List of Syntax, Axioms (ax-) and
Definitions (df-)
Ref | Expression (see link for any distinct variable requirements)
|
wn 3 | wff ¬ 𝜑 |
wi 4 | wff (𝜑 → 𝜓) |
ax-mp 5 | ⊢ 𝜑
& ⊢ (𝜑 → 𝜓) ⇒ ⊢ 𝜓 |
ax-1 6 | ⊢ (𝜑 → (𝜓 → 𝜑)) |
ax-2 7 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
ax-3 8 | ⊢ ((¬ 𝜑 → ¬ 𝜓) → (𝜓 → 𝜑)) |
wb 206 | wff (𝜑 ↔ 𝜓) |
df-bi 207 | ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) |
wa 395 | wff (𝜑 ∧ 𝜓) |
df-an 396 | ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) |
wo 846 | wff (𝜑 ∨ 𝜓) |
df-or 847 | ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) |
wif 1063 | wff if-(𝜑, 𝜓, 𝜒) |
df-ifp 1064 | ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) |
w3o 1086 | wff (𝜑 ∨ 𝜓 ∨ 𝜒) |
w3a 1087 | wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
df-3or 1088 | ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) |
df-3an 1089 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) |
wnan 1488 | wff (𝜑 ⊼ 𝜓) |
df-nan 1489 | ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
wxo 1508 | wff (𝜑 ⊻ 𝜓) |
df-xor 1509 | ⊢ ((𝜑 ⊻ 𝜓) ↔ ¬ (𝜑 ↔ 𝜓)) |
wnor 1525 | wff (𝜑 ⊽ 𝜓) |
df-nor 1526 | ⊢ ((𝜑 ⊽ 𝜓) ↔ ¬ (𝜑 ∨ 𝜓)) |
wal 1535 | wff ∀𝑥𝜑 |
cv 1536 | class 𝑥 |
wceq 1537 | wff 𝐴 = 𝐵 |
wtru 1538 | wff ⊤ |
df-tru 1540 | ⊢ (⊤ ↔ (∀𝑥 𝑥 = 𝑥 → ∀𝑥 𝑥 = 𝑥)) |
wfal 1549 | wff ⊥ |
df-fal 1550 | ⊢ (⊥ ↔ ¬
⊤) |
whad 1590 | wff hadd(𝜑, 𝜓, 𝜒) |
df-had 1591 | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ⊻ 𝜓) ⊻ 𝜒)) |
wcad 1603 | wff cadd(𝜑, 𝜓, 𝜒) |
df-cad 1604 | ⊢ (cadd(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (𝜒 ∧ (𝜑 ⊻ 𝜓)))) |
wex 1777 | wff ∃𝑥𝜑 |
df-ex 1778 | ⊢ (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑) |
wnf 1781 | wff Ⅎ𝑥𝜑 |
df-nf 1782 | ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
ax-gen 1793 | ⊢ 𝜑 ⇒ ⊢ ∀𝑥𝜑 |
ax-4 1807 | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
ax-5 1909 | ⊢ (𝜑 → ∀𝑥𝜑) |
ax-6 1967 | ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 |
ax-7 2007 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) |
wsb 2064 | wff [𝑦 / 𝑥]𝜑 |
df-sb 2065 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
wcel 2108 | wff 𝐴 ∈ 𝐵 |
ax-8 2110 | ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑧 → 𝑦 ∈ 𝑧)) |
ax-9 2118 | ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑦)) |
ax-10 2141 | ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
ax-11 2158 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
ax-12 2178 | ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
ax-13 2380 | ⊢ (¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
wmo 2541 | wff ∃*𝑥𝜑 |
df-mo 2543 | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
weu 2571 | wff ∃!𝑥𝜑 |
df-eu 2572 | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) |
ax-ext 2711 | ⊢ (∀𝑧(𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦) → 𝑥 = 𝑦) |
cab 2717 | class {𝑥 ∣ 𝜑} |
df-clab 2718 | ⊢ (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ [𝑥 / 𝑦]𝜑) |
df-cleq 2732 | ⊢ (𝑦 = 𝑧 ↔ ∀𝑢(𝑢 ∈ 𝑦 ↔ 𝑢 ∈ 𝑧))
& ⊢ (𝑡 = 𝑡 ↔ ∀𝑣(𝑣 ∈ 𝑡 ↔ 𝑣 ∈ 𝑡)) ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
df-clel 2819 | ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧))
& ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
wnfc 2893 | wff Ⅎ𝑥𝐴 |
df-nfc 2895 | ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) |
wne 2946 | wff 𝐴 ≠ 𝐵 |
df-ne 2947 | ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) |
wnel 3052 | wff 𝐴 ∉ 𝐵 |
df-nel 3053 | ⊢ (𝐴 ∉ 𝐵 ↔ ¬ 𝐴 ∈ 𝐵) |
wral 3067 | wff ∀𝑥 ∈ 𝐴 𝜑 |
df-ral 3068 | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
wrex 3076 | wff ∃𝑥 ∈ 𝐴 𝜑 |
df-rex 3077 | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
wreu 3386 | wff ∃!𝑥 ∈ 𝐴 𝜑 |
wrmo 3387 | wff ∃*𝑥 ∈ 𝐴 𝜑 |
df-rmo 3388 | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
df-reu 3389 | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
crab 3443 | class {𝑥 ∈ 𝐴 ∣ 𝜑} |
df-rab 3444 | ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
cvv 3488 | class V |
df-v 3490 | ⊢ V = {𝑥 ∣ 𝑥 = 𝑥} |
wcdeq 3785 | wff CondEq(𝑥 = 𝑦 → 𝜑) |
df-cdeq 3786 | ⊢ (CondEq(𝑥 = 𝑦 → 𝜑) ↔ (𝑥 = 𝑦 → 𝜑)) |
wsbc 3804 | wff [𝐴 / 𝑥]𝜑 |
df-sbc 3805 | ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑}) |
csb 3921 | class ⦋𝐴 / 𝑥⦌𝐵 |
df-csb 3922 | ⊢ ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ [𝐴 / 𝑥]𝑦 ∈ 𝐵} |
cdif 3973 | class (𝐴 ∖ 𝐵) |
cun 3974 | class (𝐴 ∪ 𝐵) |
cin 3975 | class (𝐴 ∩ 𝐵) |
wss 3976 | wff 𝐴 ⊆ 𝐵 |
wpss 3977 | wff 𝐴 ⊊ 𝐵 |
df-dif 3979 | ⊢ (𝐴 ∖ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)} |
df-un 3981 | ⊢ (𝐴 ∪ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)} |
df-in 3983 | ⊢ (𝐴 ∩ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)} |
df-ss 3993 | ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) |
df-pss 3996 | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
csymdif 4271 | class (𝐴 △ 𝐵) |
df-symdif 4272 | ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) |
c0 4352 | class ∅ |
df-nul 4353 | ⊢ ∅ = (V ∖ V) |
cif 4548 | class if(𝜑, 𝐴, 𝐵) |
df-if 4549 | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝜑))} |
cpw 4622 | class 𝒫 𝐴 |
df-pw 4624 | ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} |
csn 4648 | class {𝐴} |
df-sn 4649 | ⊢ {𝐴} = {𝑥 ∣ 𝑥 = 𝐴} |
cpr 4650 | class {𝐴, 𝐵} |
df-pr 4651 | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
ctp 4652 | class {𝐴, 𝐵, 𝐶} |
df-tp 4653 | ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) |
cop 4654 | class 〈𝐴, 𝐵〉 |
df-op 4655 | ⊢ 〈𝐴, 𝐵〉 = {𝑥 ∣ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝑥 ∈ {{𝐴}, {𝐴, 𝐵}})} |
cotp 4656 | class 〈𝐴, 𝐵, 𝐶〉 |
df-ot 4657 | ⊢ 〈𝐴, 𝐵, 𝐶〉 = 〈〈𝐴, 𝐵〉, 𝐶〉 |
cuni 4931 | class ∪
𝐴 |
df-uni 4932 | ⊢ ∪ 𝐴 = {𝑥 ∣ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)} |
cint 4970 | class ∩
𝐴 |
df-int 4971 | ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)} |
ciun 5015 | class ∪ 𝑥 ∈ 𝐴 𝐵 |
ciin 5016 | class ∩ 𝑥 ∈ 𝐴 𝐵 |
df-iun 5017 | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
df-iin 5018 | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} |
wdisj 5133 | wff Disj 𝑥 ∈ 𝐴 𝐵 |
df-disj 5134 | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) |
wbr 5166 | wff 𝐴𝑅𝐵 |
df-br 5167 | ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) |
copab 5228 | class {〈𝑥, 𝑦〉 ∣ 𝜑} |
df-opab 5229 | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
cmpt 5249 | class (𝑥 ∈ 𝐴 ↦ 𝐵) |
df-mpt 5250 | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵)} |
wtr 5283 | wff Tr 𝐴 |
df-tr 5284 | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
ax-rep 5303 | ⊢ (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑))) |
ax-sep 5317 | ⊢ ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝑧 ∧ 𝜑)) |
ax-nul 5324 | ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 |
ax-pow 5383 | ⊢ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
ax-pr 5447 | ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) |
cid 5592 | class I |
df-id 5593 | ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
cep 5598 | class E |
df-eprel 5599 | ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} |
wpo 5605 | wff 𝑅 Po 𝐴 |
wor 5606 | wff 𝑅 Or 𝐴 |
df-po 5607 | ⊢ (𝑅 Po 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧))) |
df-so 5608 | ⊢ (𝑅 Or 𝐴 ↔ (𝑅 Po 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦𝑅𝑥))) |
wfr 5649 | wff 𝑅 Fr 𝐴 |
wse 5650 | wff 𝑅 Se 𝐴 |
wwe 5651 | wff 𝑅 We 𝐴 |
df-fr 5652 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 ¬ 𝑧𝑅𝑦)) |
df-se 5653 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑥} ∈ V) |
df-we 5654 | ⊢ (𝑅 We 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Or 𝐴)) |
cxp 5698 | class (𝐴 × 𝐵) |
ccnv 5699 | class ◡𝐴 |
cdm 5700 | class dom 𝐴 |
crn 5701 | class ran 𝐴 |
cres 5702 | class (𝐴 ↾ 𝐵) |
cima 5703 | class (𝐴 “ 𝐵) |
ccom 5704 | class (𝐴 ∘ 𝐵) |
wrel 5705 | wff Rel 𝐴 |
df-xp 5706 | ⊢ (𝐴 × 𝐵) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)} |
df-rel 5707 | ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) |
df-cnv 5708 | ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} |
df-co 5709 | ⊢ (𝐴 ∘ 𝐵) = {〈𝑥, 𝑦〉 ∣ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)} |
df-dm 5710 | ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
df-rn 5711 | ⊢ ran 𝐴 = dom ◡𝐴 |
df-res 5712 | ⊢ (𝐴 ↾ 𝐵) = (𝐴 ∩ (𝐵 × V)) |
df-ima 5713 | ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) |
cpred 6331 | class Pred(𝑅, 𝐴, 𝑋) |
df-pred 6332 | ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) |
word 6394 | wff Ord 𝐴 |
con0 6395 | class On |
wlim 6396 | wff Lim 𝐴 |
csuc 6397 | class suc 𝐴 |
df-ord 6398 | ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) |
df-on 6399 | ⊢ On = {𝑥 ∣ Ord 𝑥} |
df-lim 6400 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
df-suc 6401 | ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) |
cio 6523 | class (℩𝑥𝜑) |
df-iota 6525 | ⊢ (℩𝑥𝜑) = ∪ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} |
wfun 6567 | wff Fun 𝐴 |
wfn 6568 | wff 𝐴 Fn 𝐵 |
wf 6569 | wff 𝐹:𝐴⟶𝐵 |
wf1 6570 | wff 𝐹:𝐴–1-1→𝐵 |
wfo 6571 | wff 𝐹:𝐴–onto→𝐵 |
wf1o 6572 | wff 𝐹:𝐴–1-1-onto→𝐵 |
cfv 6573 | class (𝐹‘𝐴) |
wiso 6574 | wff 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) |
df-fun 6575 | ⊢ (Fun 𝐴 ↔ (Rel 𝐴 ∧ (𝐴 ∘ ◡𝐴) ⊆ I )) |
df-fn 6576 | ⊢ (𝐴 Fn 𝐵 ↔ (Fun 𝐴 ∧ dom 𝐴 = 𝐵)) |
df-f 6577 | ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
df-f1 6578 | ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) |
df-fo 6579 | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
df-f1o 6580 | ⊢ (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐹:𝐴–1-1→𝐵 ∧ 𝐹:𝐴–onto→𝐵)) |
df-fv 6581 | ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) |
df-isom 6582 | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) |
crio 7403 | class (℩𝑥 ∈ 𝐴 𝜑) |
df-riota 7404 | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
co 7448 | class (𝐴𝐹𝐵) |
coprab 7449 | class {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} |
cmpo 7450 | class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
df-ov 7451 | ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) |
df-oprab 7452 | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} |
df-mpo 7453 | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} |
cof 7712 | class ∘f 𝑅 |
cofr 7713 | class ∘r 𝑅 |
df-of 7714 | ⊢ ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
df-ofr 7715 | ⊢ ∘r 𝑅 = {〈𝑓, 𝑔〉 ∣ ∀𝑥 ∈ (dom 𝑓 ∩ dom 𝑔)(𝑓‘𝑥)𝑅(𝑔‘𝑥)} |
crpss 7757 | class
[⊊] |
df-rpss 7758 | ⊢ [⊊] = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊊ 𝑦} |
ax-un 7770 | ⊢ ∃𝑦∀𝑧(∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦) |
com 7903 | class ω |
df-om 7904 | ⊢ ω = {𝑥 ∈ On ∣ ∀𝑦(Lim 𝑦 → 𝑥 ∈ 𝑦)} |
c1st 8028 | class 1st |
c2nd 8029 | class 2nd |
df-1st 8030 | ⊢ 1st = (𝑥 ∈ V ↦ ∪ dom {𝑥}) |
df-2nd 8031 | ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) |
csupp 8201 | class supp |
df-supp 8202 | ⊢ supp = (𝑥 ∈ V, 𝑧 ∈ V ↦ {𝑖 ∈ dom 𝑥 ∣ (𝑥 “ {𝑖}) ≠ {𝑧}}) |
ctpos 8266 | class tpos 𝐹 |
df-tpos 8267 | ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) |
ccur 8306 | class curry 𝐴 |
cunc 8307 | class uncurry 𝐴 |
df-cur 8308 | ⊢ curry 𝐹 = (𝑥 ∈ dom dom 𝐹 ↦ {〈𝑦, 𝑧〉 ∣ 〈𝑥, 𝑦〉𝐹𝑧}) |
df-unc 8309 | ⊢ uncurry 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝑦(𝐹‘𝑥)𝑧} |
cund 8313 | class Undef |
df-undef 8314 | ⊢ Undef = (𝑠 ∈ V ↦ 𝒫 ∪ 𝑠) |
cfrecs 8321 | class frecs(𝑅, 𝐴, 𝐹) |
df-frecs 8322 | ⊢ frecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥 ⊆ 𝐴 ∧ ∀𝑦 ∈ 𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥) ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑦𝐹(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦))))} |
cwrecs 8352 | class wrecs(𝑅, 𝐴, 𝐹) |
df-wrecs 8353 | ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) |
wsmo 8401 | wff Smo 𝐴 |
df-smo 8402 | ⊢ (Smo 𝐴 ↔ (𝐴:dom 𝐴⟶On ∧ Ord dom 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∀𝑦 ∈ dom 𝐴(𝑥 ∈ 𝑦 → (𝐴‘𝑥) ∈ (𝐴‘𝑦)))) |
crecs 8426 | class recs(𝐹) |
df-recs 8427 | ⊢ recs(𝐹) = wrecs( E , On, 𝐹) |
crdg 8465 | class rec(𝐹, 𝐼) |
df-rdg 8466 | ⊢ rec(𝐹, 𝐼) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝐼, if(Lim dom 𝑔, ∪ ran 𝑔, (𝐹‘(𝑔‘∪ dom 𝑔)))))) |
