 38700 ElDisjs = {𝑎 ∣ ( E ↾ 𝑎) ∈ Disjs }
df-eldisj 38701( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
df-antisymrel 38754( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅𝑅) ∧ Rel 𝑅))
df-parts 38759 Parts = ( DomainQss ↾ Disjs )
df-part 38760(𝑅 Part 𝐴 ↔ ( Disj 𝑅𝑅 DomainQs 𝐴))
df-membparts 38761 MembParts = {𝑎 ∣ ( E ↾ 𝑎) Parts 𝑎}
df-membpart 38762( MembPart 𝐴 ↔ ( E ↾ 𝐴) Part 𝐴)
wprt 38865wff Prt 𝐴
df-prt 38866(Prt 𝐴 ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
ax-c5 38877(∀𝑥𝜑𝜑)
ax-c4 38878(∀𝑥(∀𝑥𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
ax-c7 38879(¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
ax-c10 38880(∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑)
ax-c11 38881(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
ax-c11n 38882(∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥)
ax-c15 38883(¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
ax-c9 38884(¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)))
ax-c14 38885(¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥𝑦 → ∀𝑧 𝑥𝑦)))
ax-c16 38886(∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑))
ax-riotaBAD 38947(𝑥𝐴 𝜑) = if(∃!𝑥𝐴 𝜑, (℩𝑥(𝑥𝐴𝜑)), (Undef‘{𝑥𝑥𝐴}))
clsa 38968class LSAtoms
clsh 38969class LSHyp
df-lsatoms 38970LSAtoms = (𝑤 ∈ V ↦ ran (𝑣 ∈ ((Base‘𝑤) ∖ {(0g𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣})))
df-lshyp 38971LSHyp = (𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))})
clcv 39012class L
df-lcv 39013L = (𝑤 ∈ V ↦ {⟨𝑡, 𝑢⟩ ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢)))})
clfn 39051class LFnl
df-lfl 39052LFnl = (𝑤 ∈ V ↦ {𝑓 ∈ ((Base‘(Scalar‘𝑤)) ↑m (Base‘𝑤)) ∣ ∀𝑟 ∈ (Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠𝑤)𝑥)(+g𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓𝑥))(+g‘(Scalar‘𝑤))(𝑓𝑦))})
clk 39079class LKer
df-lkr 39080LKer = (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (𝑓 “ {(0g‘(Scalar‘𝑤))})))
cld 39117class LDual
df-ldual 39118LDual = (𝑣 ∈ V ↦ ({⟨(Base‘ndx), (LFnl‘𝑣)⟩, ⟨(+g‘ndx), ( ∘f (+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))⟩, ⟨(Scalar‘ndx), (oppr‘(Scalar‘𝑣))⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓f (.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))⟩}))
cops 39166class OP
ccmtN 39167class cm
col 39168class OL
coml 39169class OML
df-oposet 39170OP = {𝑝 ∈ Poset ∣ (((Base‘𝑝) ∈ dom (lub‘𝑝) ∧ (Base‘𝑝) ∈ dom (glb‘𝑝)) ∧ ∃𝑜(𝑜 = (oc‘𝑝) ∧ ∀𝑎 ∈ (Base‘𝑝)∀𝑏 ∈ (Base‘𝑝)(((𝑜𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜𝑏)(le‘𝑝)(𝑜𝑎))) ∧ (𝑎(join‘𝑝)(𝑜𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜𝑎)) = (0.‘𝑝))))}
df-cmtN 39171cm = (𝑝 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))})
df-ol 39172OL = (Lat ∩ OP)
df-oml 39173OML = {𝑙 ∈ OL ∣ ∀𝑎 ∈ (Base‘𝑙)∀𝑏 ∈ (Base‘𝑙)(𝑎(le‘𝑙)𝑏𝑏 = (𝑎(join‘𝑙)(𝑏(meet‘𝑙)((oc‘𝑙)‘𝑎))))}
ccvr 39256class
catm 39257class Atoms
cal 39258class AtLat
clc 39259class CvLat
df-covers 39260 ⋖ = (𝑝 ∈ V ↦ {⟨𝑎, 𝑏⟩ ∣ ((𝑎 ∈ (Base‘𝑝) ∧ 𝑏 ∈ (Base‘𝑝)) ∧ 𝑎(lt‘𝑝)𝑏 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑎(lt‘𝑝)𝑧𝑧(lt‘𝑝)𝑏))})
df-ats 39261Atoms = (𝑝 ∈ V ↦ {𝑎 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑎})
df-atl 39292AtLat = {𝑘 ∈ Lat ∣ ((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑝 ∈ (Atoms‘𝑘)𝑝(le‘𝑘)𝑥))}
df-cvlat 39316CvLat = {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))}
chlt 39344class HL
df-hlat 39345HL = {𝑙 ∈ ((OML ∩ CLat) ∩ CvLat) ∣ (∀𝑎 ∈ (Atoms‘𝑙)∀𝑏 ∈ (Atoms‘𝑙)(𝑎𝑏 → ∃𝑐 ∈ (Atoms‘𝑙)(𝑐𝑎𝑐𝑏𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏))) ∧ ∃𝑎 ∈ (Base‘𝑙)∃𝑏 ∈ (Base‘𝑙)∃𝑐 ∈ (Base‘𝑙)(((0.‘𝑙)(lt‘𝑙)𝑎𝑎(lt‘𝑙)𝑏) ∧ (𝑏(lt‘𝑙)𝑐𝑐(lt‘𝑙)(1.‘𝑙))))}
clln 39486class LLines