cseqom 8503 | class seqω(𝐹, 𝐼) |
df-seqom 8504 | ⊢ seqω(𝐹, 𝐼) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ 〈suc 𝑖, (𝑖𝐹𝑣)〉), 〈∅, ( I ‘𝐼)〉) “
ω) |
c1o 8515 | class 1o |
c2o 8516 | class 2o |
c3o 8517 | class 3o |
c4o 8518 | class 4o |
coa 8519 | class +o |
comu 8520 | class
·o |
coe 8521 | class
↑o |
df-1o 8522 | ⊢ 1o = suc
∅ |
df-2o 8523 | ⊢ 2o = suc
1o |
df-3o 8524 | ⊢ 3o = suc
2o |
df-4o 8525 | ⊢ 4o = suc
3o |
df-oadd 8526 | ⊢ +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦)) |
df-omul 8527 | ⊢ ·o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +o 𝑥)), ∅)‘𝑦)) |
df-oexp 8528 | ⊢ ↑o = (𝑥 ∈ On, 𝑦 ∈ On ↦ if(𝑥 = ∅, (1o ∖ 𝑦), (rec((𝑧 ∈ V ↦ (𝑧 ·o 𝑥)), 1o)‘𝑦))) |
cnadd 8721 | class +no |
df-nadd 8722 | ⊢ +no = frecs({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (On × On) ∧ 𝑦 ∈ (On × On) ∧
(((1st ‘𝑥)
E (1st ‘𝑦)
∨ (1st ‘𝑥) = (1st ‘𝑦)) ∧ ((2nd ‘𝑥) E (2nd ‘𝑦) ∨ (2nd
‘𝑥) = (2nd
‘𝑦)) ∧ 𝑥 ≠ 𝑦))}, (On × On), (𝑧 ∈ V, 𝑎 ∈ V ↦ ∩ {𝑤
∈ On ∣ ((𝑎
“ ({(1st ‘𝑧)} × (2nd ‘𝑧))) ⊆ 𝑤 ∧ (𝑎 “ ((1st ‘𝑧) × {(2nd
‘𝑧)})) ⊆ 𝑤)})) |
wer 8760 | wff 𝑅 Er 𝐴 |
cec 8761 | class [𝐴]𝑅 |
cqs 8762 | class (𝐴 / 𝑅) |
df-er 8763 | ⊢ (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (◡𝑅 ∪ (𝑅 ∘ 𝑅)) ⊆ 𝑅)) |
df-ec 8765 | ⊢ [𝐴]𝑅 = (𝑅 “ {𝐴}) |
df-qs 8769 | ⊢ (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = [𝑥]𝑅} |
cmap 8884 | class
↑m |
cpm 8885 | class
↑pm |
df-map 8886 | ⊢ ↑m = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑦⟶𝑥}) |
df-pm 8887 | ⊢ ↑pm = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∈ 𝒫 (𝑦 × 𝑥) ∣ Fun 𝑓}) |
cixp 8955 | class X𝑥 ∈ 𝐴 𝐵 |
df-ixp 8956 | ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥 ∣ 𝑥 ∈ 𝐴} ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} |
cen 9000 | class ≈ |
cdom 9001 | class ≼ |
csdm 9002 | class ≺ |
cfn 9003 | class Fin |
df-en 9004 | ⊢ ≈ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦} |
df-dom 9005 | ⊢ ≼ = {〈𝑥, 𝑦〉 ∣ ∃𝑓 𝑓:𝑥–1-1→𝑦} |
df-sdom 9006 | ⊢ ≺ = ( ≼ ∖ ≈
) |
df-fin 9007 | ⊢ Fin = {𝑥 ∣ ∃𝑦 ∈ ω 𝑥 ≈ 𝑦} |
cfsupp 9431 | class finSupp |
df-fsupp 9432 | ⊢ finSupp = {〈𝑟, 𝑧〉 ∣ (Fun 𝑟 ∧ (𝑟 supp 𝑧) ∈ Fin)} |
cfi 9479 | class fi |
df-fi 9480 | ⊢ fi = (𝑥 ∈ V ↦ {𝑧 ∣ ∃𝑦 ∈ (𝒫 𝑥 ∩ Fin)𝑧 = ∩ 𝑦}) |
csup 9509 | class sup(𝐴, 𝐵, 𝑅) |
cinf 9510 | class inf(𝐴, 𝐵, 𝑅) |
df-sup 9511 | ⊢ sup(𝐴, 𝐵, 𝑅) = ∪ {𝑥 ∈ 𝐵 ∣ (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐵 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))} |
df-inf 9512 | ⊢ inf(𝐴, 𝐵, 𝑅) = sup(𝐴, 𝐵, ◡𝑅) |
coi 9578 | class OrdIso(𝑅, 𝐴) |
df-oi 9579 | ⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) |
char 9625 | class har |
df-har 9626 | ⊢ har = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑥}) |
cwdom 9633 | class
≼* |
df-wdom 9634 | ⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} |
ax-reg 9661 | ⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) |
ax-inf 9707 | ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑦))) |
ax-inf2 9710 | ⊢ ∃𝑥(∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧 ¬ 𝑧 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝑥 → ∃𝑧(𝑧 ∈ 𝑥 ∧ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 ∈ 𝑦 ∨ 𝑤 = 𝑦))))) |
ccnf 9730 | class CNF |
df-cnf 9731 | ⊢ CNF = (𝑥 ∈ On, 𝑦 ∈ On ↦ (𝑓 ∈ {𝑔 ∈ (𝑥 ↑m 𝑦) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝑥 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |
cttrcl 9776 | class t++𝑅 |
df-ttrcl 9777 | ⊢ t++𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ (ω ∖
1o)∃𝑓(𝑓 Fn suc 𝑛 ∧ ((𝑓‘∅) = 𝑥 ∧ (𝑓‘𝑛) = 𝑦) ∧ ∀𝑚 ∈ 𝑛 (𝑓‘𝑚)𝑅(𝑓‘suc 𝑚))} |
ctc 9805 | class TC |
df-tc 9806 | ⊢ TC = (𝑥 ∈ V ↦ ∩ {𝑦
∣ (𝑥 ⊆ 𝑦 ∧ Tr 𝑦)}) |
cr1 9831 | class
𝑅1 |
crnk 9832 | class rank |
df-r1 9833 | ⊢ 𝑅1 =
rec((𝑥 ∈ V ↦
𝒫 𝑥),
∅) |
df-rank 9834 | ⊢ rank = (𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑥 ∈
(𝑅1‘suc 𝑦)}) |
cdju 9967 | class (𝐴 ⊔ 𝐵) |
cinl 9968 | class inl |
cinr 9969 | class inr |
df-dju 9970 | ⊢ (𝐴 ⊔ 𝐵) = (({∅} × 𝐴) ∪ ({1o} × 𝐵)) |
df-inl 9971 | ⊢ inl = (𝑥 ∈ V ↦ 〈∅, 𝑥〉) |
df-inr 9972 | ⊢ inr = (𝑥 ∈ V ↦ 〈1o, 𝑥〉) |
ccrd 10004 | class card |
cale 10005 | class ℵ |
ccf 10006 | class cf |
wacn 10007 | class AC 𝐴 |
df-card 10008 | ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦
∈ On ∣ 𝑦 ≈
𝑥}) |
df-aleph 10009 | ⊢ ℵ = rec(har, ω) |
df-cf 10010 | ⊢ cf = (𝑥 ∈ On ↦ ∩ {𝑦
∣ ∃𝑧(𝑦 = (card‘𝑧) ∧ (𝑧 ⊆ 𝑥 ∧ ∀𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢))}) |
df-acn 10011 | ⊢ AC 𝐴 = {𝑥 ∣ (𝐴 ∈ V ∧ ∀𝑓 ∈ ((𝒫 𝑥 ∖ {∅}) ↑m 𝐴)∃𝑔∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝑓‘𝑦))} |
wac 10184 | wff
CHOICE |
df-ac 10185 | ⊢ (CHOICE ↔
∀𝑥∃𝑓(𝑓 ⊆ 𝑥 ∧ 𝑓 Fn dom 𝑥)) |
cfin1a 10347 | class
FinIa |
cfin2 10348 | class
FinII |
cfin4 10349 | class
FinIV |
cfin3 10350 | class
FinIII |
cfin5 10351 | class FinV |
cfin6 10352 | class
FinVI |
cfin7 10353 | class
FinVII |
df-fin1a 10354 | ⊢ FinIa = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ∈ Fin ∨ (𝑥 ∖ 𝑦) ∈ Fin)} |
df-fin2 10355 | ⊢ FinII = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝒫 𝑥((𝑦 ≠ ∅ ∧ [⊊] Or
𝑦) → ∪ 𝑦
∈ 𝑦)} |
df-fin4 10356 | ⊢ FinIV = {𝑥 ∣ ¬ ∃𝑦(𝑦 ⊊ 𝑥 ∧ 𝑦 ≈ 𝑥)} |
df-fin3 10357 | ⊢ FinIII = {𝑥 ∣ 𝒫 𝑥 ∈ FinIV} |
df-fin5 10358 | ⊢ FinV = {𝑥 ∣ (𝑥 = ∅ ∨ 𝑥 ≺ (𝑥 ⊔ 𝑥))} |
df-fin6 10359 | ⊢ FinVI = {𝑥 ∣ (𝑥 ≺ 2o ∨ 𝑥 ≺ (𝑥 × 𝑥))} |
df-fin7 10360 | ⊢ FinVII = {𝑥 ∣ ¬ ∃𝑦 ∈ (On ∖ ω)𝑥 ≈ 𝑦} |
ax-cc 10504 | ⊢ (𝑥 ≈ ω → ∃𝑓∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧)) |
ax-dc 10515 | ⊢ ((∃𝑦∃𝑧 𝑦𝑥𝑧 ∧ ran 𝑥 ⊆ dom 𝑥) → ∃𝑓∀𝑛 ∈ ω (𝑓‘𝑛)𝑥(𝑓‘suc 𝑛)) |
ax-ac 10528 | ⊢ ∃𝑦∀𝑧∀𝑤((𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥) → ∃𝑣∀𝑢(∃𝑡((𝑢 ∈ 𝑤 ∧ 𝑤 ∈ 𝑡) ∧ (𝑢 ∈ 𝑡 ∧ 𝑡 ∈ 𝑦)) ↔ 𝑢 = 𝑣)) |
ax-ac2 10532 | ⊢ ∃𝑦∀𝑧∃𝑣∀𝑢((𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑦 → ((𝑣 ∈ 𝑥 ∧ ¬ 𝑦 = 𝑣) ∧ 𝑧 ∈ 𝑣))) ∨ (¬ 𝑦 ∈ 𝑥 ∧ (𝑧 ∈ 𝑥 → ((𝑣 ∈ 𝑧 ∧ 𝑣 ∈ 𝑦) ∧ ((𝑢 ∈ 𝑧 ∧ 𝑢 ∈ 𝑦) → 𝑢 = 𝑣))))) |
cgch 10689 | class GCH |
df-gch 10690 | ⊢ GCH = (Fin ∪ {𝑥 ∣ ∀𝑦 ¬ (𝑥 ≺ 𝑦 ∧ 𝑦 ≺ 𝒫 𝑥)}) |
cwina 10751 | class
Inaccw |
cina 10752 | class Inacc |
df-wina 10753 | ⊢ Inaccw = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑥 𝑦 ≺ 𝑧)} |
df-ina 10754 | ⊢ Inacc = {𝑥 ∣ (𝑥 ≠ ∅ ∧ (cf‘𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑥 𝒫 𝑦 ≺ 𝑥)} |
cwun 10769 | class WUni |
cwunm 10770 | class wUniCl |
df-wun 10771 | ⊢ WUni = {𝑢 ∣ (Tr 𝑢 ∧ 𝑢 ≠ ∅ ∧ ∀𝑥 ∈ 𝑢 (∪ 𝑥 ∈ 𝑢 ∧ 𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢))} |
df-wunc 10772 | ⊢ wUniCl = (𝑥 ∈ V ↦ ∩ {𝑢
∈ WUni ∣ 𝑥
⊆ 𝑢}) |
ctsk 10817 | class Tarski |
df-tsk 10818 | ⊢ Tarski = {𝑦 ∣ (∀𝑧 ∈ 𝑦 (𝒫 𝑧 ⊆ 𝑦 ∧ ∃𝑤 ∈ 𝑦 𝒫 𝑧 ⊆ 𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))} |
cgru 10859 | class Univ |
df-gru 10860 | ⊢ Univ = {𝑢 ∣ (Tr 𝑢 ∧ ∀𝑥 ∈ 𝑢 (𝒫 𝑥 ∈ 𝑢 ∧ ∀𝑦 ∈ 𝑢 {𝑥, 𝑦} ∈ 𝑢 ∧ ∀𝑦 ∈ (𝑢 ↑m 𝑥)∪ ran 𝑦 ∈ 𝑢))} |
ax-groth 10892 | ⊢ ∃𝑦(𝑥 ∈ 𝑦 ∧ ∀𝑧 ∈ 𝑦 (∀𝑤(𝑤 ⊆ 𝑧 → 𝑤 ∈ 𝑦) ∧ ∃𝑤 ∈ 𝑦 ∀𝑣(𝑣 ⊆ 𝑧 → 𝑣 ∈ 𝑤)) ∧ ∀𝑧(𝑧 ⊆ 𝑦 → (𝑧 ≈ 𝑦 ∨ 𝑧 ∈ 𝑦))) |
ctskm 10906 | class tarskiMap |
df-tskm 10907 | ⊢ tarskiMap = (𝑥 ∈ V ↦ ∩ {𝑦
∈ Tarski ∣ 𝑥
∈ 𝑦}) |
cnpi 10913 | class N |
cpli 10914 | class
+N |
cmi 10915 | class
·N |
clti 10916 | class
<N |
cplpq 10917 | class
+pQ |
cmpq 10918 | class
·pQ |
cltpq 10919 | class
<pQ |
ceq 10920 | class
~Q |
cnq 10921 | class Q |
c1q 10922 | class
1Q |
cerq 10923 | class
[Q] |
cplq 10924 | class
+Q |
cmq 10925 | class
·Q |
crq 10926 | class
*Q |
cltq 10927 | class
<Q |
cnp 10928 | class P |
c1p 10929 | class
1P |
cpp 10930 | class
+P |
cmp 10931 | class
·P |
cltp 10932 | class
<P |
cer 10933 | class
~R |
cnr 10934 | class R |
c0r 10935 | class
0R |
c1r 10936 | class
1R |
cm1r 10937 | class
-1R |
cplr 10938 | class
+R |
cmr 10939 | class
·R |
cltr 10940 | class
<R |
df-ni 10941 | ⊢ N = (ω
∖ {∅}) |
df-pli 10942 | ⊢ +N = (
+o ↾ (N ×
N)) |
df-mi 10943 | ⊢
·N = ( ·o ↾
(N × N)) |
df-lti 10944 | ⊢ <N = ( E ∩
(N × N)) |
df-plpq 10977 | ⊢ +pQ = (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈(((1st
‘𝑥)
·N (2nd ‘𝑦)) +N
((1st ‘𝑦)
·N (2nd ‘𝑥))), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) |
df-mpq 10978 | ⊢ ·pQ = (𝑥 ∈ (N ×
N), 𝑦 ∈
(N × N) ↦ 〈((1st
‘𝑥)
·N (1st ‘𝑦)), ((2nd ‘𝑥)
·N (2nd ‘𝑦))〉) |
df-ltpq 10979 | ⊢ <pQ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ((1st
‘𝑥)
·N (2nd ‘𝑦)) <N
((1st ‘𝑦)
·N (2nd ‘𝑥)))} |
df-enq 10980 | ⊢ ~Q = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (N ×
N) ∧ 𝑦
∈ (N × N)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))} |
df-nq 10981 | ⊢ Q = {𝑥 ∈ (N ×
N) ∣ ∀𝑦 ∈ (N ×
N)(𝑥
~Q 𝑦 → ¬ (2nd ‘𝑦) <N
(2nd ‘𝑥))} |
df-erq 10982 | ⊢ [Q] = (
~Q ∩ ((N × N)
× Q)) |
df-plq 10983 | ⊢ +Q =
(([Q] ∘ +pQ ) ↾
(Q × Q)) |
df-mq 10984 | ⊢
·Q = (([Q] ∘
·pQ ) ↾ (Q ×
Q)) |
df-1nq 10985 | ⊢ 1Q =
〈1o, 1o〉 |
df-rq 10986 | ⊢ *Q =
(◡ ·Q
“ {1Q}) |
df-ltnq 10987 | ⊢ <Q = (
<pQ ∩ (Q ×
Q)) |
df-np 11050 | ⊢ P = {𝑥 ∣ ((∅ ⊊
𝑥 ∧ 𝑥 ⊊ Q) ∧
∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧))} |
df-1p 11051 | ⊢ 1P =
{𝑥 ∣ 𝑥 <Q
1Q} |
df-plp 11052 | ⊢ +P = (𝑥 ∈ P, 𝑦 ∈ P ↦
{𝑤 ∣ ∃𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑦 𝑤 = (𝑣 +Q 𝑢)}) |
df-mp 11053 | ⊢
·P = (𝑥 ∈ P, 𝑦 ∈ P ↦ {𝑤 ∣ ∃𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑦 𝑤 = (𝑣 ·Q 𝑢)}) |
df-ltp 11054 | ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧
𝑥 ⊊ 𝑦)} |
df-enr 11124 | ⊢ ~R = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (P ×
P) ∧ 𝑦
∈ (P × P)) ∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = 〈𝑧, 𝑤〉 ∧ 𝑦 = 〈𝑣, 𝑢〉) ∧ (𝑧 +P 𝑢) = (𝑤 +P 𝑣)))} |
df-nr 11125 | ⊢ R =
((P × P) / ~R
) |
df-plr 11126 | ⊢ +R =
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈(𝑤 +P
𝑢), (𝑣 +P 𝑓)〉]
~R ))} |
df-mr 11127 | ⊢
·R = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ R ∧ 𝑦 ∈ R) ∧
∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = [〈𝑤, 𝑣〉] ~R ∧
𝑦 = [〈𝑢, 𝑓〉] ~R ) ∧
𝑧 = [〈((𝑤
·P 𝑢) +P (𝑣
·P 𝑓)), ((𝑤 ·P 𝑓) +P
(𝑣
·P 𝑢))〉] ~R
))} |
df-ltr 11128 | ⊢ <R =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ R ∧
𝑦 ∈ R)
∧ ∃𝑧∃𝑤∃𝑣∃𝑢((𝑥 = [〈𝑧, 𝑤〉] ~R ∧
𝑦 = [〈𝑣, 𝑢〉] ~R ) ∧
(𝑧
+P 𝑢)<P (𝑤 +P
𝑣)))} |
df-0r 11129 | ⊢ 0R =
[〈1P, 1P〉]
~R |
df-1r 11130 | ⊢ 1R =
[〈(1P +P
1P), 1P〉]
~R |
df-m1r 11131 | ⊢ -1R =
[〈1P, (1P
+P 1P)〉]
~R |
cc 11182 | class ℂ |
cr 11183 | class ℝ |
cc0 11184 | class 0 |
c1 11185 | class 1 |
ci 11186 | class i |
caddc 11187 | class + |
cltrr 11188 | class
<ℝ |
cmul 11189 | class · |
df-c 11190 | ⊢ ℂ = (R
× R) |
df-0 11191 | ⊢ 0 =
〈0R,
0R〉 |
df-1 11192 | ⊢ 1 =
〈1R,
0R〉 |
df-i 11193 | ⊢ i =
〈0R,
1R〉 |
df-r 11194 | ⊢ ℝ = (R
× {0R}) |
df-add 11195 | ⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} |
df-mul 11196 | ⊢ · = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈((𝑤 ·R 𝑢) +R
(-1R ·R (𝑣
·R 𝑓))), ((𝑣 ·R 𝑢) +R
(𝑤
·R 𝑓))〉))} |
df-lt 11197 | ⊢ <ℝ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧
∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧
𝑦 = 〈𝑤,
0R〉) ∧ 𝑧 <R 𝑤))} |
ax-cnex 11240 | ⊢ ℂ ∈ V |
ax-resscn 11241 | ⊢ ℝ ⊆ ℂ |
ax-1cn 11242 | ⊢ 1 ∈ ℂ |
ax-icn 11243 | ⊢ i ∈ ℂ |
ax-addcl 11244 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) |
ax-addrcl 11245 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) |
ax-mulcl 11246 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
ax-mulrcl 11247 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) |
ax-mulcom 11248 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |
ax-addass 11249 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
ax-mulass 11250 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) |
ax-distr 11251 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) |
ax-i2m1 11252 | ⊢ ((i · i) + 1) = 0 |
ax-1ne0 11253 | ⊢ 1 ≠ 0 |
ax-1rid 11254 | ⊢ (𝐴 ∈ ℝ → (𝐴 · 1) = 𝐴) |
ax-rnegex 11255 | ⊢ (𝐴 ∈ ℝ → ∃𝑥 ∈ ℝ (𝐴 + 𝑥) = 0) |
ax-rrecex 11256 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) |
ax-cnre 11257 | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦))) |
ax-pre-lttri 11258 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 <ℝ 𝐴))) |
ax-pre-lttrn 11259 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 <ℝ 𝐵 ∧ 𝐵 <ℝ 𝐶) → 𝐴 <ℝ 𝐶)) |
ax-pre-ltadd 11260 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 <ℝ 𝐵 → (𝐶 + 𝐴) <ℝ (𝐶 + 𝐵))) |
ax-pre-mulgt0 11261 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0
<ℝ 𝐴
∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) |
ax-pre-sup 11262 | ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑦 <ℝ 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 <ℝ 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <ℝ 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <ℝ 𝑧))) |
ax-addf 11263 | ⊢ + :(ℂ ×
ℂ)⟶ℂ |
ax-mulf 11264 | ⊢ · :(ℂ ×
ℂ)⟶ℂ |
cpnf 11321 | class +∞ |
cmnf 11322 | class -∞ |
cxr 11323 | class
ℝ* |
clt 11324 | class < |
cle 11325 | class ≤ |
df-pnf 11326 | ⊢ +∞ = 𝒫 ∪ ℂ |
df-mnf 11327 | ⊢ -∞ = 𝒫
+∞ |
df-xr 11328 | ⊢ ℝ* = (ℝ
∪ {+∞, -∞}) |
df-ltxr 11329 | ⊢ < = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 <ℝ 𝑦)} ∪ (((ℝ ∪ {-∞}) ×
{+∞}) ∪ ({-∞} × ℝ))) |
df-le 11330 | ⊢ ≤ = ((ℝ*
× ℝ*) ∖ ◡
< ) |
cmin 11520 | class − |
cneg 11521 | class -𝐴 |
df-sub 11522 | ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
df-neg 11523 | ⊢ -𝐴 = (0 − 𝐴) |
cdiv 11947 | class / |
df-div 11948 | ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦
(℩𝑧 ∈
ℂ (𝑦 · 𝑧) = 𝑥)) |
cn 12293 | class ℕ |
df-nn 12294 | ⊢ ℕ = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 1) “
ω) |
c2 12348 | class 2 |
c3 12349 | class 3 |
c4 12350 | class 4 |
c5 12351 | class 5 |
c6 12352 | class 6 |
c7 12353 | class 7 |
c8 12354 | class 8 |
c9 12355 | class 9 |
df-2 12356 | ⊢ 2 = (1 + 1) |
df-3 12357 | ⊢ 3 = (2 + 1) |
df-4 12358 | ⊢ 4 = (3 + 1) |
df-5 12359 | ⊢ 5 = (4 + 1) |
df-6 12360 | ⊢ 6 = (5 + 1) |
df-7 12361 | ⊢ 7 = (6 + 1) |
df-8 12362 | ⊢ 8 = (7 + 1) |
df-9 12363 | ⊢ 9 = (8 + 1) |
cn0 12553 | class
ℕ0 |
df-n0 12554 | ⊢ ℕ0 = (ℕ
∪ {0}) |
cxnn0 12625 | class
ℕ0* |
df-xnn0 12626 | ⊢ ℕ0* =
(ℕ0 ∪ {+∞}) |
cz 12639 | class ℤ |
df-z 12640 | ⊢ ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} |
cdc 12758 | class ;𝐴𝐵 |
df-dec 12759 | ⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) |
cuz 12903 | class
ℤ≥ |
df-uz 12904 | ⊢ ℤ≥ = (𝑗 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ 𝑗 ≤ 𝑘}) |
cq 13013 | class ℚ |
df-q 13014 | ⊢ ℚ = ( / “ (ℤ
× ℕ)) |
crp 13057 | class
ℝ+ |
df-rp 13058 | ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 <
𝑥} |
cxne 13172 | class -𝑒𝐴 |
cxad 13173 | class
+𝑒 |
cxmu 13174 | class
·e |
df-xneg 13175 | ⊢ -𝑒𝐴 = if(𝐴 = +∞, -∞, if(𝐴 = -∞, +∞, -𝐴)) |
df-xadd 13176 | ⊢ +𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ if(𝑥 = +∞,
if(𝑦 = -∞, 0,
+∞), if(𝑥 = -∞,
if(𝑦 = +∞, 0,
-∞), if(𝑦 = +∞,
+∞, if(𝑦 = -∞,
-∞, (𝑥 + 𝑦)))))) |
df-xmul 13177 | ⊢ ·e = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ if((𝑥 = 0 ∨
𝑦 = 0), 0, if((((0 <
𝑦 ∧ 𝑥 = +∞) ∨ (𝑦 < 0 ∧ 𝑥 = -∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = +∞) ∨ (𝑥 < 0 ∧ 𝑦 = -∞))), +∞, if((((0 < 𝑦 ∧ 𝑥 = -∞) ∨ (𝑦 < 0 ∧ 𝑥 = +∞)) ∨ ((0 < 𝑥 ∧ 𝑦 = -∞) ∨ (𝑥 < 0 ∧ 𝑦 = +∞))), -∞, (𝑥 · 𝑦))))) |
cioo 13407 | class (,) |
cioc 13408 | class (,] |
cico 13409 | class [,) |
cicc 13410 | class [,] |
df-ioo 13411 | ⊢ (,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 < 𝑦)}) |
df-ioc 13412 | ⊢ (,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 < 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
df-ico 13413 | ⊢ [,) = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦)}) |
df-icc 13414 | ⊢ [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ {𝑧 ∈
ℝ* ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)}) |
cfz 13567 | class ... |
df-fz 13568 | ⊢ ... = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ {𝑘 ∈ ℤ ∣ (𝑚 ≤ 𝑘 ∧ 𝑘 ≤ 𝑛)}) |
cfzo 13711 | class ..^ |
df-fzo 13712 | ⊢ ..^ = (𝑚 ∈ ℤ, 𝑛 ∈ ℤ ↦ (𝑚...(𝑛 − 1))) |
cfl 13841 | class ⌊ |
cceil 13842 | class ⌈ |
df-fl 13843 | ⊢ ⌊ = (𝑥 ∈ ℝ ↦ (℩𝑦 ∈ ℤ (𝑦 ≤ 𝑥 ∧ 𝑥 < (𝑦 + 1)))) |
df-ceil 13844 | ⊢ ⌈ = (𝑥 ∈ ℝ ↦
-(⌊‘-𝑥)) |
cmo 13920 | class mod |
df-mod 13921 | ⊢ mod = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ+ ↦ (𝑥 − (𝑦 · (⌊‘(𝑥 / 𝑦))))) |
cseq 14052 | class seq𝑀( + , 𝐹) |
df-seq 14053 | ⊢ seq𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑦 + (𝐹‘(𝑥 + 1)))〉), 〈𝑀, (𝐹‘𝑀)〉) “ ω) |
cexp 14112 | class ↑ |
df-exp 14113 | ⊢ ↑ = (𝑥 ∈ ℂ, 𝑦 ∈ ℤ ↦ if(𝑦 = 0, 1, if(0 < 𝑦, (seq1( · , (ℕ × {𝑥}))‘𝑦), (1 / (seq1( · , (ℕ ×
{𝑥}))‘-𝑦))))) |
cfa 14322 | class ! |
df-fac 14323 | ⊢ ! = ({〈0, 1〉} ∪ seq1( ·
, I )) |
cbc 14351 | class C |
df-bc 14352 | ⊢ C = (𝑛 ∈ ℕ0, 𝑘 ∈ ℤ ↦ if(𝑘 ∈ (0...𝑛), ((!‘𝑛) / ((!‘(𝑛 − 𝑘)) · (!‘𝑘))), 0)) |
chash 14379 | class ♯ |
df-hash 14380 | ⊢ ♯ = (((rec((𝑥 ∈ V ↦ (𝑥 + 1)), 0) ↾ ω) ∘ card)
∪ ((V ∖ Fin) × {+∞})) |
cword 14562 | class Word 𝑆 |
df-word 14563 | ⊢ Word 𝑆 = {𝑤 ∣ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆} |
clsw 14610 | class lastS |
df-lsw 14611 | ⊢ lastS = (𝑤 ∈ V ↦ (𝑤‘((♯‘𝑤) − 1))) |
cconcat 14618 | class ++ |
df-concat 14619 | ⊢ ++ = (𝑠 ∈ V, 𝑡 ∈ V ↦ (𝑥 ∈ (0..^((♯‘𝑠) + (♯‘𝑡))) ↦ if(𝑥 ∈
(0..^(♯‘𝑠)),
(𝑠‘𝑥), (𝑡‘(𝑥 − (♯‘𝑠)))))) |
cs1 14643 | class 〈“𝐴”〉 |
df-s1 14644 | ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} |
csubstr 14688 | class substr |
df-substr 14689 | ⊢ substr = (𝑠 ∈ V, 𝑏 ∈ (ℤ × ℤ) ↦
if(((1st ‘𝑏)..^(2nd ‘𝑏)) ⊆ dom 𝑠, (𝑥 ∈ (0..^((2nd ‘𝑏) − (1st
‘𝑏))) ↦ (𝑠‘(𝑥 + (1st ‘𝑏)))), ∅)) |
cpfx 14718 | class prefix |
df-pfx 14719 | ⊢ prefix = (𝑠 ∈ V, 𝑙 ∈ ℕ0 ↦ (𝑠 substr 〈0, 𝑙〉)) |
csplice 14797 | class splice |
df-splice 14798 | ⊢ splice = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 prefix (1st
‘(1st ‘𝑏))) ++ (2nd ‘𝑏)) ++ (𝑠 substr 〈(2nd
‘(1st ‘𝑏)), (♯‘𝑠)〉))) |
creverse 14806 | class reverse |
df-reverse 14807 | ⊢ reverse = (𝑠 ∈ V ↦ (𝑥 ∈ (0..^(♯‘𝑠)) ↦ (𝑠‘(((♯‘𝑠) − 1) − 𝑥)))) |
creps 14816 | class repeatS |
df-reps 14817 | ⊢ repeatS = (𝑠 ∈ V, 𝑛 ∈ ℕ0 ↦ (𝑥 ∈ (0..^𝑛) ↦ 𝑠)) |
ccsh 14836 | class cyclShift |
df-csh 14837 | ⊢ cyclShift = (𝑤 ∈ {𝑓 ∣ ∃𝑙 ∈ ℕ0 𝑓 Fn (0..^𝑙)}, 𝑛 ∈ ℤ ↦ if(𝑤 = ∅, ∅, ((𝑤 substr 〈(𝑛 mod (♯‘𝑤)), (♯‘𝑤)〉) ++ (𝑤 prefix (𝑛 mod (♯‘𝑤)))))) |
cs2 14890 | class 〈“𝐴𝐵”〉 |
cs3 14891 | class 〈“𝐴𝐵𝐶”〉 |
cs4 14892 | class 〈“𝐴𝐵𝐶𝐷”〉 |
cs5 14893 | class 〈“𝐴𝐵𝐶𝐷𝐸”〉 |
cs6 14894 | class 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 |
cs7 14895 | class 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 |
cs8 14896 | class 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 |
df-s2 14897 | ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++
〈“𝐵”〉) |
df-s3 14898 | ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) |
df-s4 14899 | ⊢ 〈“𝐴𝐵𝐶𝐷”〉 = (〈“𝐴𝐵𝐶”〉 ++ 〈“𝐷”〉) |
df-s5 14900 | ⊢ 〈“𝐴𝐵𝐶𝐷𝐸”〉 = (〈“𝐴𝐵𝐶𝐷”〉 ++ 〈“𝐸”〉) |
df-s6 14901 | ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 = (〈“𝐴𝐵𝐶𝐷𝐸”〉 ++ 〈“𝐹”〉) |
df-s7 14902 | ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹”〉 ++ 〈“𝐺”〉) |
df-s8 14903 | ⊢ 〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻”〉 = (〈“𝐴𝐵𝐶𝐷𝐸𝐹𝐺”〉 ++ 〈“𝐻”〉) |
ctcl 15034 | class t+ |
crtcl 15035 | class t* |
df-trcl 15036 | ⊢ t+ = (𝑥 ∈ V ↦ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
df-rtrcl 15037 | ⊢ t* = (𝑥 ∈ V ↦ ∩ {𝑧
∣ (( I ↾ (dom 𝑥
∪ ran 𝑥)) ⊆ 𝑧 ∧ 𝑥 ⊆ 𝑧 ∧ (𝑧 ∘ 𝑧) ⊆ 𝑧)}) |
crelexp 15068 | class
↑𝑟 |
df-relexp 15069 | ⊢ ↑𝑟 = (𝑟 ∈ V, 𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ( I ↾ (dom 𝑟 ∪ ran 𝑟)), (seq1((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ∘ 𝑟)), (𝑧 ∈ V ↦ 𝑟))‘𝑛))) |
crtrcl 15104 | class t*rec |
df-rtrclrec 15105 | ⊢ t*rec = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) |
cshi 15115 | class shift |
df-shft 15116 | ⊢ shift = (𝑓 ∈ V, 𝑥 ∈ ℂ ↦ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ℂ ∧ (𝑦 − 𝑥)𝑓𝑧)}) |
csgn 15135 | class sgn |
df-sgn 15136 | ⊢ sgn = (𝑥 ∈ ℝ* ↦ if(𝑥 = 0, 0, if(𝑥 < 0, -1, 1))) |
ccj 15145 | class ∗ |
cre 15146 | class ℜ |
cim 15147 | class ℑ |
df-cj 15148 | ⊢ ∗ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑥 + 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) |
df-re 15149 | ⊢ ℜ = (𝑥 ∈ ℂ ↦ ((𝑥 + (∗‘𝑥)) / 2)) |
df-im 15150 | ⊢ ℑ = (𝑥 ∈ ℂ ↦ (ℜ‘(𝑥 / i))) |
csqrt 15282 | class √ |
cabs 15283 | class abs |
df-sqrt 15284 | ⊢ √ = (𝑥 ∈ ℂ ↦ (℩𝑦 ∈ ℂ ((𝑦↑2) = 𝑥 ∧ 0 ≤ (ℜ‘𝑦) ∧ (i · 𝑦) ∉
ℝ+))) |
df-abs 15285 | ⊢ abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥)))) |
clsp 15516 | class lim sup |
df-limsup 15517 | ⊢ lim sup = (𝑥 ∈ V ↦ inf(ran (𝑘 ∈ ℝ ↦ sup(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < )) |
cli 15530 | class ⇝ |
crli 15531 | class
⇝𝑟 |
co1 15532 | class 𝑂(1) |
clo1 15533 | class
≤𝑂(1) |
df-clim 15534 | ⊢ ⇝ = {〈𝑓, 𝑦〉 ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈ ℤ
∀𝑘 ∈
(ℤ≥‘𝑗)((𝑓‘𝑘) ∈ ℂ ∧ (abs‘((𝑓‘𝑘) − 𝑦)) < 𝑥))} |
df-rlim 15535 | ⊢ ⇝𝑟 = {〈𝑓, 𝑥〉 ∣ ((𝑓 ∈ (ℂ ↑pm ℝ)
∧ 𝑥 ∈ ℂ)
∧ ∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ ∀𝑤 ∈ dom 𝑓(𝑧 ≤ 𝑤 → (abs‘((𝑓‘𝑤) − 𝑥)) < 𝑦))} |
df-o1 15536 | ⊢ 𝑂(1) = {𝑓 ∈ (ℂ
↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(abs‘(𝑓‘𝑦)) ≤ 𝑚} |
df-lo1 15537 | ⊢ ≤𝑂(1) = {𝑓 ∈ (ℝ ↑pm ℝ)
∣ ∃𝑥 ∈
ℝ ∃𝑚 ∈
ℝ ∀𝑦 ∈
(dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ 𝑚} |
csu 15734 | class Σ𝑘 ∈ 𝐴 𝐵 |
df-sum 15735 | ⊢ Σ𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛 ∈ 𝐴, ⦋𝑛 / 𝑘⦌𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
cprod 15951 | class ∏𝑘 ∈ 𝐴 𝐵 |
df-prod 15952 | ⊢ ∏𝑘 ∈ 𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
cfallfac 16052 | class FallFac |
crisefac 16053 | class RiseFac |
df-risefac 16054 | ⊢ RiseFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦
∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 + 𝑘)) |
df-fallfac 16055 | ⊢ FallFac = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ0 ↦
∏𝑘 ∈ (0...(𝑛 − 1))(𝑥 − 𝑘)) |
cbp 16094 | class BernPoly |
df-bpoly 16095 | ⊢ BernPoly = (𝑚 ∈ ℕ0, 𝑥 ∈ ℂ ↦ (wrecs(
< , ℕ0, (𝑔 ∈ V ↦
⦋(♯‘dom 𝑔) / 𝑛⦌((𝑥↑𝑛) − Σ𝑘 ∈ dom 𝑔((𝑛C𝑘) · ((𝑔‘𝑘) / ((𝑛 − 𝑘) + 1))))))‘𝑚)) |
ce 16109 | class exp |
ceu 16110 | class e |
csin 16111 | class sin |
ccos 16112 | class cos |
ctan 16113 | class tan |
cpi 16114 | class π |
df-ef 16115 | ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0
((𝑥↑𝑘) / (!‘𝑘))) |
df-e 16116 | ⊢ e =
(exp‘1) |
df-sin 16117 | ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) −
(exp‘(-i · 𝑥))) / (2 · i))) |
df-cos 16118 | ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) +
(exp‘(-i · 𝑥))) / 2)) |
df-tan 16119 | ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦
((sin‘𝑥) /
(cos‘𝑥))) |
df-pi 16120 | ⊢ π = inf((ℝ+
∩ (◡sin “ {0})), ℝ,
< ) |
ctau 16250 | class τ |
df-tau 16251 | ⊢ τ = inf((ℝ+ ∩
(◡cos “ {1})), ℝ, <
) |
cdvds 16302 | class ∥ |
df-dvds 16303 | ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑛 ∈ ℤ (𝑛 · 𝑥) = 𝑦)} |
cbits 16465 | class bits |
csad 16466 | class sadd |
csmu 16467 | class smul |
df-bits 16468 | ⊢ bits = (𝑛 ∈ ℤ ↦ {𝑚 ∈ ℕ0 ∣ ¬ 2
∥ (⌊‘(𝑛 /
(2↑𝑚)))}) |
df-sad 16497 | ⊢ sadd = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫
ℕ0 ↦ {𝑘 ∈ ℕ0 ∣
hadd(𝑘 ∈ 𝑥, 𝑘 ∈ 𝑦, ∅ ∈ (seq0((𝑐 ∈ 2o, 𝑚 ∈ ℕ0 ↦
if(cadd(𝑚 ∈ 𝑥, 𝑚 ∈ 𝑦, ∅ ∈ 𝑐), 1o, ∅)), (𝑛 ∈ ℕ0
↦ if(𝑛 = 0, ∅,
(𝑛 −
1))))‘𝑘))}) |
df-smu 16522 | ⊢ smul = (𝑥 ∈ 𝒫 ℕ0, 𝑦 ∈ 𝒫
ℕ0 ↦ {𝑘 ∈ ℕ0 ∣ 𝑘 ∈ (seq0((𝑝 ∈ 𝒫
ℕ0, 𝑚
∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚 ∈ 𝑥 ∧ (𝑛 − 𝑚) ∈ 𝑦)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))‘(𝑘 + 1))}) |
cgcd 16540 | class gcd |
df-gcd 16541 | ⊢ gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛 ∥ 𝑥 ∧ 𝑛 ∥ 𝑦)}, ℝ, < ))) |
clcm 16635 | class lcm |
clcmf 16636 | class lcm |
df-lcm 16637 | ⊢ lcm = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∨ 𝑦 = 0), 0, inf({𝑛 ∈ ℕ ∣ (𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛)}, ℝ, < ))) |
df-lcmf 16638 | ⊢ lcm = (𝑧 ∈ 𝒫 ℤ ↦ if(0 ∈
𝑧, 0, inf({𝑛 ∈ ℕ ∣
∀𝑚 ∈ 𝑧 𝑚 ∥ 𝑛}, ℝ, < ))) |
cprime 16718 | class ℙ |
df-prm 16719 | ⊢ ℙ = {𝑝 ∈ ℕ ∣ {𝑛 ∈ ℕ ∣ 𝑛 ∥ 𝑝} ≈ 2o} |
cnumer 16780 | class numer |
cdenom 16781 | class denom |
df-numer 16782 | ⊢ numer = (𝑦 ∈ ℚ ↦ (1st
‘(℩𝑥
∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
df-denom 16783 | ⊢ denom = (𝑦 ∈ ℚ ↦ (2nd
‘(℩𝑥
∈ (ℤ × ℕ)(((1st ‘𝑥) gcd (2nd ‘𝑥)) = 1 ∧ 𝑦 = ((1st ‘𝑥) / (2nd ‘𝑥)))))) |
codz 16810 | class
odℤ |
cphi 16811 | class ϕ |
df-odz 16812 | ⊢ odℤ = (𝑛 ∈ ℕ ↦ (𝑥 ∈ {𝑥 ∈ ℤ ∣ (𝑥 gcd 𝑛) = 1} ↦ inf({𝑚 ∈ ℕ ∣ 𝑛 ∥ ((𝑥↑𝑚) − 1)}, ℝ, <
))) |
df-phi 16813 | ⊢ ϕ = (𝑛 ∈ ℕ ↦ (♯‘{𝑥 ∈ (1...𝑛) ∣ (𝑥 gcd 𝑛) = 1})) |
cpc 16883 | class pCnt |
df-pc 16884 | ⊢ pCnt = (𝑝 ∈ ℙ, 𝑟 ∈ ℚ ↦ if(𝑟 = 0, +∞, (℩𝑧∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ (𝑟 = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑝↑𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0