clpl 39487class LPlanes
clvol 39488class LVols
clines 39489class Lines
cpointsN 39490class Points
cpsubsp 39491class PSubSp
cpmap 39492class pmap
df-llines 39493LLines = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥})
df-lplanes 39494LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LLines‘𝑘)𝑝( ⋖ ‘𝑘)𝑥})
df-lvols 39495LVols = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LPlanes‘𝑘)𝑝( ⋖ ‘𝑘)𝑥})
df-lines 39496Lines = (𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞𝑟𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})})
df-pointsN 39497Points = (𝑘 ∈ V ↦ {𝑞 ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑞 = {𝑝}})
df-psubsp 39498PSubSp = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝𝑠𝑞𝑠𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟𝑠))})
df-pmap 39499pmap = (𝑘 ∈ V ↦ (𝑎 ∈ (Base‘𝑘) ↦ {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎}))
cpadd 39790class +𝑃
df-padd 39791+𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞𝑚𝑟𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)})))
cpclN 39882class PCl
df-pclN 39883PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥𝑦}))
cpolN 39897class 𝑃
df-polarityN 39898𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙) ↦ ((Atoms‘𝑙) ∩ 𝑝𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝)))))
cpscN 39929class PSubCl
df-psubclN 39930PSubCl = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃𝑘)‘((⊥𝑃𝑘)‘𝑠)) = 𝑠)})
clh 39979class LHyp
claut 39980class LAut
cwpointsN 39981class WAtoms
cpautN 39982class PAut
df-lhyp 39983LHyp = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ 𝑥( ⋖ ‘𝑘)(1.‘𝑘)})
df-laut 39984LAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓𝑥)(le‘𝑘)(𝑓𝑦)))})
df-watsN 39985WAtoms = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖ ((⊥𝑃𝑘)‘{𝑑}))))
df-pautN 39986PAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥𝑦 ↔ (𝑓𝑥) ⊆ (𝑓𝑦)))})
cldil 40095class LDil
cltrn 40096class LTrn
cdilN 40097class Dil
ctrnN 40098class Trn
df-ldil 40099LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓𝑥) = 𝑥)}))
df-ltrn 40100LTrn = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓𝑞))(meet‘𝑘)𝑤))}))
df-dilN 40101Dil = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓𝑥) = 𝑥)}))
df-trnN 40102Trn = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃𝑘)(𝑓𝑞)) ∩ ((⊥𝑃𝑘)‘{𝑑})) = ((𝑟(+𝑃𝑘)(𝑓𝑟)) ∩ ((⊥𝑃𝑘)‘{𝑑}))}))
ctrl 40153class trL
df-trl 40154trL = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤𝑥 = ((𝑝(join‘𝑘)(𝑓𝑝))(meet‘𝑘)𝑤))))))
ctgrp 40737class TGrp
df-tgrp 40738TGrp = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩}))
ctendo 40747class TEndo
cedring 40748class EDRing
cedring-rN 40749class EDRingR
df-tendo 40750TEndo = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥𝑦)) = ((𝑓𝑥) ∘ (𝑓𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))}))
df-edring-rN 40751EDRingR = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((TEndo‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡𝑠))⟩}))
df-edring 40752EDRing = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((TEndo‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))⟩, ⟨(.r‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑠𝑡))⟩}))
cdveca 40997class DVecA
df-dveca 40998DVecA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩, ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠𝑓))⟩})))
cdia 41023class DIsoA
df-disoa 41024DIsoA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥})))
cdvh 41073class DVecH
df-dvech 41074DVecH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({⟨(Base‘ndx), (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤))⟩, ⟨(+g‘ndx), (𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ ⟨((1st𝑓) ∘ (1st𝑔)), ( ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd𝑓)‘) ∘ ((2nd𝑔)‘)))⟩)⟩, ⟨(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ ⟨(𝑠‘(1st𝑓)), (𝑠 ∘ (2nd𝑓))⟩)⟩})))
cocaN 41114class ocA
df-docaN 41115ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(((DIsoA‘𝑘)‘𝑤)‘ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤)))))
cdjaN 41126class vA
df-djaN 41127vA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦))))))
cdib 41133class DIsoB
df-dib 41134DIsoB = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))}))))
cdic 41167class DIsoC
df-dic 41168DIsoC = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {⟨𝑓, 𝑠⟩ ∣ (𝑓 = (𝑠‘(𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))})))
cdih 41223class DIsoH
df-dih 41224DIsoH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤)))))))))
coch 41342class ocH
df-doch 41343ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)}))))))
cdjh 41389class joinH
df-djh 41390joinH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)), 𝑦 ∈ 𝒫 (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦))))))
clpoN 41475class LPol
df-lpolN 41476LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫 (Base‘𝑤)) ∣ ((𝑜‘(Base‘𝑤)) = {(0g𝑤)} ∧ ∀𝑥𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥𝑦) → (𝑜𝑦) ⊆ (𝑜𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜𝑥)) = 𝑥))})
clcd 41581class LCDual
df-lcdual 41582LCDual = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)})))
cmpd 41619class mapd
df-mapd 41620mapd = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)})))
chvm 41751class HVMap
df-hvmap 41752HVMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ ((Base‘((DVecH‘𝑘)‘𝑤)) ∖ {(0g‘((DVecH‘𝑘)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (𝑗 ∈ (Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠 ‘((DVecH‘𝑘)‘𝑤))𝑥)))))))
chdma1 41786class HDMap1
chdma 41787class HDMap
df-hdmap1 41788HDMap1 = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd𝑥) = (0g𝑢), (0g𝑐), (𝑑 ((𝑚‘(𝑛‘{(2nd𝑥)})) = (𝑗‘{}) ∧ (𝑚‘(𝑛‘{((1st ‘(1st𝑥))(-g𝑢)(2nd𝑥))})) = (𝑗‘{((2nd ‘(1st𝑥))(-g𝑐))})))))}))
df-hdmap 41789HDMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎[⟨( I ↾ (Base‘𝑘)), ( I ↾ ((LTrn‘𝑘)‘𝑤))⟩ / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡𝑣 ↦ (𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧𝑣𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘⟨𝑧, (𝑖‘⟨𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧⟩), 𝑡⟩))))}))
chg 41878class HGMap
df-hgmap 41879HGMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎[((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥𝑏 ↦ (𝑦𝑏𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚𝑣))))}))
chlh 41927class HLHil
df-hlhil 41928HLHil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ((DVecH‘𝑘)‘𝑤) / 𝑢(Base‘𝑢) / 𝑣({⟨(Base‘ndx), 𝑣⟩, ⟨(+g‘ndx), (+g𝑢)⟩, ⟨(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet ⟨(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)⟩)⟩} ∪ {⟨( ·𝑠 ‘ndx), ( ·𝑠𝑢)⟩, ⟨(·𝑖‘ndx), (𝑥𝑣, 𝑦𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))⟩})))
ccsrg 41961class CSRing
df-csring 41962 CSRing = {𝑓 ∈ SRing ∣ (mulGrp‘𝑓) ∈ CMnd}
cprimroots 42085class PrimRoots
df-primroots 42086 PrimRoots = (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0(Base‘𝑟) / 𝑏{𝑎𝑏 ∣ ((𝑘(.g𝑟)𝑎) = (0g𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g𝑟)𝑎) = (0g𝑟) → 𝑘𝑙))})
ax-exfinfld 42196𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field ((♯‘(Base‘𝑘)) = (𝑝𝑛) ∧ (chr‘𝑘) = 𝑝)
cresub 42386class
df-resub 42387 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑧 ∈ ℝ (𝑦 + 𝑧) = 𝑥))
cprjsp 42602class ℙ𝕣𝕠𝕛