∣ (𝑝↑𝑛) ∥ 𝑦}, ℝ, < )))))) |
cgz 16976 | class ℤ[i] |
df-gz 16977 | ⊢ ℤ[i] = {𝑥 ∈ ℂ ∣ ((ℜ‘𝑥) ∈ ℤ ∧
(ℑ‘𝑥) ∈
ℤ)} |
cvdwa 17012 | class AP |
cvdwm 17013 | class MonoAP |
cvdwp 17014 | class PolyAP |
df-vdwap 17015 | ⊢ AP = (𝑘 ∈ ℕ0 ↦ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran
(𝑚 ∈ (0...(𝑘 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))) |
df-vdwmc 17016 | ⊢ MonoAP = {〈𝑘, 𝑓〉 ∣ ∃𝑐(ran (AP‘𝑘) ∩ 𝒫 (◡𝑓 “ {𝑐})) ≠ ∅} |
df-vdwpc 17017 | ⊢ PolyAP = {〈〈𝑚, 𝑘〉, 𝑓〉 ∣ ∃𝑎 ∈ ℕ ∃𝑑 ∈ (ℕ ↑m
(1...𝑚))(∀𝑖 ∈ (1...𝑚)((𝑎 + (𝑑‘𝑖))(AP‘𝑘)(𝑑‘𝑖)) ⊆ (◡𝑓 “ {(𝑓‘(𝑎 + (𝑑‘𝑖)))}) ∧ (♯‘ran (𝑖 ∈ (1...𝑚) ↦ (𝑓‘(𝑎 + (𝑑‘𝑖))))) = 𝑚)} |
cram 17046 | class Ramsey |
df-ram 17048 | ⊢ Ramsey = (𝑚 ∈ ℕ0, 𝑟 ∈ V ↦ inf({𝑛 ∈ ℕ0
∣ ∀𝑠(𝑛 ≤ (♯‘𝑠) → ∀𝑓 ∈ (dom 𝑟 ↑m {𝑦 ∈ 𝒫 𝑠 ∣ (♯‘𝑦) = 𝑚})∃𝑐 ∈ dom 𝑟∃𝑥 ∈ 𝒫 𝑠((𝑟‘𝑐) ≤ (♯‘𝑥) ∧ ∀𝑦 ∈ 𝒫 𝑥((♯‘𝑦) = 𝑚 → (𝑓‘𝑦) = 𝑐)))}, ℝ*, <
)) |
cprmo 17078 | class #p |
df-prmo 17079 | ⊢ #p = (𝑛 ∈ ℕ0 ↦
∏𝑘 ∈ (1...𝑛)if(𝑘 ∈ ℙ, 𝑘, 1)) |
cstr 17193 | class Struct |
df-struct 17194 | ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ ×
ℕ)) ∧ Fun (𝑓
∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} |
csts 17210 | class sSet |
df-sets 17211 | ⊢ sSet = (𝑠 ∈ V, 𝑒 ∈ V ↦ ((𝑠 ↾ (V ∖ dom {𝑒})) ∪ {𝑒})) |
cslot 17228 | class Slot 𝐴 |
df-slot 17229 | ⊢ Slot 𝐴 = (𝑥 ∈ V ↦ (𝑥‘𝐴)) |
cnx 17240 | class ndx |
df-ndx 17241 | ⊢ ndx = ( I ↾ ℕ) |
cbs 17258 | class Base |
df-base 17259 | ⊢ Base = Slot 1 |
cress 17287 | class
↾s |
df-ress 17288 | ⊢ ↾s = (𝑤 ∈ V, 𝑥 ∈ V ↦ if((Base‘𝑤) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Base‘ndx), (𝑥 ∩ (Base‘𝑤))〉))) |
cplusg 17311 | class +g |
cmulr 17312 | class .r |
cstv 17313 | class
*𝑟 |
csca 17314 | class Scalar |
cvsca 17315 | class
·𝑠 |
cip 17316 | class
·𝑖 |
cts 17317 | class TopSet |
cple 17318 | class le |
coc 17319 | class oc |
cds 17320 | class dist |
cunif 17321 | class UnifSet |
chom 17322 | class Hom |
cco 17323 | class comp |
df-plusg 17324 | ⊢ +g = Slot 2 |
df-mulr 17325 | ⊢ .r = Slot 3 |
df-starv 17326 | ⊢ *𝑟 = Slot
4 |
df-sca 17327 | ⊢ Scalar = Slot 5 |
df-vsca 17328 | ⊢ ·𝑠 = Slot
6 |
df-ip 17329 | ⊢
·𝑖 = Slot 8 |
df-tset 17330 | ⊢ TopSet = Slot 9 |
df-ple 17331 | ⊢ le = Slot ;10 |
df-ocomp 17332 | ⊢ oc = Slot ;11 |
df-ds 17333 | ⊢ dist = Slot ;12 |
df-unif 17334 | ⊢ UnifSet = Slot ;13 |
df-hom 17335 | ⊢ Hom = Slot ;14 |
df-cco 17336 | ⊢ comp = Slot ;15 |
crest 17480 | class
↾t |
ctopn 17481 | class TopOpen |
df-rest 17482 | ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) |
df-topn 17483 | ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t
(Base‘𝑤))) |
ctg 17497 | class topGen |
cpt 17498 | class
∏t |
c0g 17499 | class 0g |
cgsu 17500 | class
Σg |
df-0g 17501 | ⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) |
df-gsum 17502 | ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋{𝑥 ∈ (Base‘𝑤) ∣ ∀𝑦 ∈ (Base‘𝑤)((𝑥(+g‘𝑤)𝑦) = 𝑦 ∧ (𝑦(+g‘𝑤)𝑥) = 𝑦)} / 𝑜⦌if(ran 𝑓 ⊆ 𝑜, (0g‘𝑤), if(dom 𝑓 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))), (℩𝑥∃𝑔[(◡𝑓 “ (V ∖ 𝑜)) / 𝑦](𝑔:(1...(♯‘𝑦))–1-1-onto→𝑦 ∧ 𝑥 = (seq1((+g‘𝑤), (𝑓 ∘ 𝑔))‘(♯‘𝑦))))))) |
df-topgen 17503 | ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) |
df-pt 17504 | ⊢ ∏t = (𝑓 ∈ V ↦
(topGen‘{𝑥 ∣
∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) |
cprds 17505 | class Xs |
cpws 17506 | class
↑s |
df-prds 17507 | ⊢ Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈
dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx),
𝑠〉, 〈(
·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠
‘(𝑟‘𝑥))(𝑔‘𝑥))))〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |
df-pws 17509 | ⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) |
cordt 17559 | class ordTop |
cxrs 17560 | class
ℝ*𝑠 |
df-ordt 17561 | ⊢ ordTop = (𝑟 ∈ V ↦
(topGen‘(fi‘({dom 𝑟} ∪ ran ((𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦𝑟𝑥}) ∪ (𝑥 ∈ dom 𝑟 ↦ {𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥𝑟𝑦})))))) |
df-xrs 17562 | ⊢ ℝ*𝑠 =
({〈(Base‘ndx), ℝ*〉,
〈(+g‘ndx), +𝑒 〉,
〈(.r‘ndx), ·e 〉} ∪
{〈(TopSet‘ndx), (ordTop‘ ≤ )〉, 〈(le‘ndx),
≤ 〉, 〈(dist‘ndx), (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ*
↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒
-𝑒𝑥),
(𝑥 +𝑒
-𝑒𝑦)))〉}) |
cqtop 17563 | class qTop |
cimas 17564 | class
“s |
cqus 17565 | class
/s |
cxps 17566 | class
×s |
df-qtop 17567 | ⊢ qTop = (𝑗 ∈ V, 𝑓 ∈ V ↦ {𝑠 ∈ 𝒫 (𝑓 “ ∪ 𝑗) ∣ ((◡𝑓 “ 𝑠) ∩ ∪ 𝑗) ∈ 𝑗}) |
df-imas 17568 | ⊢ “s = (𝑓 ∈ V, 𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑣⦌(({〈(Base‘ndx), ran
𝑓〉,
〈(+g‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(+g‘𝑟)𝑞))〉}〉,
〈(.r‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑓‘(𝑝(.r‘𝑟)𝑞))〉}〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), ∪ 𝑞 ∈ 𝑣 (𝑝 ∈ (Base‘(Scalar‘𝑟)), 𝑥 ∈ {(𝑓‘𝑞)} ↦ (𝑓‘(𝑝( ·𝑠
‘𝑟)𝑞)))〉,
〈(·𝑖‘ndx), ∪ 𝑝 ∈ 𝑣 ∪ 𝑞 ∈ 𝑣 {〈〈(𝑓‘𝑝), (𝑓‘𝑞)〉, (𝑝(·𝑖‘𝑟)𝑞)〉}〉}) ∪
{〈(TopSet‘ndx), ((TopOpen‘𝑟) qTop 𝑓)〉, 〈(le‘ndx), ((𝑓 ∘ (le‘𝑟)) ∘ ◡𝑓)〉, 〈(dist‘ndx), (𝑥 ∈ ran 𝑓, 𝑦 ∈ ran 𝑓 ↦ inf(∪
𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑣 × 𝑣) ↑m (1...𝑛)) ∣ ((𝑓‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝑓‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝑓‘(2nd ‘(ℎ‘𝑖))) = (𝑓‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦
(ℝ*𝑠 Σg
((dist‘𝑟) ∘ 𝑔))), ℝ*, <
))〉})) |
df-qus 17569 | ⊢ /s = (𝑟 ∈ V, 𝑒 ∈ V ↦ ((𝑥 ∈ (Base‘𝑟) ↦ [𝑥]𝑒) “s 𝑟)) |
df-xps 17570 | ⊢ ×s = (𝑟 ∈ V, 𝑠 ∈ V ↦ (◡(𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Base‘𝑠) ↦ {〈∅, 𝑥〉, 〈1o, 𝑦〉})
“s ((Scalar‘𝑟)Xs{〈∅, 𝑟〉, 〈1o, 𝑠〉}))) |
cmre 17640 | class Moore |
cmrc 17641 | class mrCls |
cmri 17642 | class mrInd |
cacs 17643 | class ACS |
df-mre 17644 | ⊢ Moore = (𝑥 ∈ V ↦ {𝑐 ∈ 𝒫 𝒫 𝑥 ∣ (𝑥 ∈ 𝑐 ∧ ∀𝑠 ∈ 𝒫 𝑐(𝑠 ≠ ∅ → ∩ 𝑠
∈ 𝑐))}) |
df-mrc 17645 | ⊢ mrCls = (𝑐 ∈ ∪ ran
Moore ↦ (𝑥 ∈
𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠})) |
df-mri 17646 | ⊢ mrInd = (𝑐 ∈ ∪ ran
Moore ↦ {𝑠 ∈
𝒫 ∪ 𝑐 ∣ ∀𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))}) |
df-acs 17647 | ⊢ ACS = (𝑥 ∈ V ↦ {𝑐 ∈ (Moore‘𝑥) ∣ ∃𝑓(𝑓:𝒫 𝑥⟶𝒫 𝑥 ∧ ∀𝑠 ∈ 𝒫 𝑥(𝑠 ∈ 𝑐 ↔ ∪ (𝑓 “ (𝒫 𝑠 ∩ Fin)) ⊆ 𝑠))}) |
ccat 17722 | class Cat |
ccid 17723 | class Id |
chomf 17724 | class
Homf |
ccomf 17725 | class
compf |
df-cat 17726 | ⊢ Cat = {𝑐 ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ][(comp‘𝑐) / 𝑜]∀𝑥 ∈ 𝑏 (∃𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)((𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓) ∈ (𝑥ℎ𝑧) ∧ ∀𝑤 ∈ 𝑏 ∀𝑘 ∈ (𝑧ℎ𝑤)((𝑘(〈𝑦, 𝑧〉𝑜𝑤)𝑔)(〈𝑥, 𝑦〉𝑜𝑤)𝑓) = (𝑘(〈𝑥, 𝑧〉𝑜𝑤)(𝑔(〈𝑥, 𝑦〉𝑜𝑧)𝑓))))} |
df-cid 17727 | ⊢ Id = (𝑐 ∈ Cat ↦
⦋(Base‘𝑐) / 𝑏⦌⦋(Hom
‘𝑐) / ℎ⦌⦋(comp‘𝑐) / 𝑜⦌(𝑥 ∈ 𝑏 ↦ (℩𝑔 ∈ (𝑥ℎ𝑥)∀𝑦 ∈ 𝑏 (∀𝑓 ∈ (𝑦ℎ𝑥)(𝑔(〈𝑦, 𝑥〉𝑜𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥ℎ𝑦)(𝑓(〈𝑥, 𝑥〉𝑜𝑦)𝑔) = 𝑓)))) |
df-homf 17728 | ⊢ Homf = (𝑐 ∈ V ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑥(Hom ‘𝑐)𝑦))) |
df-comf 17729 | ⊢ compf = (𝑐 ∈ V ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)𝑦), 𝑓 ∈ ((Hom ‘𝑐)‘𝑥) ↦ (𝑔(𝑥(comp‘𝑐)𝑦)𝑓)))) |
coppc 17769 | class oppCat |
df-oppc 17770 | ⊢ oppCat = (𝑓 ∈ V ↦ ((𝑓 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝑓)〉) sSet
〈(comp‘ndx), (𝑢
∈ ((Base‘𝑓)
× (Base‘𝑓)),
𝑧 ∈ (Base‘𝑓) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝑓)(1st ‘𝑢)))〉)) |
cmon 17789 | class Mono |
cepi 17790 | class Epi |
df-mon 17791 | ⊢ Mono = (𝑐 ∈ Cat ↦
⦋(Base‘𝑐) / 𝑏⦌⦋(Hom
‘𝑐) / ℎ⦌(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ {𝑓 ∈ (𝑥ℎ𝑦) ∣ ∀𝑧 ∈ 𝑏 Fun ◡(𝑔 ∈ (𝑧ℎ𝑥) ↦ (𝑓(〈𝑧, 𝑥〉(comp‘𝑐)𝑦)𝑔))})) |
df-epi 17792 | ⊢ Epi = (𝑐 ∈ Cat ↦ tpos
(Mono‘(oppCat‘𝑐))) |
csect 17805 | class Sect |
cinv 17806 | class Inv |
ciso 17807 | class Iso |
df-sect 17808 | ⊢ Sect = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ {〈𝑓, 𝑔〉 ∣ [(Hom ‘𝑐) / ℎ]((𝑓 ∈ (𝑥ℎ𝑦) ∧ 𝑔 ∈ (𝑦ℎ𝑥)) ∧ (𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑥)𝑓) = ((Id‘𝑐)‘𝑥))})) |
df-inv 17809 | ⊢ Inv = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ ((𝑥(Sect‘𝑐)𝑦) ∩ ◡(𝑦(Sect‘𝑐)𝑥)))) |
df-iso 17810 | ⊢ Iso = (𝑐 ∈ Cat ↦ ((𝑥 ∈ V ↦ dom 𝑥) ∘ (Inv‘𝑐))) |
ccic 17856 | class
≃𝑐 |
df-cic 17857 | ⊢ ≃𝑐 = (𝑐 ∈ Cat ↦
((Iso‘𝑐) supp
∅)) |
cssc 17868 | class
⊆cat |
cresc 17869 | class
↾cat |
csubc 17870 | class Subcat |
df-ssc 17871 | ⊢ ⊆cat = {〈ℎ, 𝑗〉 ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡ℎ ∈ X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗‘𝑥))} |
df-resc 17872 | ⊢ ↾cat = (𝑐 ∈ V, ℎ ∈ V ↦ ((𝑐 ↾s dom dom ℎ) sSet 〈(Hom ‘ndx),
ℎ〉)) |
df-subc 17873 | ⊢ Subcat = (𝑐 ∈ Cat ↦ {ℎ ∣ (ℎ ⊆cat (Homf
‘𝑐) ∧ [dom
dom ℎ / 𝑠]∀𝑥 ∈ 𝑠 (((Id‘𝑐)‘𝑥) ∈ (𝑥ℎ𝑥) ∧ ∀𝑦 ∈ 𝑠 ∀𝑧 ∈ 𝑠 ∀𝑓 ∈ (𝑥ℎ𝑦)∀𝑔 ∈ (𝑦ℎ𝑧)(𝑔(〈𝑥, 𝑦〉(comp‘𝑐)𝑧)𝑓) ∈ (𝑥ℎ𝑧)))}) |
cfunc 17918 | class Func |
cidfu 17919 | class
idfunc |
ccofu 17920 | class
∘func |
cresf 17921 | class
↾f |
df-func 17922 | ⊢ Func = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ [(Base‘𝑡) / 𝑏](𝑓:𝑏⟶(Base‘𝑢) ∧ 𝑔 ∈ X𝑧 ∈ (𝑏 × 𝑏)(((𝑓‘(1st ‘𝑧))(Hom ‘𝑢)(𝑓‘(2nd ‘𝑧))) ↑m ((Hom
‘𝑡)‘𝑧)) ∧ ∀𝑥 ∈ 𝑏 (((𝑥𝑔𝑥)‘((Id‘𝑡)‘𝑥)) = ((Id‘𝑢)‘(𝑓‘𝑥)) ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ∀𝑚 ∈ (𝑥(Hom ‘𝑡)𝑦)∀𝑛 ∈ (𝑦(Hom ‘𝑡)𝑧)((𝑥𝑔𝑧)‘(𝑛(〈𝑥, 𝑦〉(comp‘𝑡)𝑧)𝑚)) = (((𝑦𝑔𝑧)‘𝑛)(〈(𝑓‘𝑥), (𝑓‘𝑦)〉(comp‘𝑢)(𝑓‘𝑧))((𝑥𝑔𝑦)‘𝑚))))}) |
df-idfu 17923 | ⊢ idfunc = (𝑡 ∈ Cat ↦
⦋(Base‘𝑡) / 𝑏⦌〈( I ↾ 𝑏), (𝑧 ∈ (𝑏 × 𝑏) ↦ ( I ↾ ((Hom ‘𝑡)‘𝑧)))〉) |
df-cofu 17924 | ⊢ ∘func = (𝑔 ∈ V, 𝑓 ∈ V ↦ 〈((1st
‘𝑔) ∘
(1st ‘𝑓)),
(𝑥 ∈ dom dom
(2nd ‘𝑓),
𝑦 ∈ dom dom
(2nd ‘𝑓)
↦ ((((1st ‘𝑓)‘𝑥)(2nd ‘𝑔)((1st ‘𝑓)‘𝑦)) ∘ (𝑥(2nd ‘𝑓)𝑦)))〉) |
df-resf 17925 | ⊢ ↾f = (𝑓 ∈ V, ℎ ∈ V ↦ 〈((1st
‘𝑓) ↾ dom dom
ℎ), (𝑥 ∈ dom ℎ ↦ (((2nd ‘𝑓)‘𝑥) ↾ (ℎ‘𝑥)))〉) |
cful 17969 | class Full |
cfth 17970 | class Faith |
df-full 17971 | ⊢ Full = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)ran (𝑥𝑔𝑦) = ((𝑓‘𝑥)(Hom ‘𝑑)(𝑓‘𝑦)))}) |
df-fth 17972 | ⊢ Faith = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ {〈𝑓, 𝑔〉 ∣ (𝑓(𝑐 Func 𝑑)𝑔 ∧ ∀𝑥 ∈ (Base‘𝑐)∀𝑦 ∈ (Base‘𝑐)Fun ◡(𝑥𝑔𝑦))}) |
cnat 18009 | class Nat |
cfuc 18010 | class FuncCat |
df-nat 18011 | ⊢ Nat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ (𝑓 ∈ (𝑡 Func 𝑢), 𝑔 ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑓) / 𝑟⦌⦋(1st
‘𝑔) / 𝑠⦌{𝑎 ∈ X𝑥 ∈
(Base‘𝑡)((𝑟‘𝑥)(Hom ‘𝑢)(𝑠‘𝑥)) ∣ ∀𝑥 ∈ (Base‘𝑡)∀𝑦 ∈ (Base‘𝑡)∀ℎ ∈ (𝑥(Hom ‘𝑡)𝑦)((𝑎‘𝑦)(〈(𝑟‘𝑥), (𝑟‘𝑦)〉(comp‘𝑢)(𝑠‘𝑦))((𝑥(2nd ‘𝑓)𝑦)‘ℎ)) = (((𝑥(2nd ‘𝑔)𝑦)‘ℎ)(〈(𝑟‘𝑥), (𝑠‘𝑥)〉(comp‘𝑢)(𝑠‘𝑦))(𝑎‘𝑥))})) |
df-fuc 18012 | ⊢ FuncCat = (𝑡 ∈ Cat, 𝑢 ∈ Cat ↦ {〈(Base‘ndx),
(𝑡 Func 𝑢)〉, 〈(Hom ‘ndx), (𝑡 Nat 𝑢)〉, 〈(comp‘ndx), (𝑣 ∈ ((𝑡 Func 𝑢) × (𝑡 Func 𝑢)), ℎ ∈ (𝑡 Func 𝑢) ↦ ⦋(1st
‘𝑣) / 𝑓⦌⦋(2nd
‘𝑣) / 𝑔⦌(𝑏 ∈ (𝑔(𝑡 Nat 𝑢)ℎ), 𝑎 ∈ (𝑓(𝑡 Nat 𝑢)𝑔) ↦ (𝑥 ∈ (Base‘𝑡) ↦ ((𝑏‘𝑥)(〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉(comp‘𝑢)((1st ‘ℎ)‘𝑥))(𝑎‘𝑥)))))〉}) |
cinito 18048 | class InitO |
ctermo 18049 | class TermO |
czeroo 18050 | class ZeroO |
df-inito 18051 | ⊢ InitO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑎(Hom ‘𝑐)𝑏)}) |
df-termo 18052 | ⊢ TermO = (𝑐 ∈ Cat ↦ {𝑎 ∈ (Base‘𝑐) ∣ ∀𝑏 ∈ (Base‘𝑐)∃!ℎ ℎ ∈ (𝑏(Hom ‘𝑐)𝑎)}) |
df-zeroo 18053 | ⊢ ZeroO = (𝑐 ∈ Cat ↦ ((InitO‘𝑐) ∩ (TermO‘𝑐))) |
cdoma 18087 | class
doma |
ccoda 18088 | class
coda |
carw 18089 | class Arrow |
choma 18090 | class
Homa |
df-doma 18091 | ⊢ doma = (1st
∘ 1st ) |
df-coda 18092 | ⊢ coda = (2nd
∘ 1st ) |
df-homa 18093 | ⊢ Homa = (𝑐 ∈ Cat ↦ (𝑥 ∈ ((Base‘𝑐) × (Base‘𝑐)) ↦ ({𝑥} × ((Hom ‘𝑐)‘𝑥)))) |
df-arw 18094 | ⊢ Arrow = (𝑐 ∈ Cat ↦ ∪ ran (Homa‘𝑐)) |
cida 18120 | class
Ida |
ccoa 18121 | class
compa |
df-ida 18122 | ⊢ Ida = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ 〈𝑥, 𝑥, ((Id‘𝑐)‘𝑥)〉)) |
df-coa 18123 | ⊢ compa = (𝑐 ∈ Cat ↦ (𝑔 ∈ (Arrow‘𝑐), 𝑓 ∈ {ℎ ∈ (Arrow‘𝑐) ∣ (coda‘ℎ) =
(doma‘𝑔)} ↦
〈(doma‘𝑓), (coda‘𝑔), ((2nd ‘𝑔)(〈(doma‘𝑓),
(doma‘𝑔)〉(comp‘𝑐)(coda‘𝑔))(2nd ‘𝑓))〉)) |
csetc 18142 | class SetCat |
df-setc 18143 | ⊢ SetCat = (𝑢 ∈ V ↦ {〈(Base‘ndx),
𝑢〉, 〈(Hom
‘ndx), (𝑥 ∈
𝑢, 𝑦 ∈ 𝑢 ↦ (𝑦 ↑m 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧 ∈ 𝑢 ↦ (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
ccatc 18165 | class CatCat |
df-catc 18166 | ⊢ CatCat = (𝑢 ∈ V ↦ ⦋(𝑢 ∩ Cat) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 Func 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))〉}) |
cestrc 18190 | class ExtStrCat |
df-estrc 18191 | ⊢ ExtStrCat = (𝑢 ∈ V ↦ {〈(Base‘ndx),
𝑢〉, 〈(Hom
‘ndx), (𝑥 ∈