df-prjsp 42603ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦ ((Base‘𝑣) ∖ {(0g𝑣)}) / 𝑏(𝑏 / {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝑏𝑦𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠𝑣)𝑦))}))
cprjspn 42615class ℙ𝕣𝕠𝕛n
df-prjspn 42616ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦ (ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛))))
cprjcrv 42630class ℙ𝕣𝕠𝕛Crv
df-prjcrv 42631ℙ𝕣𝕠𝕛Crv = (𝑛 ∈ ℕ0, 𝑘 ∈ Field ↦ (𝑓 ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g𝑘)}}))
cnacs 42704class NoeACS
df-nacs 42705NoeACS = (𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠𝑐𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)})
cmzpcl 42723class mzPolyCld
cmzp 42724class mzPoly
df-mzpcl 42725mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑m (ℤ ↑m 𝑣)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m 𝑣) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗𝑣 (𝑥 ∈ (ℤ ↑m 𝑣) ↦ (𝑥𝑗)) ∈ 𝑝) ∧ ∀𝑓𝑝𝑔𝑝 ((𝑓f + 𝑔) ∈ 𝑝 ∧ (𝑓f · 𝑔) ∈ 𝑝))})
df-mzp 42726mzPoly = (𝑣 ∈ V ↦ (mzPolyCld‘𝑣))
cdioph 42757class Dioph
df-dioph 42758Dioph = (𝑛 ∈ ℕ0 ↦ ran (𝑘 ∈ (ℤ𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝𝑢) = 0)}))
csquarenn 42838class NN
cpell1qr 42839class Pell1QR
cpell1234qr 42840class Pell1234QR
cpell14qr 42841class Pell14QR
cpellfund 42842class PellFund
df-squarenn 42843NN = {𝑥 ∈ ℕ ∣ (√‘𝑥) ∈ ℚ}
df-pell1qr 42844Pell1QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℕ0 (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)})
df-pell14qr 42845Pell14QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)})
df-pell1234qr 42846Pell1234QR = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)})
df-pellfund 42847PellFund = (𝑥 ∈ (ℕ ∖ ◻NN) ↦ inf({𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧}, ℝ, < ))
crmx 42902class Xrm
crmy 42903class Yrm
df-rmx 42904 Xrm = (𝑎 ∈ (ℤ‘2), 𝑛 ∈ ℤ ↦ (1st ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))))
df-rmy 42905 Yrm = (𝑎 ∈ (ℤ‘2), 𝑛 ∈ ℤ ↦ (2nd ‘((𝑏 ∈ (ℕ0 × ℤ) ↦ ((1st𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛))))
clfig 43070class LFinGen
df-lfig 43071LFinGen = {𝑤 ∈ LMod ∣ (Base‘𝑤) ∈ ((LSpan‘𝑤) “ (𝒫 (Base‘𝑤) ∩ Fin))}
clnm 43078class LNoeM
df-lnm 43079LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤s 𝑖) ∈ LFinGen}
clnr 43112class LNoeR
df-lnr 43113LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM}
cldgis 43124class ldgIdlSeq
df-ldgis 43125ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘𝑖 (((deg1𝑟)‘𝑘) ≤ 𝑥𝑗 = ((coe1𝑘)‘𝑥))})))
cmnc 43134class Monic
cplylt 43135class Poly<
df-mnc 43136 Monic = (𝑠 ∈ 𝒫 ℂ ↦ {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1})
df-plylt 43137 Poly< = (𝑠 ∈ 𝒫 ℂ, 𝑥 ∈ ℕ0 ↦ {𝑝 ∈ (Poly‘𝑠) ∣ (𝑝 = 0𝑝 ∨ (deg‘𝑝) < 𝑥)})
cdgraa 43143class degAA
cmpaa 43144class minPolyAA
df-dgraa 43145degAA = (𝑥 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝𝑥) = 0)}, ℝ, < ))
df-mpaa 43146minPolyAA = (𝑥 ∈ 𝔸 ↦ (𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA𝑥) ∧ (𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA𝑥)) = 1)))
citgo 43160class IntgOver
cza 43161class
df-itgo 43162IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)})
df-za 43163 = (IntgOver‘ℤ)
cmend 43174class MEndo
df-mend 43175MEndo = (𝑚 ∈ V ↦ (𝑚 LMHom 𝑚) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥f (+g𝑚)𝑦))⟩, ⟨(.r‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥𝑦))⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑚)⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠𝑚)𝑦))⟩}))
ccytp 43200class CytP
df-cytp 43201CytP = (𝑛 ∈ ℕ ↦ ((mulGrp‘(Poly1‘ℂfld)) Σg (𝑟 ∈ ((od‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) “ {𝑛}) ↦ ((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟)))))
ctopsep 43209class TopSep
ctoplnd 43210class TopLnd
df-topsep 43211TopSep = {𝑗 ∈ Top ∣ ∃𝑥 ∈ 𝒫 𝑗(𝑥 ≼ ω ∧ ((cls‘𝑗)‘𝑥) = 𝑗)}
df-toplnd 43212TopLnd = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥( 𝑥 = 𝑦 → ∃𝑧 ∈ 𝒫 𝑥(𝑧 ≼ ω ∧ 𝑥 = 𝑧))}
crcl 43676class r*
df-rcl 43677r* = (𝑥 ∈ V ↦ {𝑧 ∣ (𝑥𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)})
whe 43776wff 𝑅 hereditary 𝐴
df-he 43777(𝑅 hereditary 𝐴 ↔ (𝑅𝐴) ⊆ 𝐴)
ax-frege1 43794(𝜑 → (𝜓𝜑))
ax-frege2 43795((𝜑 → (𝜓𝜒)) → ((𝜑𝜓) → (𝜑𝜒)))
ax-frege8 43813((𝜑 → (𝜓𝜒)) → (𝜓 → (𝜑𝜒)))
ax-frege28 43834((𝜑𝜓) → (¬ 𝜓 → ¬ 𝜑))
ax-frege31 43838(¬ ¬ 𝜑𝜑)
ax-frege41 43849(𝜑 → ¬ ¬ 𝜑)
ax-frege52a 43861((𝜑𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒)))
ax-frege54a 43866(𝜑𝜑)
ax-frege58a 43879((𝜓𝜒) → if-(𝜑, 𝜓, 𝜒))
ax-frege52c 43892(𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑[𝐵 / 𝑥]𝜑))
ax-frege54c 43896𝐴 = 𝐴
ax-frege58b 43905(∀𝑥𝜑 → [𝑦 / 𝑥]𝜑)
cmnring 44216class MndRing
df-mnring 44217 MndRing = (𝑟 ∈ V, 𝑚 ∈ V ↦ (𝑟 freeLMod (Base‘𝑚)) / 𝑣(𝑣 sSet ⟨(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g𝑚)𝑏), ((𝑥𝑎)(.r𝑟)(𝑦𝑏)), (0g𝑟))))))⟩))
cscott 44245class Scott 𝐴
df-scott 44246Scott 𝐴 = {𝑥𝐴 ∣ ∀𝑦𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)}
ccoll 44260class (𝐹 Coll 𝐴)
df-coll 44261(𝐹 Coll 𝐴) = 𝑥𝐴 Scott (𝐹 “ {𝑥})
cbcc 44346class C𝑐
df-bcc 44347C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘)))
cplusr 44467class +𝑟
cminusr 44468class -𝑟
ctimesr 44469class .𝑣
cptdfc 44470class PtDf(𝐴, 𝐵)
crr3c 44471class RR3
cline3 44472class line3
df-addr 44473+𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥𝑣) + (𝑦𝑣))))
df-subr 44474-𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥𝑣) − (𝑦𝑣))))
df-mulv 44475.𝑣 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦𝑣))))
df-ptdf 44486PtDf(𝐴, 𝐵) = (𝑥 ∈ ℝ ↦ (((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) “ {1, 2, 3}))
df-rr3 44487RR3 = (ℝ ↑m {1, 2, 3})
df-line3 44488line3 = {𝑥 ∈ 𝒫 RR3 ∣ (2o𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑧𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥))}
wvd1 44580wff (   𝜑   ▶   𝜓   )
df-vd1 44581((   𝜑   ▶   𝜓   ) ↔ (𝜑𝜓))
wvd2 44588wff (   𝜑   ,   𝜓   ▶   𝜒   )
df-vd2 44589((   𝜑   ,   𝜓   ▶   𝜒   ) ↔ ((𝜑𝜓) → 𝜒))
wvhc2 44591wff (   𝜑   ,   𝜓   )
df-vhc2 44592((   𝜑   ,   𝜓   ) ↔ (𝜑𝜓))
wvd3 44598wff (   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   )
wvhc3 44599wff (   𝜑   ,   𝜓   ,   𝜒   )
df-vhc3 44600((   𝜑   ,   𝜓   ,   𝜒   ) ↔ (𝜑𝜓𝜒))
df-vd3 44601((   𝜑   ,   𝜓   ,   𝜒   ▶   𝜃   ) ↔ ((𝜑𝜓𝜒) → 𝜃))
clsi 45718class lim inf
df-liminf 45719lim inf = (𝑥 ∈ V ↦ sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*), ℝ*, < )), ℝ*, < ))
clsxlim 45785class ~~>*
df-xlim 45786~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
csalg 46275class SAlg
df-salg 46276SAlg = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 ( 𝑥𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → 𝑦𝑥))}
csalon 46277class SalOn
df-salon 46278SalOn = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ 𝑠 = 𝑥})
csalgen 46279class SalGen
df-salgen 46280SalGen = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑥𝑥𝑠)})
csumge0 46329class Σ^
df-sumge0 46330Σ^ = (𝑥 ∈ V ↦ if(+∞ ∈ ran 𝑥, +∞, sup(ran (𝑦 ∈ (𝒫 dom 𝑥 ∩ Fin) ↦ Σ𝑤𝑦 (𝑥𝑤)), ℝ*, < )))
cmea 46416class Meas
df-mea 46417Meas = {𝑥 ∣ (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 ∈ SAlg) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥((𝑦 ≼ ω ∧ Disj 𝑤𝑦 𝑤) → (𝑥 𝑦) = (Σ^‘(𝑥𝑦))))}
come 46456class OutMeas
df-ome 46457OutMeas = {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))))}
ccaragen 46458class CaraGen