𝑢, 𝑦 ∈ 𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))〉,
〈(comp‘ndx), (𝑣
∈ (𝑢 × 𝑢), 𝑧 ∈ 𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m
(Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd
‘𝑣))
↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))〉}) |
cxpc 18237 | class
×c |
c1stf 18238 | class
1stF |
c2ndf 18239 | class
2ndF |
cprf 18240 | class
〈,〉F |
df-xpc 18241 | ⊢ ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦
⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌⦋(𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (((1st ‘𝑢)(Hom ‘𝑟)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑠)(2nd ‘𝑣)))) / ℎ⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx),
ℎ〉,
〈(comp‘ndx), (𝑥
∈ (𝑏 × 𝑏), 𝑦 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑥)ℎ𝑦), 𝑓 ∈ (ℎ‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st
‘(1st ‘𝑥)), (1st ‘(2nd
‘𝑥))〉(comp‘𝑟)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd
‘(1st ‘𝑥)), (2nd ‘(2nd
‘𝑥))〉(comp‘𝑠)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) |
df-1stf 18242 | ⊢ 1stF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦
⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌〈(1st ↾
𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉) |
df-2ndf 18243 | ⊢ 2ndF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦
⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌〈(2nd ↾
𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉) |
df-prf 18244 | ⊢ 〈,〉F = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom
(1st ‘𝑓) /
𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉) |
cevlf 18279 | class
evalF |
ccurf 18280 | class
curryF |
cuncf 18281 | class
uncurryF |
cdiag 18282 | class
Δfunc |
df-evlf 18283 | ⊢ evalF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ 〈(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (Base‘𝑐) ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝑐 Func 𝑑) × (Base‘𝑐)), 𝑦 ∈ ((𝑐 Func 𝑑) × (Base‘𝑐)) ↦ ⦋(1st
‘𝑥) / 𝑚⦌⦋(1st
‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝑐 Nat 𝑑)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st
‘𝑚)‘(2nd ‘𝑥)), ((1st
‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝑑)((1st ‘𝑛)‘(2nd
‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉) |
df-curf 18284 | ⊢ curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦
⦋(1st ‘𝑒) / 𝑐⦌⦋(2nd
‘𝑒) / 𝑑⦌〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉) |
df-uncf 18285 | ⊢ uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2))
∘func ((𝑓 ∘func ((𝑐‘0)
1stF (𝑐‘1))) 〈,〉F
((𝑐‘0)
2ndF (𝑐‘1))))) |
df-diag 18286 | ⊢ Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (〈𝑐, 𝑑〉 curryF (𝑐
1stF 𝑑))) |
chof 18318 | class
HomF |
cyon 18319 | class Yon |
df-hof 18320 | ⊢ HomF = (𝑐 ∈ Cat ↦
〈(Homf ‘𝑐), ⦋(Base‘𝑐) / 𝑏⦌(𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ (𝑏 × 𝑏) ↦ (𝑓 ∈ ((1st ‘𝑦)(Hom ‘𝑐)(1st ‘𝑥)), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)(2nd ‘𝑦)) ↦ (ℎ ∈ ((Hom ‘𝑐)‘𝑥) ↦ ((𝑔(𝑥(comp‘𝑐)(2nd ‘𝑦))ℎ)(〈(1st ‘𝑦), (1st ‘𝑥)〉(comp‘𝑐)(2nd ‘𝑦))𝑓))))〉) |
df-yon 18321 | ⊢ Yon = (𝑐 ∈ Cat ↦ (〈𝑐, (oppCat‘𝑐)〉 curryF
(HomF‘(oppCat‘𝑐)))) |
codu 18356 | class ODual |
df-odu 18357 | ⊢ ODual = (𝑤 ∈ V ↦ (𝑤 sSet 〈(le‘ndx), ◡(le‘𝑤)〉)) |
cproset 18363 | class Proset |
cdrs 18364 | class Dirset |
df-proset 18365 | ⊢ Proset = {𝑓 ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧))} |
df-drs 18366 | ⊢ Dirset = {𝑓 ∈ Proset ∣
[(Base‘𝑓) /
𝑏][(le‘𝑓) / 𝑟](𝑏 ≠ ∅ ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃𝑧 ∈ 𝑏 (𝑥𝑟𝑧 ∧ 𝑦𝑟𝑧))} |
cpo 18377 | class Poset |
cplt 18378 | class lt |
club 18379 | class lub |
cglb 18380 | class glb |
cjn 18381 | class join |
cmee 18382 | class meet |
df-poset 18383 | ⊢ Poset = {𝑓 ∣ ∃𝑏∃𝑟(𝑏 = (Base‘𝑓) ∧ 𝑟 = (le‘𝑓) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑟𝑥 ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑥) → 𝑥 = 𝑦) ∧ ((𝑥𝑟𝑦 ∧ 𝑦𝑟𝑧) → 𝑥𝑟𝑧)))} |
df-plt 18400 | ⊢ lt = (𝑝 ∈ V ↦ ((le‘𝑝) ∖ I )) |
df-lub 18416 | ⊢ lub = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑧 → 𝑥(le‘𝑝)𝑧)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑥 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑦(le‘𝑝)𝑧 → 𝑥(le‘𝑝)𝑧))})) |
df-glb 18417 | ⊢ glb = (𝑝 ∈ V ↦ ((𝑠 ∈ 𝒫 (Base‘𝑝) ↦ (℩𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥)))) ↾ {𝑠 ∣ ∃!𝑥 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑥(le‘𝑝)𝑦 ∧ ∀𝑧 ∈ (Base‘𝑝)(∀𝑦 ∈ 𝑠 𝑧(le‘𝑝)𝑦 → 𝑧(le‘𝑝)𝑥))})) |
df-join 18418 | ⊢ join = (𝑝 ∈ V ↦ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (lub‘𝑝)𝑧}) |
df-meet 18419 | ⊢ meet = (𝑝 ∈ V ↦ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦} (glb‘𝑝)𝑧}) |
ctos 18486 | class Toset |
df-toset 18487 | ⊢ Toset = {𝑓 ∈ Poset ∣
[(Base‘𝑓) /
𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥)} |
cp0 18493 | class 0. |
cp1 18494 | class 1. |
df-p0 18495 | ⊢ 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) |
df-p1 18496 | ⊢ 1. = (𝑝 ∈ V ↦ ((lub‘𝑝)‘(Base‘𝑝))) |
clat 18501 | class Lat |
df-lat 18502 | ⊢ Lat = {𝑝 ∈ Poset ∣ (dom (join‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)) ∧ dom (meet‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)))} |
ccla 18568 | class CLat |
df-clat 18569 | ⊢ CLat = {𝑝 ∈ Poset ∣ (dom (lub‘𝑝) = 𝒫 (Base‘𝑝) ∧ dom (glb‘𝑝) = 𝒫 (Base‘𝑝))} |
cdlat 18590 | class DLat |
df-dlat 18591 | ⊢ DLat = {𝑘 ∈ Lat ∣ [(Base‘𝑘) / 𝑏][(join‘𝑘) / 𝑗][(meet‘𝑘) / 𝑚]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 (𝑥𝑚(𝑦𝑗𝑧)) = ((𝑥𝑚𝑦)𝑗(𝑥𝑚𝑧))} |
cipo 18597 | class toInc |
df-ipo 18598 | ⊢ toInc = (𝑓 ∈ V ↦ ⦋{〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑓 ∧ 𝑥 ⊆ 𝑦)} / 𝑜⦌({〈(Base‘ndx),
𝑓〉,
〈(TopSet‘ndx), (ordTop‘𝑜)〉} ∪ {〈(le‘ndx), 𝑜〉, 〈(oc‘ndx),
(𝑥 ∈ 𝑓 ↦ ∪ {𝑦
∈ 𝑓 ∣ (𝑦 ∩ 𝑥) = ∅})〉})) |
cps 18634 | class PosetRel |
ctsr 18635 | class TosetRel |
df-ps 18636 | ⊢ PosetRel = {𝑟 ∣ (Rel 𝑟 ∧ (𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (𝑟 ∩ ◡𝑟) = ( I ↾ ∪
∪ 𝑟))} |
df-tsr 18637 | ⊢ TosetRel = {𝑟 ∈ PosetRel ∣ (dom 𝑟 × dom 𝑟) ⊆ (𝑟 ∪ ◡𝑟)} |
cdir 18664 | class DirRel |
ctail 18665 | class tail |
df-dir 18666 | ⊢ DirRel = {𝑟 ∣ ((Rel 𝑟 ∧ ( I ↾ ∪ ∪ 𝑟) ⊆ 𝑟) ∧ ((𝑟 ∘ 𝑟) ⊆ 𝑟 ∧ (∪ ∪ 𝑟
× ∪ ∪ 𝑟) ⊆ (◡𝑟 ∘ 𝑟)))} |
df-tail 18667 | ⊢ tail = (𝑟 ∈ DirRel ↦ (𝑥 ∈ ∪ ∪ 𝑟
↦ (𝑟 “ {𝑥}))) |
cplusf 18675 | class
+𝑓 |
cmgm 18676 | class Mgm |
df-plusf 18677 | ⊢ +𝑓 = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)𝑦))) |
df-mgm 18678 | ⊢ Mgm = {𝑔 ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑜𝑦) ∈ 𝑏} |
cmgmhm 18728 | class MgmHom |
csubmgm 18729 | class SubMgm |
df-mgmhm 18730 | ⊢ MgmHom = (𝑠 ∈ Mgm, 𝑡 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ ∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦))}) |
df-submgm 18731 | ⊢ SubMgm = (𝑠 ∈ Mgm ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡}) |
csgrp 18756 | class Smgrp |
df-sgrp 18757 | ⊢ Smgrp = {𝑔 ∈ Mgm ∣ [(Base‘𝑔) / 𝑏][(+g‘𝑔) / 𝑜]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} |
cmnd 18772 | class Mnd |
df-mnd 18773 | ⊢ Mnd = {𝑔 ∈ Smgrp ∣
[(Base‘𝑔) /
𝑏][(+g‘𝑔) / 𝑝]∃𝑒 ∈ 𝑏 ∀𝑥 ∈ 𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)} |
cmhm 18816 | class MndHom |
csubmnd 18817 | class SubMnd |
df-mhm 18818 | ⊢ MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑m (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) |
df-submnd 18819 | ⊢ SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣
((0g‘𝑠)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑠)𝑦) ∈ 𝑡)}) |
cfrmd 18882 | class freeMnd |
cvrmd 18883 | class
varFMnd |
df-frmd 18884 | ⊢ freeMnd = (𝑖 ∈ V ↦ {〈(Base‘ndx),
Word 𝑖〉,
〈(+g‘ndx), ( ++ ↾ (Word 𝑖 × Word 𝑖))〉}) |
df-vrmd 18885 | ⊢ varFMnd = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ 〈“𝑗”〉)) |
cefmnd 18903 | class EndoFMnd |
df-efmnd 18904 | ⊢ EndoFMnd = (𝑥 ∈ V ↦ ⦋(𝑥 ↑m 𝑥) / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉}) |
cgrp 18973 | class Grp |
cminusg 18974 | class invg |
csg 18975 | class -g |
df-grp 18976 | ⊢ Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g‘𝑔)𝑎) = (0g‘𝑔)} |
df-minusg 18977 | ⊢ invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (℩𝑤 ∈ (Base‘𝑔)(𝑤(+g‘𝑔)𝑥) = (0g‘𝑔)))) |
df-sbg 18978 | ⊢ -g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g‘𝑔)((invg‘𝑔)‘𝑦)))) |
cmg 19107 | class .g |
df-mulg 19108 | ⊢ .g = (𝑔 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑔) ↦ if(𝑛 = 0, (0g‘𝑔),
⦋seq1((+g‘𝑔), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑔)‘(𝑠‘-𝑛)))))) |
csubg 19160 | class SubGrp |
cnsg 19161 | class NrmSGrp |
cqg 19162 | class
~QG |
df-subg 19163 | ⊢ SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp}) |
df-nsg 19164 | ⊢ NrmSGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣ [(Base‘𝑤) / 𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) |
df-eqg 19165 | ⊢ ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) ∈ 𝑖)}) |
cghm 19252 | class GrpHom |
df-ghm 19253 | ⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) |
cgim 19297 | class GrpIso |
cgic 19298 | class
≃𝑔 |
df-gim 19299 | ⊢ GrpIso = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) |
df-gic 19300 | ⊢ ≃𝑔 = (◡ GrpIso “ (V ∖
1o)) |
cga 19329 | class GrpAct |
df-ga 19330 | ⊢ GrpAct = (𝑔 ∈ Grp, 𝑠 ∈ V ↦
⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) |
ccntz 19355 | class Cntz |
ccntr 19356 | class Cntr |
df-cntz 19357 | ⊢ Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)})) |
df-cntr 19358 | ⊢ Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) |
coppg 19385 | class
oppg |
df-oppg 19386 | ⊢ oppg = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx), tpos
(+g‘𝑤)〉)) |
csymg 19410 | class SymGrp |
df-symg 19411 | ⊢ SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) |
cpmtr 19483 | class pmTrsp |
df-pmtr 19484 | ⊢ pmTrsp = (𝑑 ∈ V ↦ (𝑝 ∈ {𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o} ↦ (𝑧 ∈ 𝑑 ↦ if(𝑧 ∈ 𝑝, ∪ (𝑝 ∖ {𝑧}), 𝑧)))) |
cpsgn 19531 | class pmSgn |
cevpm 19532 | class pmEven |
df-psgn 19533 | ⊢ pmSgn = (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦
(℩𝑠∃𝑤 ∈ Word ran
(pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg
𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))) |
df-evpm 19534 | ⊢ pmEven = (𝑑 ∈ V ↦ (◡(pmSgn‘𝑑) “ {1})) |
cod 19566 | class od |
cgex 19567 | class gEx |
cpgp 19568 | class pGrp |
cslw 19569 | class pSyl |
df-od 19570 | ⊢ od = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ ⦋{𝑛 ∈ ℕ ∣ (𝑛(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < )))) |
df-gex 19571 | ⊢ gEx = (𝑔 ∈ V ↦ ⦋{𝑛 ∈ ℕ ∣
∀𝑥 ∈
(Base‘𝑔)(𝑛(.g‘𝑔)𝑥) = (0g‘𝑔)} / 𝑖⦌if(𝑖 = ∅, 0, inf(𝑖, ℝ, < ))) |
df-pgp 19572 | ⊢ pGrp = {〈𝑝, 𝑔〉 ∣ ((𝑝 ∈ ℙ ∧ 𝑔 ∈ Grp) ∧ ∀𝑥 ∈ (Base‘𝑔)∃𝑛 ∈ ℕ0 ((od‘𝑔)‘𝑥) = (𝑝↑𝑛))} |
df-slw 19573 | ⊢ pSyl = (𝑝 ∈ ℙ, 𝑔 ∈ Grp ↦ {ℎ ∈ (SubGrp‘𝑔) ∣ ∀𝑘 ∈ (SubGrp‘𝑔)((ℎ ⊆ 𝑘 ∧ 𝑝 pGrp (𝑔 ↾s 𝑘)) ↔ ℎ = 𝑘)}) |
clsm 19676 | class LSSum |
cpj1 19677 | class
proj1 |
df-lsm 19678 | ⊢ LSSum = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ ran (𝑥 ∈ 𝑡, 𝑦 ∈ 𝑢 ↦ (𝑥(+g‘𝑤)𝑦)))) |
df-pj1 19679 | ⊢ proj1 = (𝑤 ∈ V ↦ (𝑡 ∈ 𝒫 (Base‘𝑤), 𝑢 ∈ 𝒫 (Base‘𝑤) ↦ (𝑧 ∈ (𝑡(LSSum‘𝑤)𝑢) ↦ (℩𝑥 ∈ 𝑡 ∃𝑦 ∈ 𝑢 𝑧 = (𝑥(+g‘𝑤)𝑦))))) |
cefg 19748 | class
~FG |
cfrgp 19749 | class freeGrp |
cvrgp 19750 | class
varFGrp |
df-efg 19751 | ⊢ ~FG = (𝑖 ∈ V ↦ ∩ {𝑟
∣ (𝑟 Er Word (𝑖 × 2o) ∧
∀𝑥 ∈ Word
(𝑖 ×
2o)∀𝑛
∈ (0...(♯‘𝑥))∀𝑦 ∈ 𝑖 ∀𝑧 ∈ 2o 𝑥𝑟(𝑥 splice 〈𝑛, 𝑛, 〈“〈𝑦, 𝑧〉〈𝑦, (1o ∖ 𝑧)〉”〉〉))}) |
df-frgp 19752 | ⊢ freeGrp = (𝑖 ∈ V ↦ ((freeMnd‘(𝑖 × 2o))
/s ( ~FG ‘𝑖))) |
df-vrgp 19753 | ⊢ varFGrp = (𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ [〈“〈𝑗, ∅〉”〉](
~FG ‘𝑖))) |
ccmn 19822 | class CMnd |
cabl 19823 | class Abel |
df-cmn 19824 | ⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎)} |
df-abl 19825 | ⊢ Abel = (Grp ∩ CMnd) |
ccyg 19919 | class CycGrp |
df-cyg 19920 | ⊢ CycGrp = {𝑔 ∈ Grp ∣ ∃𝑥 ∈ (Base‘𝑔)ran (𝑛 ∈ ℤ ↦ (𝑛(.g‘𝑔)𝑥)) = (Base‘𝑔)} |
cdprd 20037 | class DProd |
cdpj 20038 | class dProj |
df-dprd 20039 | ⊢ DProd = (𝑔 ∈ Grp, 𝑠 ∈ {ℎ ∣ (ℎ:dom ℎ⟶(SubGrp‘𝑔) ∧ ∀𝑥 ∈ dom ℎ(∀𝑦 ∈ (dom ℎ ∖ {𝑥})(ℎ‘𝑥) ⊆ ((Cntz‘𝑔)‘(ℎ‘𝑦)) ∧ ((ℎ‘𝑥) ∩ ((mrCls‘(SubGrp‘𝑔))‘∪ (ℎ
“ (dom ℎ ∖
{𝑥})))) =
{(0g‘𝑔)}))} ↦ ran (𝑓 ∈ {ℎ ∈ X𝑥 ∈ dom 𝑠(𝑠‘𝑥) ∣ ℎ finSupp (0g‘𝑔)} ↦ (𝑔 Σg 𝑓))) |