df-caragen 46459CaraGen = (𝑜 ∈ OutMeas ↦ {𝑒 ∈ 𝒫 dom 𝑜 ∣ ∀𝑎 ∈ 𝒫 dom 𝑜((𝑜‘(𝑎𝑒)) +𝑒 (𝑜‘(𝑎𝑒))) = (𝑜𝑎)})
covoln 46503class voln*
df-ovoln 46504voln* = (𝑥 ∈ Fin ↦ (𝑦 ∈ 𝒫 (ℝ ↑m 𝑥) ↦ if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ* ∣ ∃𝑖 ∈ (((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 𝑗 ∈ ℕ X𝑘𝑥 (([,) ∘ (𝑖𝑗))‘𝑘) ∧ 𝑧 = (Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘𝑥 (vol‘(([,) ∘ (𝑖𝑗))‘𝑘)))))}, ℝ*, < ))))
cvoln 46505class voln
df-voln 46506voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾ (CaraGen‘(voln*‘𝑥))))
csmblfn 46662class SMblFn
df-smblfn 46663SMblFn = (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ ↑pm 𝑠) ∣ ∀𝑎 ∈ ℝ (𝑓 “ (-∞(,)𝑎)) ∈ (𝑠t dom 𝑓)})
cupword 46843class UpWord 𝑆
df-upword 46844UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤𝑘) < (𝑤‘(𝑘 + 1)))}
caiota 47044class (℩'𝑥𝜑)
df-aiota 47046(℩'𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
wdfat 47077wff 𝐹 defAt 𝐴
cafv 47078class (𝐹'''𝐴)
caov 47079class ((𝐴𝐹𝐵))
df-dfat 47080(𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
df-afv 47081(𝐹'''𝐴) = (℩'𝑥𝐴𝐹𝑥)
df-aov 47082 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
cafv2 47169class (𝐹''''𝐴)
df-afv2 47170(𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ran 𝐹)
cnelbr 47232class _∉
df-nelbr 47233 _∉ = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥𝑦}
ciccp 47349class RePart
df-iccp 47350RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ*m (0...𝑚)) ∣ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1))})
wich 47381wff [𝑥𝑦]𝜑
df-ich 47382([𝑥𝑦]𝜑 ↔ ∀𝑥𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑𝜑))
cspr 47413class Pairs
df-spr 47414Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏}})
cprpr 47448class Pairsproper
df-prpr 47449Pairsproper = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 (𝑎𝑏𝑝 = {𝑎, 𝑏})})
cfmtno 47463class FermatNo
df-fmtno 47464FermatNo = (𝑛 ∈ ℕ0 ↦ ((2↑(2↑𝑛)) + 1))
ceven 47560class Even
codd 47561class Odd
df-even 47562 Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ}
df-odd 47563 Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ}
cfppr 47660class FPPr
df-fppr 47661 FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))})
cgbe 47681class GoldbachEven
cgbow 47682class GoldbachOddW
cgbo 47683class GoldbachOdd
df-gbe 47684 GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))}
df-gbow 47685 GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)}
df-gbo 47686 GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}
ax-bgbltosilva 47746((𝑁 ∈ Even ∧ 4 < 𝑁𝑁 ≤ (4 · (10↑18))) → 𝑁 ∈ GoldbachEven )
ax-tgoldbachgt 47747𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧}    &   𝐺 = {𝑧𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝𝑂𝑞𝑂𝑟𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))}       𝑚 ∈ ℕ (𝑚 ≤ (10↑27) ∧ ∀𝑛𝑂 (𝑚 < 𝑛𝑛𝐺))
ax-hgprmladder 47750𝑑 ∈ (ℤ‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = 13 ∧ (𝑓𝑑) = (89 · (10↑29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓𝑖)) < ((4 · (10↑18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓𝑖))))
cclnbgr 47754class ClNeighbVtx
df-clnbgr 47755 ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}))
cisubgr 47795class ISubGr
df-isubgr 47796 ISubGr = (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ ⟨𝑣, (iEdg‘𝑔) / 𝑒(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒𝑥) ⊆ 𝑣})⟩)
cgrisom 47809class GraphIsom
cgrim 47810class GraphIso
cgric 47811class 𝑔𝑟
df-grisom 47812 GraphIsom = (𝑥 ∈ V, 𝑦 ∈ V ↦ {⟨𝑓, 𝑔⟩ ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom (iEdg‘𝑦) ∧ ∀𝑖 ∈ dom (iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔𝑖)))})
df-grim 47813 GraphIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘) / 𝑑](𝑗:dom 𝑒1-1-onto→dom 𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗𝑖)) = (𝑓 “ (𝑒𝑖))))})
df-gric 47816𝑔𝑟 = ( GraphIso “ (V ∖ 1o))
cgrtri 47853class GrTriangles
df-grtri 47854GrTriangles = (𝑔 ∈ V ↦ (Vtx‘𝑔) / 𝑣(Edg‘𝑔) / 𝑒{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))})
cstgr 47867class StarGr
df-stgr 47868StarGr = (𝑛 ∈ ℕ0 ↦ {⟨(Base‘ndx), (0...𝑛)⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 (0...𝑛) ∣ ∃𝑥 ∈ (1...𝑛)𝑒 = {0, 𝑥}})⟩})
cgrlim 47892class GraphLocIso
cgrlic 47893class 𝑙𝑔𝑟
df-grlim 47894 GraphLocIso = (𝑔 ∈ V, ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 ( ISubGr ( ClNeighbVtx (𝑓𝑣))))})
df-grlic 47897𝑙𝑔𝑟 = ( GraphLocIso “ (V ∖ 1o))
cgpg 47948class gPetersenGr
df-gpg 47949 gPetersenGr = (𝑛 ∈ ℕ, 𝑘 ∈ (1..^(⌈‘(𝑛 / 2))) ↦ {⟨(Base‘ndx), ({0, 1} × (0..^𝑛))⟩, ⟨(.ef‘ndx), ( I ↾ {𝑒 ∈ 𝒫 ({0, 1} × (0..^𝑛)) ∣ ∃𝑥 ∈ (0..^𝑛)(𝑒 = {⟨0, 𝑥⟩, ⟨0, ((𝑥 + 1) mod 𝑛)⟩} ∨ 𝑒 = {⟨0, 𝑥⟩, ⟨1, 𝑥⟩} ∨ 𝑒 = {⟨1, 𝑥⟩, ⟨1, ((𝑥 + 𝑘) mod 𝑛)⟩})})⟩})
cupwlks 47998class UPWalks
df-upwlks 47999UPWalks = (𝑔 ∈ V ↦ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓𝑘)) = {(𝑝𝑘), (𝑝‘(𝑘 + 1))})})
ccllaw 48048class clLaw
casslaw 48049class assLaw
ccomlaw 48050class comLaw
df-cllaw 48051 clLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) ∈ 𝑚}
df-comlaw 48052 comLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥)}
df-asslaw 48053 assLaw = {⟨𝑜, 𝑚⟩ ∣ ∀𝑥𝑚𝑦𝑚𝑧𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))}
cintop 48061class intOp
cclintop 48062class clIntOp
cassintop 48063class assIntOp
df-intop 48064 intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛m (𝑚 × 𝑚)))
df-clintop 48065 clIntOp = (𝑚 ∈ V ↦ (𝑚 intOp 𝑚))
df-assintop 48066 assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚})
cmgm2 48080class MgmALT
ccmgm2 48081class CMgmALT
csgrp2 48082class SGrpALT
ccsgrp2 48083class CSGrpALT
df-mgm2 48084MgmALT = {𝑚 ∣ (+g𝑚) clLaw (Base‘𝑚)}
df-cmgm2 48085CMgmALT = {𝑚 ∈ MgmALT ∣ (+g𝑚) comLaw (Base‘𝑚)}
df-sgrp2 48086SGrpALT = {𝑔 ∈ MgmALT ∣ (+g𝑔) assLaw (Base‘𝑔)}
df-csgrp2 48087CSGrpALT = {𝑔 ∈ SGrpALT ∣ (+g𝑔) comLaw (Base‘𝑔)}
crngcALTV 48128class RngCatALTV
df-rngcALTV 48129RngCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Rng) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RngHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RngHom 𝑧), 𝑓 ∈ ((1st𝑣) RngHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩})
cringcALTV 48152class RingCatALTV
df-ringcALTV 48153RingCatALTV = (𝑢 ∈ V ↦ (𝑢 ∩ Ring) / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), (𝑥𝑏, 𝑦𝑏 ↦ (𝑥 RingHom 𝑦))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧𝑏 ↦ (𝑔 ∈ ((2nd𝑣) RingHom 𝑧), 𝑓 ∈ ((1st𝑣) RingHom (2nd𝑣)) ↦ (𝑔𝑓)))⟩})
cdmatalt 48263class DMatALT
cscmatalt 48264class ScMatALT
df-dmatalt 48265 DMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎(𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖𝑛𝑗𝑛 (𝑖𝑗 → (𝑖𝑚𝑗) = (0g𝑟))}))
df-scmatalt 48266 ScMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑛 Mat 𝑟) / 𝑎(𝑎s {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)∀𝑖𝑛𝑗𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g𝑟))}))
clinc 48271class linC
clinco 48272class LinCo
df-linc 48273 linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥𝑣 ↦ ((𝑠𝑥)( ·𝑠𝑚)𝑥)))))
df-lco 48274 LinCo = (𝑚 ∈ V, 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ {𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp (0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))})
clininds 48307class linIndS
clindeps 48308class linDepS
df-lininds 48309 linIndS = {⟨𝑠, 𝑚⟩ ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g𝑚)) → ∀𝑥𝑠 (𝑓𝑥) = (0g‘(Scalar‘𝑚))))}