df-dpj 20040 | ⊢ dProj = (𝑔 ∈ Grp, 𝑠 ∈ (dom DProd “ {𝑔}) ↦ (𝑖 ∈ dom 𝑠 ↦ ((𝑠‘𝑖)(proj1‘𝑔)(𝑔 DProd (𝑠 ↾ (dom 𝑠 ∖ {𝑖})))))) |
csimpg 20134 | class SimpGrp |
df-simpg 20135 | ⊢ SimpGrp = {𝑔 ∈ Grp ∣ (NrmSGrp‘𝑔) ≈
2o} |
cmgp 20161 | class mulGrp |
df-mgp 20162 | ⊢ mulGrp = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx),
(.r‘𝑤)〉)) |
crng 20179 | class Rng |
df-rng 20180 | ⊢ Rng = {𝑓 ∈ Abel ∣ ((mulGrp‘𝑓) ∈ Smgrp ∧
[(Base‘𝑓) /
𝑏][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} |
cur 20208 | class 1r |
df-ur 20209 | ⊢ 1r = (0g
∘ mulGrp) |
csrg 20213 | class SRing |
df-srg 20214 | ⊢ SRing = {𝑓 ∈ CMnd ∣ ((mulGrp‘𝑓) ∈ Mnd ∧
[(Base‘𝑓) /
𝑟][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡][(0g‘𝑓) / 𝑛]∀𝑥 ∈ 𝑟 (∀𝑦 ∈ 𝑟 ∀𝑧 ∈ 𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))) ∧ ((𝑛𝑡𝑥) = 𝑛 ∧ (𝑥𝑡𝑛) = 𝑛)))} |
crg 20260 | class Ring |
ccrg 20261 | class CRing |
df-ring 20262 | ⊢ Ring = {𝑓 ∈ Grp ∣ ((mulGrp‘𝑓) ∈ Mnd ∧
[(Base‘𝑓) /
𝑟][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡]∀𝑥 ∈ 𝑟 ∀𝑦 ∈ 𝑟 ∀𝑧 ∈ 𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))} |
df-cring 20263 | ⊢ CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd} |
coppr 20359 | class
oppr |
df-oppr 20360 | ⊢ oppr = (𝑓 ∈ V ↦ (𝑓 sSet 〈(.r‘ndx), tpos
(.r‘𝑓)〉)) |
cdsr 20380 | class
∥r |
cui 20381 | class Unit |
cir 20382 | class Irred |
df-dvdsr 20383 | ⊢ ∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) |
df-unit 20384 | ⊢ Unit = (𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩
(∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)})) |
df-irred 20385 | ⊢ Irred = (𝑤 ∈ V ↦
⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧}) |
cinvr 20413 | class invr |
df-invr 20414 | ⊢ invr = (𝑟 ∈ V ↦
(invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) |
cdvr 20426 | class /r |
df-dvr 20427 | ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) |
crpm 20458 | class RPrime |
df-rprm 20459 | ⊢ RPrime = (𝑤 ∈ V ↦
⦋(Base‘𝑤) / 𝑏⦌{𝑝 ∈ (𝑏 ∖ ((Unit‘𝑤) ∪ {(0g‘𝑤)})) ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 [(∥r‘𝑤) / 𝑑](𝑝𝑑(𝑥(.r‘𝑤)𝑦) → (𝑝𝑑𝑥 ∨ 𝑝𝑑𝑦))}) |
crnghm 20460 | class RngHom |
crngim 20461 | class RngIso |
df-rnghm 20462 | ⊢ RngHom = (𝑟 ∈ Rng, 𝑠 ∈ Rng ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦)))}) |
df-rngim 20463 | ⊢ RngIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RngHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RngHom 𝑟)}) |
crh 20495 | class RingHom |
crs 20496 | class RingIso |
cric 20497 | class
≃𝑟 |
df-rhm 20498 | ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦
⦋(Base‘𝑟) / 𝑣⦌⦋(Base‘𝑠) / 𝑤⦌{𝑓 ∈ (𝑤 ↑m 𝑣) ∣ ((𝑓‘(1r‘𝑟)) = (1r‘𝑠) ∧ ∀𝑥 ∈ 𝑣 ∀𝑦 ∈ 𝑣 ((𝑓‘(𝑥(+g‘𝑟)𝑦)) = ((𝑓‘𝑥)(+g‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥)(.r‘𝑠)(𝑓‘𝑦))))}) |
df-rim 20499 | ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) |
df-ric 20501 | ⊢ ≃𝑟 = (◡ RingIso “ (V ∖
1o)) |
cnzr 20538 | class NzRing |
df-nzr 20539 | ⊢ NzRing = {𝑟 ∈ Ring ∣
(1r‘𝑟)
≠ (0g‘𝑟)} |
clring 20564 | class LRing |
df-lring 20565 | ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} |
csubrng 20571 | class SubRng |
df-subrng 20572 | ⊢ SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Rng}) |
csubrg 20595 | class SubRing |
crgspn 20596 | class RingSpan |
df-subrg 20597 | ⊢ SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤 ↾s 𝑠) ∈ Ring ∧
(1r‘𝑤)
∈ 𝑠)}) |
df-rgspn 20598 | ⊢ RingSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡
∈ (SubRing‘𝑤)
∣ 𝑠 ⊆ 𝑡})) |
crngc 20638 | class RngCat |
df-rngc 20639 | ⊢ RngCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat ( RngHom
↾ ((𝑢 ∩ Rng)
× (𝑢 ∩
Rng))))) |
cringc 20667 | class RingCat |
df-ringc 20668 | ⊢ RingCat = (𝑢 ∈ V ↦ ((ExtStrCat‘𝑢) ↾cat (
RingHom ↾ ((𝑢 ∩
Ring) × (𝑢 ∩
Ring))))) |
crlreg 20713 | class RLReg |
cdomn 20714 | class Domn |
cidom 20715 | class IDomn |
df-rlreg 20716 | ⊢ RLReg = (𝑟 ∈ V ↦ {𝑥 ∈ (Base‘𝑟) ∣ ∀𝑦 ∈ (Base‘𝑟)((𝑥(.r‘𝑟)𝑦) = (0g‘𝑟) → 𝑦 = (0g‘𝑟))}) |
df-domn 20717 | ⊢ Domn = {𝑟 ∈ NzRing ∣
[(Base‘𝑟) /
𝑏][(0g‘𝑟) / 𝑧]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥(.r‘𝑟)𝑦) = 𝑧 → (𝑥 = 𝑧 ∨ 𝑦 = 𝑧))} |
df-idom 20718 | ⊢ IDomn = (CRing ∩ Domn) |
cdr 20751 | class DivRing |
cfield 20752 | class Field |
df-drng 20753 | ⊢ DivRing = {𝑟 ∈ Ring ∣ (Unit‘𝑟) = ((Base‘𝑟) ∖
{(0g‘𝑟)})} |
df-field 20754 | ⊢ Field = (DivRing ∩
CRing) |
csdrg 20809 | class SubDRing |
df-sdrg 20810 | ⊢ SubDRing = (𝑤 ∈ DivRing ↦ {𝑠 ∈ (SubRing‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ DivRing}) |
cabv 20831 | class AbsVal |
df-abv 20832 | ⊢ AbsVal = (𝑟 ∈ Ring ↦ {𝑓 ∈ ((0[,)+∞) ↑m
(Base‘𝑟)) ∣
∀𝑥 ∈
(Base‘𝑟)(((𝑓‘𝑥) = 0 ↔ 𝑥 = (0g‘𝑟)) ∧ ∀𝑦 ∈ (Base‘𝑟)((𝑓‘(𝑥(.r‘𝑟)𝑦)) = ((𝑓‘𝑥) · (𝑓‘𝑦)) ∧ (𝑓‘(𝑥(+g‘𝑟)𝑦)) ≤ ((𝑓‘𝑥) + (𝑓‘𝑦))))}) |
cstf 20860 | class
*rf |
csr 20861 | class *-Ring |
df-staf 20862 | ⊢ *rf = (𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑓) ↦ ((*𝑟‘𝑓)‘𝑥))) |
df-srng 20863 | ⊢ *-Ring = {𝑓 ∣
[(*rf‘𝑓) / 𝑖](𝑖 ∈ (𝑓 RingHom (oppr‘𝑓)) ∧ 𝑖 = ◡𝑖)} |
clmod 20880 | class LMod |
cscaf 20881 | class
·sf |
df-lmod 20882 | ⊢ LMod = {𝑔 ∈ Grp ∣ [(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑎][(Scalar‘𝑔) / 𝑓][(
·𝑠 ‘𝑔) / 𝑠][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ Ring ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤)))} |
df-scaf 20883 | ⊢ ·sf = (𝑔 ∈ V ↦ (𝑥 ∈
(Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠
‘𝑔)𝑦))) |
clss 20952 | class LSubSp |
df-lss 20953 | ⊢ LSubSp = (𝑤 ∈ V ↦ {𝑠 ∈ (𝒫 (Base‘𝑤) ∖ {∅}) ∣
∀𝑥 ∈
(Base‘(Scalar‘𝑤))∀𝑎 ∈ 𝑠 ∀𝑏 ∈ 𝑠 ((𝑥( ·𝑠
‘𝑤)𝑎)(+g‘𝑤)𝑏) ∈ 𝑠}) |
clspn 20992 | class LSpan |
df-lsp 20993 | ⊢ LSpan = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡
∈ (LSubSp‘𝑤)
∣ 𝑠 ⊆ 𝑡})) |
clmhm 21041 | class LMHom |
clmim 21042 | class LMIso |
clmic 21043 | class
≃𝑚 |
df-lmhm 21044 | ⊢ LMHom = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑓 ∈ (𝑠 GrpHom 𝑡) ∣ [(Scalar‘𝑠) / 𝑤]((Scalar‘𝑡) = 𝑤 ∧ ∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥( ·𝑠
‘𝑠)𝑦)) = (𝑥( ·𝑠
‘𝑡)(𝑓‘𝑦)))}) |
df-lmim 21045 | ⊢ LMIso = (𝑠 ∈ LMod, 𝑡 ∈ LMod ↦ {𝑔 ∈ (𝑠 LMHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) |
df-lmic 21046 | ⊢ ≃𝑚 = (◡ LMIso “ (V ∖
1o)) |
clbs 21096 | class LBasis |
df-lbs 21097 | ⊢ LBasis = (𝑤 ∈ V ↦ {𝑏 ∈ 𝒫 (Base‘𝑤) ∣
[(LSpan‘𝑤) /
𝑛][(Scalar‘𝑤) / 𝑠]((𝑛‘𝑏) = (Base‘𝑤) ∧ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑦( ·𝑠
‘𝑤)𝑥) ∈ (𝑛‘(𝑏 ∖ {𝑥})))}) |
clvec 21124 | class LVec |
df-lvec 21125 | ⊢ LVec = {𝑓 ∈ LMod ∣ (Scalar‘𝑓) ∈
DivRing} |
csra 21193 | class subringAlg |
crglmod 21194 | class ringLMod |
df-sra 21195 | ⊢ subringAlg = (𝑤 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ (((𝑤 sSet 〈(Scalar‘ndx), (𝑤 ↾s 𝑠)〉) sSet 〈(
·𝑠 ‘ndx), (.r‘𝑤)〉) sSet
〈(·𝑖‘ndx),
(.r‘𝑤)〉))) |
df-rgmod 21196 | ⊢ ringLMod = (𝑤 ∈ V ↦ ((subringAlg ‘𝑤)‘(Base‘𝑤))) |
clidl 21239 | class LIdeal |
crsp 21240 | class RSpan |
df-lidl 21241 | ⊢ LIdeal = (LSubSp ∘
ringLMod) |
df-rsp 21242 | ⊢ RSpan = (LSpan ∘
ringLMod) |
c2idl 21282 | class 2Ideal |
df-2idl 21283 | ⊢ 2Ideal = (𝑟 ∈ V ↦ ((LIdeal‘𝑟) ∩
(LIdeal‘(oppr‘𝑟)))) |
clpidl 21353 | class LPIdeal |
clpir 21354 | class LPIR |
df-lpidl 21355 | ⊢ LPIdeal = (𝑤 ∈ Ring ↦ ∪ 𝑔 ∈ (Base‘𝑤){((RSpan‘𝑤)‘{𝑔})}) |
df-lpir 21356 | ⊢ LPIR = {𝑤 ∈ Ring ∣ (LIdeal‘𝑤) = (LPIdeal‘𝑤)} |
cpid 21369 | class PID |
df-pid 21370 | ⊢ PID = (IDomn ∩ LPIR) |
cpsmet 21371 | class PsMet |
cxmet 21372 | class ∞Met |
cmet 21373 | class Met |
cbl 21374 | class ball |
cfbas 21375 | class fBas |
cfg 21376 | class filGen |
cmopn 21377 | class MetOpen |
cmetu 21378 | class metUnif |
df-psmet 21379 | ⊢ PsMet = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
↑m (𝑥
× 𝑥)) ∣
∀𝑦 ∈ 𝑥 ((𝑦𝑑𝑦) = 0 ∧ ∀𝑧 ∈ 𝑥 ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) |
df-xmet 21380 | ⊢ ∞Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ*
↑m (𝑥
× 𝑥)) ∣
∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) +𝑒 (𝑤𝑑𝑧)))}) |
df-met 21381 | ⊢ Met = (𝑥 ∈ V ↦ {𝑑 ∈ (ℝ ↑m (𝑥 × 𝑥)) ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (((𝑦𝑑𝑧) = 0 ↔ 𝑦 = 𝑧) ∧ ∀𝑤 ∈ 𝑥 (𝑦𝑑𝑧) ≤ ((𝑤𝑑𝑦) + (𝑤𝑑𝑧)))}) |
df-bl 21382 | ⊢ ball = (𝑑 ∈ V ↦ (𝑥 ∈ dom dom 𝑑, 𝑧 ∈ ℝ* ↦ {𝑦 ∈ dom dom 𝑑 ∣ (𝑥𝑑𝑦) < 𝑧})) |
df-mopn 21383 | ⊢ MetOpen = (𝑑 ∈ ∪ ran
∞Met ↦ (topGen‘ran (ball‘𝑑))) |
df-fbas 21384 | ⊢ fBas = (𝑤 ∈ V ↦ {𝑥 ∈ 𝒫 𝒫 𝑤 ∣ (𝑥 ≠ ∅ ∧ ∅ ∉ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧)) ≠ ∅)}) |
df-fg 21385 | ⊢ filGen = (𝑤 ∈ V, 𝑥 ∈ (fBas‘𝑤) ↦ {𝑦 ∈ 𝒫 𝑤 ∣ (𝑥 ∩ 𝒫 𝑦) ≠ ∅}) |
df-metu 21386 | ⊢ metUnif = (𝑑 ∈ ∪ ran
PsMet ↦ ((dom dom 𝑑
× dom dom 𝑑)filGenran
(𝑎 ∈
ℝ+ ↦ (◡𝑑 “ (0[,)𝑎))))) |
ccnfld 21387 | class
ℂfld |
df-cnfld 21388 | ⊢ ℂfld =
(({〈(Base‘ndx), ℂ〉, 〈(+g‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + 𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 · 𝑦))〉} ∪
{〈(*𝑟‘ndx), ∗〉}) ∪
({〈(TopSet‘ndx), (MetOpen‘(abs ∘ − ))〉,
〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), (abs ∘ −
)〉} ∪ {〈(UnifSet‘ndx), (metUnif‘(abs ∘ −
))〉})) |
czring 21480 | class
ℤring |
df-zring 21481 | ⊢ ℤring =
(ℂfld ↾s ℤ) |
czrh 21533 | class ℤRHom |
czlm 21534 | class ℤMod |
cchr 21535 | class chr |
czn 21536 | class
ℤ/nℤ |
df-zrh 21537 | ⊢ ℤRHom = (𝑟 ∈ V ↦ ∪ (ℤring RingHom 𝑟)) |
df-zlm 21538 | ⊢ ℤMod = (𝑔 ∈ V ↦ ((𝑔 sSet 〈(Scalar‘ndx),
ℤring〉) sSet 〈( ·𝑠
‘ndx), (.g‘𝑔)〉)) |
df-chr 21539 | ⊢ chr = (𝑔 ∈ V ↦ ((od‘𝑔)‘(1r‘𝑔))) |
df-zn 21540 | ⊢ ℤ/nℤ = (𝑛 ∈ ℕ0
↦ ⦋ℤring / 𝑧⦌⦋(𝑧 /s (𝑧 ~QG
((RSpan‘𝑧)‘{𝑛}))) / 𝑠⦌(𝑠 sSet 〈(le‘ndx),
⦋((ℤRHom‘𝑠) ↾ if(𝑛 = 0, ℤ, (0..^𝑛))) / 𝑓⦌((𝑓 ∘ ≤ ) ∘ ◡𝑓)〉)) |
crefld 21645 | class
ℝfld |
df-refld 21646 | ⊢ ℝfld =
(ℂfld ↾s ℝ) |
cphl 21665 | class PreHil |
cipf 21666 | class
·if |
df-phl 21667 | ⊢ PreHil = {𝑔 ∈ LVec ∣
[(Base‘𝑔) /
𝑣][(·𝑖‘𝑔) / ℎ][(Scalar‘𝑔) / 𝑓](𝑓
∈ *-Ring ∧ ∀𝑥 ∈ 𝑣 ((𝑦 ∈ 𝑣
↦ (𝑦ℎ𝑥)) ∈
(𝑔 LMHom (ringLMod‘𝑓)) ∧ ((𝑥ℎ𝑥) = (0g‘𝑓) → 𝑥 =
(0g‘𝑔)) ∧ ∀𝑦 ∈ 𝑣 ((*𝑟‘𝑓)‘(𝑥ℎ𝑦)) = (𝑦ℎ𝑥)))} |
df-ipf 21668 | ⊢ ·if = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(·𝑖‘𝑔)𝑦))) |
cocv 21701 | class ocv |
ccss 21702 | class ClSubSp |
cthl 21703 | class toHL |
df-ocv 21704 | ⊢ ocv = (ℎ ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘ℎ) ↦ {𝑥 ∈ (Base‘ℎ) ∣ ∀𝑦 ∈ 𝑠 (𝑥(·𝑖‘ℎ)𝑦) = (0g‘(Scalar‘ℎ))})) |
df-css 21705 | ⊢ ClSubSp = (ℎ ∈ V ↦ {𝑠 ∣ 𝑠 = ((ocv‘ℎ)‘((ocv‘ℎ)‘𝑠))}) |
df-thl 21706 | ⊢ toHL = (ℎ ∈ V ↦
((toInc‘(ClSubSp‘ℎ)) sSet 〈(oc‘ndx), (ocv‘ℎ)〉)) |
cpj 21743 | class proj |
chil 21744 | class Hil |
cobs 21745 | class OBasis |
df-pj 21746 | ⊢ proj = (ℎ ∈ V ↦ ((𝑥 ∈ (LSubSp‘ℎ) ↦ (𝑥(proj1‘ℎ)((ocv‘ℎ)‘𝑥))) ∩ (V × ((Base‘ℎ) ↑m
(Base‘ℎ))))) |
df-hil 21747 | ⊢ Hil = {ℎ ∈ PreHil ∣ dom (proj‘ℎ) = (ClSubSp‘ℎ)} |
df-obs 21748 | ⊢ OBasis = (ℎ ∈ PreHil ↦ {𝑏 ∈ 𝒫 (Base‘ℎ) ∣ (∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(·𝑖‘ℎ)𝑦) = if(𝑥 = 𝑦, (1r‘(Scalar‘ℎ)),
(0g‘(Scalar‘ℎ))) ∧ ((ocv‘ℎ)‘𝑏) = {(0g‘ℎ)})}) |
cdsmm 21774 | class
⊕m |
df-dsmm 21775 | ⊢ ⊕m = (𝑠 ∈ V, 𝑟 ∈ V ↦ ((𝑠Xs𝑟) ↾s {𝑓 ∈ X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) ∣ {𝑥 ∈ dom 𝑟 ∣ (𝑓‘𝑥) ≠ (0g‘(𝑟‘𝑥))} ∈ Fin})) |
cfrlm 21789 | class freeLMod |
df-frlm 21790 | ⊢ freeLMod = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑟 ⊕m (𝑖 × {(ringLMod‘𝑟)}))) |
cuvc 21825 | class unitVec |
df-uvc 21826 | ⊢ unitVec = (𝑟 ∈ V, 𝑖 ∈ V ↦ (𝑗 ∈ 𝑖 ↦ (𝑘 ∈ 𝑖 ↦ if(𝑘 = 𝑗, (1r‘𝑟), (0g‘𝑟))))) |
clindf 21847 | class LIndF |
clinds 21848 | class LIndS |
df-lindf 21849 | ⊢ LIndF = {〈𝑓, 𝑤〉 ∣ (𝑓:dom 𝑓⟶(Base‘𝑤) ∧ [(Scalar‘𝑤) / 𝑠]∀𝑥 ∈ dom 𝑓∀𝑘 ∈ ((Base‘𝑠) ∖ {(0g‘𝑠)}) ¬ (𝑘( ·𝑠
‘𝑤)(𝑓‘𝑥)) ∈ ((LSpan‘𝑤)‘(𝑓 “ (dom 𝑓 ∖ {𝑥}))))} |
df-linds 21850 | ⊢ LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤}) |
casa 21893 | class AssAlg |
casp 21894 | class AlgSpan |
cascl 21895 | class algSc |
df-assa 21896 | ⊢ AssAlg = {𝑤 ∈ (LMod ∩ Ring) ∣
[(Scalar‘𝑤) /
𝑓]∀𝑟 ∈ (Base‘𝑓)∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)[(
·𝑠 ‘𝑤) / 𝑠][(.r‘𝑤) / 𝑡](((𝑟𝑠𝑥)𝑡𝑦) = (𝑟𝑠(𝑥𝑡𝑦)) ∧ (𝑥𝑡(𝑟𝑠𝑦)) = (𝑟𝑠(𝑥𝑡𝑦)))} |
df-asp 21897 | ⊢ AlgSpan = (𝑤 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ ∩ {𝑡
∈ ((SubRing‘𝑤)
∩ (LSubSp‘𝑤))
∣ 𝑠 ⊆ 𝑡})) |
df-ascl 21898 | ⊢ algSc = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)) ↦ (𝑥( ·𝑠
‘𝑤)(1r‘𝑤)))) |
cmps 21947 | class mPwSer |
cmvr 21948 | class mVar |
cmpl 21949 | class mPoly |
cltb 21950 | class
<bag |
copws 21951 | class ordPwSer |
df-psr 21952 | ⊢ mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑m 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f (+g‘𝑟) ↾ (𝑏 × 𝑏))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘r ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘f − 𝑥)))))))〉} ∪ {〈(Scalar‘ndx),
𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘f
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |
df-mvr 21953 | ⊢ mVar = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ if(𝑓 = (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0)), (1r‘𝑟), (0g‘𝑟))))) |
df-mpl 21954 | ⊢ mPoly = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋(𝑖 mPwSer 𝑟) / 𝑤⦌(𝑤 ↾s {𝑓 ∈ (Base‘𝑤) ∣ 𝑓 finSupp (0g‘𝑟)})) |
df-ltbag 21955 | ⊢ <bag = (𝑟 ∈ V, 𝑖 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∧
∃𝑧 ∈ 𝑖 ((𝑥‘𝑧) < (𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑖 (𝑧𝑟𝑤 → (𝑥‘𝑤) = (𝑦‘𝑤))))}) |
df-opsr 21956 | ⊢ ordPwSer = (𝑖 ∈ V, 𝑠 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑖 × 𝑖) ↦ ⦋(𝑖 mPwSer 𝑠) / 𝑝⦌(𝑝 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑝) ∧ ([{ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑]∃𝑧 ∈ 𝑑 ((𝑥‘𝑧)(lt‘𝑠)(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝑑 (𝑤(𝑟 <bag 𝑖)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉))) |
ces 22119 | class evalSub |
cevl 22120 | class eval |
df-evls 22121 | ⊢ evalSub = (𝑖 ∈ V, 𝑠 ∈ CRing ↦
⦋(Base‘𝑠) / 𝑏⦌(𝑟 ∈ (SubRing‘𝑠) ↦ ⦋(𝑖 mPoly (𝑠 ↾s 𝑟)) / 𝑤⦌(℩𝑓 ∈ (𝑤 RingHom (𝑠 ↑s (𝑏 ↑m 𝑖)))((𝑓 ∘ (algSc‘𝑤)) = (𝑥 ∈ 𝑟 ↦ ((𝑏 ↑m 𝑖) × {𝑥})) ∧ (𝑓 ∘ (𝑖 mVar (𝑠 ↾s 𝑟))) = (𝑥 ∈ 𝑖 ↦ (𝑔 ∈ (𝑏 ↑m 𝑖) ↦ (𝑔‘𝑥))))))) |
df-evl 22122 | ⊢ eval = (𝑖 ∈ V, 𝑟 ∈ V ↦ ((𝑖 evalSub 𝑟)‘(Base‘𝑟))) |
cslv 22155 | class selectVars |
cmhp 22156 | class mHomP |
cpsd 22157 | class mPSDer |
cai 22158 | class AlgInd |
df-selv 22159 | ⊢ selectVars = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑗 ∈ 𝒫 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ ⦋((𝑖 ∖ 𝑗) mPoly 𝑟) / 𝑢⦌⦋(𝑗 mPoly 𝑢) / 𝑡⦌⦋(algSc‘𝑡) / 𝑐⦌⦋(𝑐 ∘ (algSc‘𝑢)) / 𝑑⦌((((𝑖 evalSub 𝑡)‘ran 𝑑)‘(𝑑 ∘ 𝑓))‘(𝑥 ∈ 𝑖 ↦ if(𝑥 ∈ 𝑗, ((𝑗 mVar 𝑢)‘𝑥), (𝑐‘(((𝑖 ∖ 𝑗) mVar 𝑟)‘𝑥)))))))) |
df-mhp 22163 | ⊢ mHomP = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ {𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ∣ (𝑓 supp (0g‘𝑟)) ⊆ {𝑔 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ∣
((ℂfld ↾s ℕ0)
Σg 𝑔) = 𝑛}})) |
df-psd 22183 | ⊢ mPSDer = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑥 ∈ 𝑖 ↦ (𝑓 ∈ (Base‘(𝑖 mPwSer 𝑟)) ↦ (𝑘 ∈ {ℎ ∈ (ℕ0
↑m 𝑖)
∣ (◡ℎ “ ℕ) ∈ Fin} ↦ (((𝑘‘𝑥) + 1)(.g‘𝑟)(𝑓‘(𝑘 ∘f + (𝑦 ∈ 𝑖 ↦ if(𝑦 = 𝑥, 1, 0))))))))) |
df-algind 22196 | ⊢ AlgInd = (𝑤 ∈ V, 𝑘 ∈ 𝒫 (Base‘𝑤) ↦ {𝑣 ∈ 𝒫 (Base‘𝑤) ∣ Fun ◡(𝑓 ∈ (Base‘(𝑣 mPoly (𝑤 ↾s 𝑘))) ↦ ((((𝑣 evalSub 𝑤)‘𝑘)‘𝑓)‘( I ↾ 𝑣)))}) |
cps1 22197 | class
PwSer1 |
cv1 22198 | class var1 |
cpl1 22199 | class
Poly1 |
cco1 22200 | class coe1 |
ctp1 22201 | class
toPoly1 |
df-psr1 22202 | ⊢ PwSer1 = (𝑟 ∈ V ↦ ((1o ordPwSer
𝑟)‘∅)) |
df-vr1 22203 | ⊢ var1 = (𝑟 ∈ V ↦ ((1o mVar 𝑟)‘∅)) |
df-ply1 22204 | ⊢ Poly1 = (𝑟 ∈ V ↦
((PwSer1‘𝑟) ↾s
(Base‘(1o mPoly 𝑟)))) |
df-coe1 22205 | ⊢ coe1 = (𝑓 ∈ V ↦ (𝑛 ∈ ℕ0 ↦ (𝑓‘(1o ×
{𝑛})))) |
df-toply1 22206 | ⊢ toPoly1 = (𝑓 ∈ V ↦ (𝑛 ∈ (ℕ0
↑m 1o) ↦ (𝑓‘(𝑛‘∅)))) |
ces1 22338 | class
evalSub1 |
ce1 22339 | class
eval1 |
df-evls1 22340 | ⊢ evalSub1 = (𝑠 ∈ V, 𝑟 ∈ 𝒫 (Base‘𝑠) ↦
⦋(Base‘𝑠) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ ((1o
evalSub 𝑠)‘𝑟))) |
df-evl1 22341 | ⊢ eval1 = (𝑟 ∈ V ↦
⦋(Base‘𝑟) / 𝑏⦌((𝑥 ∈ (𝑏 ↑m (𝑏 ↑m 1o)) ↦
(𝑥 ∘ (𝑦 ∈ 𝑏 ↦ (1o × {𝑦})))) ∘ (1o
eval 𝑟))) |
cmmul 22415 | class maMul |
df-mamu 22416 | ⊢ maMul = (𝑟 ∈ V, 𝑜 ∈ V ↦
⦋(1st ‘(1st ‘𝑜)) / 𝑚⦌⦋(2nd
‘(1st ‘𝑜)) / 𝑛⦌⦋(2nd
‘𝑜) / 𝑝⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m (𝑛 × 𝑝)) ↦ (𝑖 ∈ 𝑚, 𝑘 ∈ 𝑝 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑗𝑦𝑘))))))) |
cmat 22432 | class Mat |
df-mat 22433 | ⊢ Mat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ((𝑟 freeLMod (𝑛 × 𝑛)) sSet 〈(.r‘ndx),
(𝑟 maMul 〈𝑛, 𝑛, 𝑛〉)〉)) |
cdmat 22515 | class DMat |
cscmat 22516 | class ScMat |
df-dmat 22517 | ⊢ DMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))}) |
df-scmat 22518 | ⊢ ScMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌{𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)𝑚 = (𝑐( ·𝑠
‘𝑎)(1r‘𝑎))}) |
cmvmul 22567 | class maVecMul |
df-mvmul 22568 | ⊢ maVecMul = (𝑟 ∈ V, 𝑜 ∈ V ↦
⦋(1st ‘𝑜) / 𝑚⦌⦋(2nd
‘𝑜) / 𝑛⦌(𝑥 ∈ ((Base‘𝑟) ↑m (𝑚 × 𝑛)), 𝑦 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑖 ∈ 𝑚 ↦ (𝑟 Σg (𝑗 ∈ 𝑛 ↦ ((𝑖𝑥𝑗)(.r‘𝑟)(𝑦‘𝑗))))))) |
cmarrep 22583 | class matRRep |
cmatrepV 22584 | class matRepV |
df-marrep 22585 | ⊢ matRRep = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑠 ∈ (Base‘𝑟) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, 𝑠, (0g‘𝑟)), (𝑖𝑚𝑗)))))) |
df-marepv 22586 | ⊢ matRepV = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)), 𝑣 ∈ ((Base‘𝑟) ↑m 𝑛) ↦ (𝑘 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑗 = 𝑘, (𝑣‘𝑖), (𝑖𝑚𝑗)))))) |
csubma 22603 | class subMat |
df-subma 22604 | ⊢ subMat = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ (𝑛 ∖ {𝑘}), 𝑗 ∈ (𝑛 ∖ {𝑙}) ↦ (𝑖𝑚𝑗))))) |
cmdat 22611 | class maDet |
df-mdet 22612 | ⊢ maDet = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑟 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑛)) ↦ ((((ℤRHom‘𝑟) ∘ (pmSgn‘𝑛))‘𝑝)(.r‘𝑟)((mulGrp‘𝑟) Σg (𝑥 ∈ 𝑛 ↦ ((𝑝‘𝑥)𝑚𝑥)))))))) |
cmadu 22659 | class maAdju |
cminmar1 22660 | class minMatR1 |
df-madu 22661 | ⊢ maAdju = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ ((𝑛 maDet 𝑟)‘(𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ if(𝑘 = 𝑗, if(𝑙 = 𝑖, (1r‘𝑟), (0g‘𝑟)), (𝑘𝑚𝑙))))))) |
df-minmar1 22662 | ⊢ minMatR1 = (𝑛 ∈ V, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑘 ∈ 𝑛, 𝑙 ∈ 𝑛 ↦ (𝑖 ∈ 𝑛, 𝑗 ∈ 𝑛 ↦ if(𝑖 = 𝑘, if(𝑗 = 𝑙, (1r‘𝑟), (0g‘𝑟)), (𝑖𝑚𝑗)))))) |
ccpmat 22730 | class ConstPolyMat |
cmat2pmat 22731 | class matToPolyMat |
ccpmat2mat 22732 | class cPolyMatToMat |
df-cpmat 22733 | ⊢ ConstPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ {𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 ∀𝑘 ∈ ℕ
((coe1‘(𝑖𝑚𝑗))‘𝑘) = (0g‘𝑟)}) |
df-mat2pmat 22734 | ⊢ matToPolyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦
((algSc‘(Poly1‘𝑟))‘(𝑥𝑚𝑦))))) |
df-cpmat2mat 22735 | ⊢ cPolyMatToMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (𝑛 ConstPolyMat 𝑟) ↦ (𝑥 ∈ 𝑛, 𝑦 ∈ 𝑛 ↦ ((coe1‘(𝑥𝑚𝑦))‘0)))) |
cdecpmat 22789 | class decompPMat |
df-decpmat 22790 | ⊢ decompPMat = (𝑚 ∈ V, 𝑘 ∈ ℕ0 ↦ (𝑖 ∈ dom dom 𝑚, 𝑗 ∈ dom dom 𝑚 ↦ ((coe1‘(𝑖𝑚𝑗))‘𝑘))) |
cpm2mp 22819 | class pMatToMatPoly |
df-pm2mp 22820 | ⊢ pMatToMatPoly = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat (Poly1‘𝑟))) ↦
⦋(𝑛 Mat 𝑟) / 𝑎⦌⦋(Poly1‘𝑎) / 𝑞⦌(𝑞 Σg (𝑘 ∈ ℕ0 ↦ ((𝑚 decompPMat 𝑘)( ·𝑠 ‘𝑞)(𝑘(.g‘(mulGrp‘𝑞))(var1‘𝑎))))))) |
cchpmat 22853 | class CharPlyMat |
df-chpmat 22854 | ⊢ CharPlyMat = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ (𝑚 ∈ (Base‘(𝑛 Mat 𝑟)) ↦ ((𝑛 maDet (Poly1‘𝑟))‘(((var1‘𝑟)(
·𝑠 ‘(𝑛 Mat (Poly1‘𝑟)))(1r‘(𝑛 Mat
(Poly1‘𝑟))))(-g‘(𝑛 Mat (Poly1‘𝑟)))((𝑛 matToPolyMat 𝑟)‘𝑚))))) |
ctop 22920 | class Top |
df-top 22921 | ⊢ Top = {𝑥 ∣ (∀𝑦 ∈ 𝒫 𝑥∪ 𝑦 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ∈ 𝑥)} |
ctopon 22937 | class TopOn |
df-topon 22938 | ⊢ TopOn = (𝑏 ∈ V ↦ {𝑗 ∈ Top ∣ 𝑏 = ∪ 𝑗}) |
ctps 22959 | class TopSp |
df-topsp 22960 | ⊢ TopSp = {𝑓 ∣ (TopOpen‘𝑓) ∈ (TopOn‘(Base‘𝑓))} |
ctb 22973 | class TopBases |
df-bases 22974 | ⊢ TopBases = {𝑥 ∣ ∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑦 ∩ 𝑧) ⊆ ∪ (𝑥 ∩ 𝒫 (𝑦 ∩ 𝑧))} |
ccld 23045 | class Clsd |
cnt 23046 | class int |
ccl 23047 | class cls |
df-cld 23048 | ⊢ Clsd = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗
∣ (∪ 𝑗 ∖ 𝑥) ∈ 𝑗}) |
df-ntr 23049 | ⊢ int = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ ∪ (𝑗 ∩ 𝒫 𝑥))) |
df-cls 23050 | ⊢ cls = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ ∩ {𝑦 ∈ (Clsd‘𝑗) ∣ 𝑥 ⊆ 𝑦})) |
cnei 23126 | class nei |
df-nei 23127 | ⊢ nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ {𝑦 ∈ 𝒫
∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) |
clp 23163 | class limPt |
cperf 23164 | class Perf |
df-lp 23165 | ⊢ limPt = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ {𝑦 ∣ 𝑦 ∈ ((cls‘𝑗)‘(𝑥 ∖ {𝑦}))})) |
df-perf 23166 | ⊢ Perf = {𝑗 ∈ Top ∣ ((limPt‘𝑗)‘∪ 𝑗) =
∪ 𝑗} |
ccn 23253 | class Cn |
ccnp 23254 | class CnP |
clm 23255 | class
⇝𝑡 |
df-cn 23256 | ⊢ Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑m ∪ 𝑗)
∣ ∀𝑦 ∈
𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) |
df-cnp 23257 | ⊢ CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑m ∪ 𝑗)
∣ ∀𝑦 ∈
𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
df-lm 23258 | ⊢ ⇝𝑡 =
(𝑗 ∈ Top ↦
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗
↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
ct0 23335 | class Kol2 |
ct1 23336 | class Fre |
cha 23337 | class Haus |
creg 23338 | class Reg |
cnrm 23339 | class Nrm |
ccnrm 23340 | class CNrm |
cpnrm 23341 | class PNrm |
df-t0 23342 | ⊢ Kol2 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗(∀𝑜 ∈ 𝑗 (𝑥 ∈ 𝑜 ↔ 𝑦 ∈ 𝑜) → 𝑥 = 𝑦)} |
df-t1 23343 | ⊢ Fre = {𝑥 ∈ Top ∣ ∀𝑎 ∈ ∪ 𝑥{𝑎} ∈ (Clsd‘𝑥)} |
df-haus 23344 | ⊢ Haus = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗(𝑥 ≠ 𝑦 → ∃𝑛 ∈ 𝑗 ∃𝑚 ∈ 𝑗 (𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ (𝑛 ∩ 𝑚) = ∅))} |
df-reg 23345 | ⊢ Reg = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑧 ∈ 𝑗 (𝑦 ∈ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} |
df-nrm 23346 | ⊢ Nrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ ((Clsd‘𝑗) ∩ 𝒫 𝑥)∃𝑧 ∈ 𝑗 (𝑦 ⊆ 𝑧 ∧ ((cls‘𝑗)‘𝑧) ⊆ 𝑥)} |
df-cnrm 23347 | ⊢ CNrm = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝒫 ∪ 𝑗(𝑗 ↾t 𝑥) ∈ Nrm} |
df-pnrm 23348 | ⊢ PNrm = {𝑗 ∈ Nrm ∣ (Clsd‘𝑗) ⊆ ran (𝑓 ∈ (𝑗 ↑m ℕ) ↦ ∩ ran 𝑓)} |
ccmp 23415 | class Comp |
df-cmp 23416 | ⊢ Comp = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪
𝑥 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑦 ∩
Fin)∪ 𝑥 = ∪ 𝑧)} |
cconn 23440 | class Conn |
df-conn 23441 | ⊢ Conn = {𝑗 ∈ Top ∣ (𝑗 ∩ (Clsd‘𝑗)) = {∅, ∪
𝑗}} |
c1stc 23466 | class
1stω |
c2ndc 23467 | class
2ndω |
df-1stc 23468 | ⊢ 1stω = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑦 ∈ 𝒫 𝑗(𝑦 ≼ ω ∧ ∀𝑧 ∈ 𝑗 (𝑥 ∈ 𝑧 → 𝑥 ∈ ∪ (𝑦 ∩ 𝒫 𝑧)))} |
df-2ndc 23469 | ⊢ 2ndω = {𝑗 ∣ ∃𝑥 ∈ TopBases (𝑥 ≼ ω ∧ (topGen‘𝑥) = 𝑗)} |
clly 23493 | class Locally 𝐴 |
cnlly 23494 | class 𝑛-Locally 𝐴 |
df-lly 23495 | ⊢ Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (𝑗 ∩ 𝒫 𝑥)(𝑦 ∈ 𝑢 ∧ (𝑗 ↾t 𝑢) ∈ 𝐴)} |
df-nlly 23496 | ⊢ 𝑛-Locally 𝐴 = {𝑗 ∈ Top ∣ ∀𝑥 ∈ 𝑗 ∀𝑦 ∈ 𝑥 ∃𝑢 ∈ (((nei‘𝑗)‘{𝑦}) ∩ 𝒫 𝑥)(𝑗 ↾t 𝑢) ∈ 𝐴} |
cref 23531 | class Ref |
cptfin 23532 | class PtFin |
clocfin 23533 | class LocFin |
df-ref 23534 | ⊢ Ref = {〈𝑥, 𝑦〉 ∣ (∪
𝑦 = ∪ 𝑥
∧ ∀𝑧 ∈
𝑥 ∃𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤)} |
df-ptfin 23535 | ⊢ PtFin = {𝑥 ∣ ∀𝑦 ∈ ∪ 𝑥{𝑧 ∈ 𝑥 ∣ 𝑦 ∈ 𝑧} ∈ Fin} |
df-locfin 23536 | ⊢ LocFin = (𝑥 ∈ Top ↦ {𝑦 ∣ (∪ 𝑥 = ∪
𝑦 ∧ ∀𝑝 ∈ ∪ 𝑥∃𝑛 ∈ 𝑥 (𝑝 ∈ 𝑛 ∧ {𝑠 ∈ 𝑦 ∣ (𝑠 ∩ 𝑛) ≠ ∅} ∈
Fin))}) |
ckgen 23562 | class 𝑘Gen |
df-kgen 23563 | ⊢ 𝑘Gen = (𝑗 ∈ Top ↦ {𝑥 ∈ 𝒫 ∪ 𝑗
∣ ∀𝑘 ∈
𝒫 ∪ 𝑗((𝑗 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝑗 ↾t 𝑘))}) |
ctx 23589 | class
×t |
cxko 23590 | class
↑ko |
df-tx 23591 | ⊢ ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) |
df-xko 23592 | ⊢ ↑ko = (𝑠 ∈ Top, 𝑟 ∈ Top ↦
(topGen‘(fi‘ran (𝑘 ∈ {𝑥 ∈ 𝒫 ∪ 𝑟
∣ (𝑟
↾t 𝑥)
∈ Comp}, 𝑣 ∈
𝑠 ↦ {𝑓 ∈ (𝑟 Cn 𝑠) ∣ (𝑓 “ 𝑘) ⊆ 𝑣})))) |
ckq 23722 | class KQ |
df-kq 23723 | ⊢ KQ = (𝑗 ∈ Top ↦ (𝑗 qTop (𝑥 ∈ ∪ 𝑗 ↦ {𝑦 ∈ 𝑗 ∣ 𝑥 ∈ 𝑦}))) |
chmeo 23782 | class Homeo |
chmph 23783 | class ≃ |
df-hmeo 23784 | ⊢ Homeo = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (𝑗 Cn 𝑘) ∣ ◡𝑓 ∈ (𝑘 Cn 𝑗)}) |
df-hmph 23785 | ⊢ ≃ = (◡Homeo “ (V ∖
1o)) |
cfil 23874 | class Fil |
df-fil 23875 | ⊢ Fil = (𝑧 ∈ V ↦ {𝑓 ∈ (fBas‘𝑧) ∣ ∀𝑥 ∈ 𝒫 𝑧((𝑓 ∩ 𝒫 𝑥) ≠ ∅ → 𝑥 ∈ 𝑓)}) |
cufil 23928 | class UFil |
cufl 23929 | class UFL |
df-ufil 23930 | ⊢ UFil = (𝑔 ∈ V ↦ {𝑓 ∈ (Fil‘𝑔) ∣ ∀𝑥 ∈ 𝒫 𝑔(𝑥 ∈ 𝑓 ∨ (𝑔 ∖ 𝑥) ∈ 𝑓)}) |
df-ufl 23931 | ⊢ UFL = {𝑥 ∣ ∀𝑓 ∈ (Fil‘𝑥)∃𝑔 ∈ (UFil‘𝑥)𝑓 ⊆ 𝑔} |
cfm 23962 | class FilMap |
cflim 23963 | class fLim |
cflf 23964 | class fLimf |
cfcls 23965 | class fClus |
cfcf 23966 | class fClusf |
df-fm 23967 | ⊢ FilMap = (𝑥 ∈ V, 𝑓 ∈ V ↦ (𝑦 ∈ (fBas‘dom 𝑓) ↦ (𝑥filGenran (𝑡 ∈ 𝑦 ↦ (𝑓 “ 𝑡))))) |