df-lindeps 48311 linDepS = {⟨𝑠, 𝑚⟩ ∣ ¬ 𝑠 linIndS 𝑚}
cfdiv 48408class /f
df-fdiv 48409 /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓f / 𝑔) ↾ (𝑔 supp 0)))
cbigo 48418class Ο
df-bigo 48419Ο = (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))})
cblen 48440class #b
df-blen 48441#b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)))
cdig 48466class digit
df-dig 48467digit = (𝑏 ∈ ℕ ↦ (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦ ((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏)))
cnaryf 48497class -aryF
df-naryf 48498-aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥m (𝑥m (0..^𝑛))))
citco 48528class IterComp
cack 48529class Ack
df-itco 48530IterComp = (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓))))
df-ack 48531Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖)))
cline 48598class LineM
csph 48599class Sphere
df-line 48600LineM = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 = ((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠𝑤)𝑥)(+g𝑤)(𝑡( ·𝑠𝑤)𝑦))}))
df-sph 48601Sphere = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟}))
cup 48851class UP
df-up 48852UP = (𝑑 ∈ V, 𝑒 ∈ V ↦ (Base‘𝑑) / 𝑏(Base‘𝑒) / 𝑐(Hom ‘𝑑) / (Hom ‘𝑒) / 𝑗(comp‘𝑒) / 𝑜(𝑓 ∈ (𝑑 Func 𝑒), 𝑤𝑐 ↦ {⟨𝑥, 𝑚⟩ ∣ ((𝑥𝑏𝑚 ∈ (𝑤𝑗((1st𝑓)‘𝑥))) ∧ ∀𝑦𝑏𝑔 ∈ (𝑤𝑗((1st𝑓)‘𝑦))∃!𝑘 ∈ (𝑥𝑦)𝑔 = (((𝑥(2nd𝑓)𝑦)‘𝑘)(⟨𝑤, ((1st𝑓)‘𝑥)⟩𝑜((1st𝑓)‘𝑦))𝑚))}))
cfuco 48885class F
df-fuco 48886F = (𝑝 ∈ V, 𝑒 ∈ V ↦ (1st𝑝) / 𝑐(2nd𝑝) / 𝑑((𝑑 Func 𝑒) × (𝑐 Func 𝑑)) / 𝑤⟨( ∘func𝑤), (𝑢𝑤, 𝑣𝑤(1st ‘(2nd𝑢)) / 𝑓(1st ‘(1st𝑢)) / 𝑘(2nd ‘(1st𝑢)) / 𝑙(1st ‘(2nd𝑣)) / 𝑚(1st ‘(1st𝑣)) / 𝑟(𝑏 ∈ ((1st𝑢)(𝑑 Nat 𝑒)(1st𝑣)), 𝑎 ∈ ((2nd𝑢)(𝑐 Nat 𝑑)(2nd𝑣)) ↦ (𝑥 ∈ (Base‘𝑐) ↦ ((𝑏‘(𝑚𝑥))(⟨(𝑘‘(𝑓𝑥)), (𝑘‘(𝑚𝑥))⟩(comp‘𝑒)(𝑟‘(𝑚𝑥)))(((𝑓𝑥)𝑙(𝑚𝑥))‘(𝑎𝑥))))))⟩)
cthinc 48927class ThinCat
df-thinc 48928ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ]𝑥𝑏𝑦𝑏 ∃*𝑓 𝑓 ∈ (𝑥𝑦)}
cprstc 48971class ProsetToCat
df-prstc 48972ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet ⟨(Hom ‘ndx), ((le‘𝑘) × {1o})⟩) sSet ⟨(comp‘ndx), ∅⟩))
cmndtc 48994class MndToCat
df-mndtc 48995MndToCat = (𝑚 ∈ Mnd ↦ {⟨(Base‘ndx), {𝑚}⟩, ⟨(Hom ‘ndx), {⟨𝑚, 𝑚, (Base‘𝑚)⟩}⟩, ⟨(comp‘ndx), {⟨⟨𝑚, 𝑚, 𝑚⟩, (+g𝑚)⟩}⟩})
csetrecs 49022class setrecs(𝐹)
df-setrecs 49023setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
cpg 49048class Pg
df-pg 49049Pg = setrecs((𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥)))
cge-real 49059class
cgt 49060class >
df-gte 49061 ≥ =
df-gt 49062 > = <
csinh 49069class sinh
ccosh 49070class cosh
ctanh 49071class tanh
df-sinh 49072sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i · 𝑥)) / i))
df-cosh 49073cosh = (𝑥 ∈ ℂ ↦ (cos‘(i · 𝑥)))
df-tanh 49074tanh = (𝑥 ∈ (cosh “ (ℂ ∖ {0})) ↦ ((tan‘(i · 𝑥)) / i))
csec 49080class sec
ccsc 49081class csc
ccot 49082class cot
df-sec 49083sec = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↦ (1 / (cos‘𝑥)))
df-csc 49084csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 / (sin‘𝑥)))
df-cot 49085cot = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ ((cos‘𝑥) / (sin‘𝑥)))
clog- 49104class log_
df-logbALT 49105log_ = (𝑏 ∈ (ℂ ∖ {0, 1}) ↦ (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝑏))))
wreflexive 49106wff 𝑅Reflexive𝐴
df-reflexive 49107(𝑅Reflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥𝐴 𝑥𝑅𝑥))
wirreflexive 49108wff 𝑅Irreflexive𝐴
df-irreflexive 49109(𝑅Irreflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥𝐴 ¬ 𝑥𝑅𝑥))
walsi 49125wff ∀!𝑥(𝜑𝜓)
walsc 49126wff ∀!𝑥𝐴𝜑
df-alsi 49127(∀!𝑥(𝜑𝜓) ↔ (∀𝑥(𝜑𝜓) ∧ ∃𝑥𝜑))
df-alsc 49128(∀!𝑥𝐴𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∃𝑥 𝑥𝐴))
  Copyright terms: Public domain W3C validator