df-flim 23968 | ⊢ fLim = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil
↦ {𝑥 ∈ ∪ 𝑗
∣ (((nei‘𝑗)‘{𝑥}) ⊆ 𝑓 ∧ 𝑓 ⊆ 𝒫 ∪ 𝑗)}) |
df-flf 23969 | ⊢ fLimf = (𝑥 ∈ Top, 𝑦 ∈ ∪ ran Fil
↦ (𝑓 ∈ (∪ 𝑥
↑m ∪ 𝑦) ↦ (𝑥 fLim ((∪ 𝑥 FilMap 𝑓)‘𝑦)))) |
df-fcls 23970 | ⊢ fClus = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil
↦ if(∪ 𝑗 = ∪ 𝑓, ∩ 𝑥 ∈ 𝑓 ((cls‘𝑗)‘𝑥), ∅)) |
df-fcf 23971 | ⊢ fClusf = (𝑗 ∈ Top, 𝑓 ∈ ∪ ran Fil
↦ (𝑔 ∈ (∪ 𝑗
↑m ∪ 𝑓) ↦ (𝑗 fClus ((∪ 𝑗 FilMap 𝑔)‘𝑓)))) |
ccnext 24088 | class CnExt |
df-cnext 24089 | ⊢ CnExt = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑓 ∈ (∪ 𝑘 ↑pm ∪ 𝑗)
↦ ∪ 𝑥 ∈ ((cls‘𝑗)‘dom 𝑓)({𝑥} × ((𝑘 fLimf (((nei‘𝑗)‘{𝑥}) ↾t dom 𝑓))‘𝑓)))) |
ctmd 24099 | class TopMnd |
ctgp 24100 | class TopGrp |
df-tmd 24101 | ⊢ TopMnd = {𝑓 ∈ (Mnd ∩ TopSp) ∣
[(TopOpen‘𝑓) /
𝑗](+𝑓‘𝑓) ∈ ((𝑗 ×t 𝑗) Cn 𝑗)} |
df-tgp 24102 | ⊢ TopGrp = {𝑓 ∈ (Grp ∩ TopMnd) ∣
[(TopOpen‘𝑓) /
𝑗](invg‘𝑓) ∈ (𝑗 Cn 𝑗)} |
ctsu 24155 | class tsums |
df-tsms 24156 | ⊢ tsums = (𝑤 ∈ V, 𝑓 ∈ V ↦ ⦋(𝒫
dom 𝑓 ∩ Fin) / 𝑠⦌(((TopOpen‘𝑤) fLimf (𝑠filGenran (𝑧 ∈ 𝑠 ↦ {𝑦 ∈ 𝑠 ∣ 𝑧 ⊆ 𝑦})))‘(𝑦 ∈ 𝑠 ↦ (𝑤 Σg (𝑓 ↾ 𝑦))))) |
ctrg 24185 | class TopRing |
ctdrg 24186 | class TopDRing |
ctlm 24187 | class TopMod |
ctvc 24188 | class TopVec |
df-trg 24189 | ⊢ TopRing = {𝑟 ∈ (TopGrp ∩ Ring) ∣
(mulGrp‘𝑟) ∈
TopMnd} |
df-tdrg 24190 | ⊢ TopDRing = {𝑟 ∈ (TopRing ∩ DivRing) ∣
((mulGrp‘𝑟)
↾s (Unit‘𝑟)) ∈ TopGrp} |
df-tlm 24191 | ⊢ TopMod = {𝑤 ∈ (TopMnd ∩ LMod) ∣
((Scalar‘𝑤) ∈
TopRing ∧ ( ·sf ‘𝑤) ∈ (((TopOpen‘(Scalar‘𝑤)) ×t
(TopOpen‘𝑤)) Cn
(TopOpen‘𝑤)))} |
df-tvc 24192 | ⊢ TopVec = {𝑤 ∈ TopMod ∣ (Scalar‘𝑤) ∈
TopDRing} |
cust 24229 | class UnifOn |
df-ust 24230 | ⊢ UnifOn = (𝑥 ∈ V ↦ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑥 × 𝑥) ∧ (𝑥 × 𝑥) ∈ 𝑢 ∧ ∀𝑣 ∈ 𝑢 (∀𝑤 ∈ 𝒫 (𝑥 × 𝑥)(𝑣 ⊆ 𝑤 → 𝑤 ∈ 𝑢) ∧ ∀𝑤 ∈ 𝑢 (𝑣 ∩ 𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑥) ⊆ 𝑣 ∧ ◡𝑣 ∈ 𝑢 ∧ ∃𝑤 ∈ 𝑢 (𝑤 ∘ 𝑤) ⊆ 𝑣)))}) |
cutop 24260 | class unifTop |
df-utop 24261 | ⊢ unifTop = (𝑢 ∈ ∪ ran
UnifOn ↦ {𝑎 ∈
𝒫 dom ∪ 𝑢 ∣ ∀𝑥 ∈ 𝑎 ∃𝑣 ∈ 𝑢 (𝑣 “ {𝑥}) ⊆ 𝑎}) |
cuss 24283 | class UnifSt |
cusp 24284 | class UnifSp |
ctus 24285 | class toUnifSp |
df-uss 24286 | ⊢ UnifSt = (𝑓 ∈ V ↦ ((UnifSet‘𝑓) ↾t
((Base‘𝑓) ×
(Base‘𝑓)))) |
df-usp 24287 | ⊢ UnifSp = {𝑓 ∣ ((UnifSt‘𝑓) ∈ (UnifOn‘(Base‘𝑓)) ∧ (TopOpen‘𝑓) =
(unifTop‘(UnifSt‘𝑓)))} |
df-tus 24288 | ⊢ toUnifSp = (𝑢 ∈ ∪ ran
UnifOn ↦ ({〈(Base‘ndx), dom ∪ 𝑢〉,
〈(UnifSet‘ndx), 𝑢〉} sSet 〈(TopSet‘ndx),
(unifTop‘𝑢)〉)) |
cucn 24305 | class Cnu |
df-ucn 24306 | ⊢ Cnu = (𝑢 ∈ ∪ ran
UnifOn, 𝑣 ∈ ∪ ran UnifOn ↦ {𝑓 ∈ (dom ∪
𝑣 ↑m dom
∪ 𝑢) ∣ ∀𝑠 ∈ 𝑣 ∃𝑟 ∈ 𝑢 ∀𝑥 ∈ dom ∪
𝑢∀𝑦 ∈ dom ∪
𝑢(𝑥𝑟𝑦 → (𝑓‘𝑥)𝑠(𝑓‘𝑦))}) |
ccfilu 24316 | class
CauFilu |
df-cfilu 24317 | ⊢ CauFilu = (𝑢 ∈ ∪ ran
UnifOn ↦ {𝑓 ∈
(fBas‘dom ∪ 𝑢) ∣ ∀𝑣 ∈ 𝑢 ∃𝑎 ∈ 𝑓 (𝑎 × 𝑎) ⊆ 𝑣}) |
ccusp 24327 | class CUnifSp |
df-cusp 24328 | ⊢ CUnifSp = {𝑤 ∈ UnifSp ∣ ∀𝑐 ∈
(Fil‘(Base‘𝑤))(𝑐 ∈
(CauFilu‘(UnifSt‘𝑤)) → ((TopOpen‘𝑤) fLim 𝑐) ≠ ∅)} |
cxms 24348 | class ∞MetSp |
cms 24349 | class MetSp |
ctms 24350 | class toMetSp |
df-xms 24351 | ⊢ ∞MetSp = {𝑓 ∈ TopSp ∣ (TopOpen‘𝑓) =
(MetOpen‘((dist‘𝑓) ↾ ((Base‘𝑓) × (Base‘𝑓))))} |
df-ms 24352 | ⊢ MetSp = {𝑓 ∈ ∞MetSp ∣
((dist‘𝑓) ↾
((Base‘𝑓) ×
(Base‘𝑓))) ∈
(Met‘(Base‘𝑓))} |
df-tms 24353 | ⊢ toMetSp = (𝑑 ∈ ∪ ran
∞Met ↦ ({〈(Base‘ndx), dom dom 𝑑〉, 〈(dist‘ndx), 𝑑〉} sSet
〈(TopSet‘ndx), (MetOpen‘𝑑)〉)) |
cnm 24610 | class norm |
cngp 24611 | class NrmGrp |
ctng 24612 | class toNrmGrp |
cnrg 24613 | class NrmRing |
cnlm 24614 | class NrmMod |
cnvc 24615 | class NrmVec |
df-nm 24616 | ⊢ norm = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤) ↦ (𝑥(dist‘𝑤)(0g‘𝑤)))) |
df-ngp 24617 | ⊢ NrmGrp = {𝑔 ∈ (Grp ∩ MetSp) ∣
((norm‘𝑔) ∘
(-g‘𝑔))
⊆ (dist‘𝑔)} |
df-tng 24618 | ⊢ toNrmGrp = (𝑔 ∈ V, 𝑓 ∈ V ↦ ((𝑔 sSet 〈(dist‘ndx), (𝑓 ∘
(-g‘𝑔))〉) sSet 〈(TopSet‘ndx),
(MetOpen‘(𝑓 ∘
(-g‘𝑔)))〉)) |
df-nrg 24619 | ⊢ NrmRing = {𝑤 ∈ NrmGrp ∣ (norm‘𝑤) ∈ (AbsVal‘𝑤)} |
df-nlm 24620 | ⊢ NrmMod = {𝑤 ∈ (NrmGrp ∩ LMod) ∣
[(Scalar‘𝑤) /
𝑓](𝑓 ∈ NrmRing ∧
∀𝑥 ∈
(Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠
‘𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)))} |
df-nvc 24621 | ⊢ NrmVec = (NrmMod ∩ LVec) |
cnmo 24747 | class normOp |
cnghm 24748 | class NGHom |
cnmhm 24749 | class NMHom |
df-nmo 24750 | ⊢ normOp = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (𝑓 ∈ (𝑠 GrpHom 𝑡) ↦ inf({𝑟 ∈ (0[,)+∞) ∣ ∀𝑥 ∈ (Base‘𝑠)((norm‘𝑡)‘(𝑓‘𝑥)) ≤ (𝑟 · ((norm‘𝑠)‘𝑥))}, ℝ*, <
))) |
df-nghm 24751 | ⊢ NGHom = (𝑠 ∈ NrmGrp, 𝑡 ∈ NrmGrp ↦ (◡(𝑠 normOp 𝑡) “ ℝ)) |
df-nmhm 24752 | ⊢ NMHom = (𝑠 ∈ NrmMod, 𝑡 ∈ NrmMod ↦ ((𝑠 LMHom 𝑡) ∩ (𝑠 NGHom 𝑡))) |
cii 24920 | class II |
ccncf 24921 | class –cn→ |
df-ii 24922 | ⊢ II = (MetOpen‘((abs
∘ − ) ↾ ((0[,]1) × (0[,]1)))) |
df-cncf 24923 | ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) |
chtpy 25018 | class Htpy |
cphtpy 25019 | class PHtpy |
cphtpc 25020 | class
≃ph |
df-htpy 25021 | ⊢ Htpy = (𝑥 ∈ Top, 𝑦 ∈ Top ↦ (𝑓 ∈ (𝑥 Cn 𝑦), 𝑔 ∈ (𝑥 Cn 𝑦) ↦ {ℎ ∈ ((𝑥 ×t II) Cn 𝑦) ∣ ∀𝑠 ∈ ∪ 𝑥((𝑠ℎ0) = (𝑓‘𝑠) ∧ (𝑠ℎ1) = (𝑔‘𝑠))})) |
df-phtpy 25022 | ⊢ PHtpy = (𝑥 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑥), 𝑔 ∈ (II Cn 𝑥) ↦ {ℎ ∈ (𝑓(II Htpy 𝑥)𝑔) ∣ ∀𝑠 ∈ (0[,]1)((0ℎ𝑠) = (𝑓‘0) ∧ (1ℎ𝑠) = (𝑓‘1))})) |
df-phtpc 25043 | ⊢ ≃ph = (𝑥 ∈ Top ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)}) |
cpco 25052 | class
*𝑝 |
comi 25053 | class
Ω1 |
comn 25054 | class
Ω𝑛 |
cpi1 25055 | class
π1 |
cpin 25056 | class
πn |
df-pco 25057 | ⊢ *𝑝 = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) |
df-om1 25058 | ⊢ Ω1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦
{〈(Base‘ndx), {𝑓
∈ (II Cn 𝑗) ∣
((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}〉, 〈(+g‘ndx),
(*𝑝‘𝑗)〉, 〈(TopSet‘ndx), (𝑗 ↑ko
II)〉}) |
df-omn 25059 | ⊢ Ω𝑛 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ seq0(((𝑥 ∈ V, 𝑝 ∈ V ↦
〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd
‘𝑥)), ((0[,]1)
× {(2nd ‘𝑥)})〉) ∘ 1st ),
〈{〈(Base‘ndx), ∪ 𝑗〉, 〈(TopSet‘ndx), 𝑗〉}, 𝑦〉)) |
df-pi1 25060 | ⊢ π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s (
≃ph‘𝑗))) |
df-pin 25061 | ⊢ πn = (𝑗 ∈ Top, 𝑝 ∈ ∪ 𝑗 ↦ (𝑛 ∈ ℕ0 ↦
((1st ‘((𝑗
Ω𝑛 𝑝)‘𝑛)) /s if(𝑛 = 0, {〈𝑥, 𝑦〉 ∣ ∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}, (
≃ph‘(TopOpen‘(1st ‘((𝑗 Ω𝑛
𝑝)‘(𝑛 −
1))))))))) |
cclm 25114 | class ℂMod |
df-clm 25115 | ⊢ ℂMod = {𝑤 ∈ LMod ∣
[(Scalar‘𝑤) /
𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ 𝑘 ∈
(SubRing‘ℂfld))} |
ccvs 25175 | class ℂVec |
df-cvs 25176 | ⊢ ℂVec = (ℂMod ∩
LVec) |
ccph 25219 | class ℂPreHil |
ctcph 25220 | class toℂPreHil |
df-cph 25221 | ⊢ ℂPreHil = {𝑤 ∈ (PreHil ∩ NrmMod) ∣
[(Scalar‘𝑤) /
𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s
𝑘) ∧ (√ “
(𝑘 ∩ (0[,)+∞)))
⊆ 𝑘 ∧
(norm‘𝑤) = (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))} |
df-tcph 25222 | ⊢ toℂPreHil = (𝑤 ∈ V ↦ (𝑤 toNrmGrp (𝑥 ∈ (Base‘𝑤) ↦ (√‘(𝑥(·𝑖‘𝑤)𝑥))))) |
ccfil 25305 | class CauFil |
ccau 25306 | class Cau |
ccmet 25307 | class CMet |
df-cfil 25308 | ⊢ CauFil = (𝑑 ∈ ∪ ran
∞Met ↦ {𝑓
∈ (Fil‘dom dom 𝑑) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ 𝑓 (𝑑 “ (𝑦 × 𝑦)) ⊆ (0[,)𝑥)}) |
df-cau 25309 | ⊢ Cau = (𝑑 ∈ ∪ ran
∞Met ↦ {𝑓
∈ (dom dom 𝑑
↑pm ℂ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑓‘𝑗)(ball‘𝑑)𝑥)}) |
df-cmet 25310 | ⊢ CMet = (𝑥 ∈ V ↦ {𝑑 ∈ (Met‘𝑥) ∣ ∀𝑓 ∈ (CauFil‘𝑑)((MetOpen‘𝑑) fLim 𝑓) ≠ ∅}) |
ccms 25385 | class CMetSp |
cbn 25386 | class Ban |
chl 25387 | class ℂHil |
df-cms 25388 | ⊢ CMetSp = {𝑤 ∈ MetSp ∣
[(Base‘𝑤) /
𝑏]((dist‘𝑤) ↾ (𝑏 × 𝑏)) ∈ (CMet‘𝑏)} |
df-bn 25389 | ⊢ Ban = {𝑤 ∈ (NrmVec ∩ CMetSp) ∣
(Scalar‘𝑤) ∈
CMetSp} |
df-hl 25390 | ⊢ ℂHil = (Ban ∩
ℂPreHil) |
crrx 25436 | class ℝ^ |
cehl 25437 | class
𝔼hil |
df-rrx 25438 | ⊢ ℝ^ = (𝑖 ∈ V ↦
(toℂPreHil‘(ℝfld freeLMod 𝑖))) |
df-ehl 25439 | ⊢ 𝔼hil = (𝑛 ∈ ℕ0 ↦
(ℝ^‘(1...𝑛))) |
covol 25516 | class vol* |
cvol 25517 | class vol |
df-ovol 25518 | ⊢ vol* = (𝑥 ∈ 𝒫 ℝ ↦ inf({𝑦 ∈ ℝ*
∣ ∃𝑓 ∈ ((
≤ ∩ (ℝ × ℝ)) ↑m ℕ)(𝑥 ⊆ ∪ ran ((,) ∘ 𝑓) ∧ 𝑦 = sup(ran seq1( + , ((abs ∘ − )
∘ 𝑓)),
ℝ*, < ))}, ℝ*, < )) |
df-vol 25519 | ⊢ vol = (vol* ↾ {𝑥 ∣ ∀𝑦 ∈ (◡vol* “ ℝ)(vol*‘𝑦) = ((vol*‘(𝑦 ∩ 𝑥)) + (vol*‘(𝑦 ∖ 𝑥)))}) |
cmbf 25668 | class MblFn |
citg1 25669 | class
∫1 |
citg2 25670 | class
∫2 |
cibl 25671 | class
𝐿1 |
citg 25672 | class ∫𝐴𝐵 d𝑥 |
df-mbf 25673 | ⊢ MblFn = {𝑓 ∈ (ℂ ↑pm ℝ)
∣ ∀𝑥 ∈
ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)} |
df-itg1 25674 | ⊢ ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧
(vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈
ℝ)} ↦ Σ𝑥
∈ (ran 𝑓 ∖
{0})(𝑥 ·
(vol‘(◡𝑓 “ {𝑥})))) |
df-itg2 25675 | ⊢ ∫2 = (𝑓 ∈ ((0[,]+∞) ↑m
ℝ) ↦ sup({𝑥
∣ ∃𝑔 ∈ dom
∫1(𝑔
∘r ≤ 𝑓
∧ 𝑥 =
(∫1‘𝑔))}, ℝ*, <
)) |
df-ibl 25676 | ⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈
(0...3)(∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} |
df-itg 25677 | ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦
⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) |
c0p 25723 | class
0𝑝 |
df-0p 25724 | ⊢ 0𝑝 = (ℂ
× {0}) |
cdit 25901 | class ⨜[𝐴 → 𝐵]𝐶 d𝑥 |
df-ditg 25902 | ⊢ ⨜[𝐴 → 𝐵]𝐶 d𝑥 = if(𝐴 ≤ 𝐵, ∫(𝐴(,)𝐵)𝐶 d𝑥, -∫(𝐵(,)𝐴)𝐶 d𝑥) |
climc 25917 | class
limℂ |
cdv 25918 | class D |
cdvn 25919 | class
D𝑛 |
ccpn 25920 | class
𝓑C𝑛 |
df-limc 25921 | ⊢ limℂ = (𝑓 ∈ (ℂ ↑pm
ℂ), 𝑥 ∈ ℂ
↦ {𝑦 ∣
[(TopOpen‘ℂfld) / 𝑗](𝑧 ∈ (dom 𝑓 ∪ {𝑥}) ↦ if(𝑧 = 𝑥, 𝑦, (𝑓‘𝑧))) ∈ (((𝑗 ↾t (dom 𝑓 ∪ {𝑥})) CnP 𝑗)‘𝑥)}) |
df-dv 25922 | ⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ ∪ 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ (dom 𝑓 ∖ {𝑥}) ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
df-dvn 25923 | ⊢ D𝑛 = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ ↑pm 𝑠) ↦ seq0(((𝑥 ∈ V ↦ (𝑠 D 𝑥)) ∘ 1st ),
(ℕ0 × {𝑓}))) |
df-cpn 25924 | ⊢ 𝓑C𝑛 = (𝑠 ∈ 𝒫 ℂ
↦ (𝑥 ∈
ℕ0 ↦ {𝑓 ∈ (ℂ ↑pm 𝑠) ∣ ((𝑠 D𝑛 𝑓)‘𝑥) ∈ (dom 𝑓–cn→ℂ)})) |
cmdg 26112 | class mDeg |
cdg1 26113 | class deg1 |
df-mdeg 26114 | ⊢ mDeg = (𝑖 ∈ V, 𝑟 ∈ V ↦ (𝑓 ∈ (Base‘(𝑖 mPoly 𝑟)) ↦ sup(ran (ℎ ∈ (𝑓 supp (0g‘𝑟)) ↦ (ℂfld
Σg ℎ)), ℝ*, <
))) |
df-deg1 26115 | ⊢ deg1 = (𝑟 ∈ V ↦ (1o mDeg 𝑟)) |
cmn1 26185 | class
Monic1p |
cuc1p 26186 | class
Unic1p |
cq1p 26187 | class
quot1p |
cr1p 26188 | class
rem1p |
cig1p 26189 | class
idlGen1p |
df-mon1 26190 | ⊢ Monic1p = (𝑟 ∈ V ↦ {𝑓 ∈
(Base‘(Poly1‘𝑟)) ∣ (𝑓 ≠
(0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) = (1r‘𝑟))}) |
df-uc1p 26191 | ⊢ Unic1p = (𝑟 ∈ V ↦ {𝑓 ∈
(Base‘(Poly1‘𝑟)) ∣ (𝑓 ≠
(0g‘(Poly1‘𝑟)) ∧ ((coe1‘𝑓)‘((deg1‘𝑟)‘𝑓)) ∈ (Unit‘𝑟))}) |
df-q1p 26192 | ⊢ quot1p = (𝑟 ∈ V ↦
⦋(Poly1‘𝑟) / 𝑝⦌⦋(Base‘𝑝) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (℩𝑞 ∈ 𝑏 ((deg1‘𝑟)‘(𝑓(-g‘𝑝)(𝑞(.r‘𝑝)𝑔))) < ((deg1‘𝑟)‘𝑔)))) |
df-r1p 26193 | ⊢ rem1p = (𝑟 ∈ V ↦
⦋(Base‘(Poly1‘𝑟)) / 𝑏⦌(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓(-g‘(Poly1‘𝑟))((𝑓(quot1p‘𝑟)𝑔)(.r‘(Poly1‘𝑟))𝑔)))) |
df-ig1p 26194 | ⊢ idlGen1p = (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ if(𝑖 =
{(0g‘(Poly1‘𝑟))},
(0g‘(Poly1‘𝑟)), (℩𝑔 ∈ (𝑖 ∩ (Monic1p‘𝑟))((deg1‘𝑟)‘𝑔) = inf(((deg1‘𝑟) “ (𝑖 ∖
{(0g‘(Poly1‘𝑟))})), ℝ, < ))))) |
cply 26243 | class Poly |
cidp 26244 | class
Xp |
ccoe 26245 | class coeff |
cdgr 26246 | class deg |
df-ply 26247 | ⊢ Poly = (𝑥 ∈ 𝒫 ℂ ↦ {𝑓 ∣ ∃𝑛 ∈ ℕ0
∃𝑎 ∈ ((𝑥 ∪ {0}) ↑m
ℕ0)𝑓 =
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))}) |
df-idp 26248 | ⊢ Xp = ( I ↾
ℂ) |
df-coe 26249 | ⊢ coeff = (𝑓 ∈ (Poly‘ℂ) ↦
(℩𝑎 ∈
(ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “
(ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝑓 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) |
df-dgr 26250 | ⊢ deg = (𝑓 ∈ (Poly‘ℂ) ↦
sup((◡(coeff‘𝑓) “ (ℂ ∖ {0})),
ℕ0, < )) |
cquot 26350 | class quot |
df-quot 26351 | ⊢ quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ)
∖ {0𝑝}) ↦ (℩𝑞 ∈ (Poly‘ℂ)[(𝑓 ∘f −
(𝑔 ∘f
· 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨
(deg‘𝑟) <
(deg‘𝑔)))) |
caa 26374 | class 𝔸 |
df-aa 26375 | ⊢ 𝔸 = ∪ 𝑓 ∈ ((Poly‘ℤ) ∖
{0𝑝})(◡𝑓 “ {0}) |
ctayl 26412 | class Tayl |
cana 26413 | class Ana |
df-tayl 26414 | ⊢ Tayl = (𝑠 ∈ {ℝ, ℂ}, 𝑓 ∈ (ℂ
↑pm 𝑠)
↦ (𝑛 ∈
(ℕ0 ∪ {+∞}), 𝑎 ∈ ∩
𝑘 ∈ ((0[,]𝑛) ∩ ℤ)dom ((𝑠 D𝑛 𝑓)‘𝑘) ↦ ∪
𝑥 ∈ ℂ ({𝑥} × (ℂfld
tsums (𝑘 ∈ ((0[,]𝑛) ∩ ℤ) ↦
(((((𝑠
D𝑛 𝑓)‘𝑘)‘𝑎) / (!‘𝑘)) · ((𝑥 − 𝑎)↑𝑘))))))) |
df-ana 26415 | ⊢ Ana = (𝑠 ∈ {ℝ, ℂ} ↦ {𝑓 ∈ (ℂ
↑pm 𝑠)
∣ ∀𝑥 ∈
dom 𝑓 𝑥 ∈
((int‘((TopOpen‘ℂfld) ↾t 𝑠))‘dom (𝑓 ∩ (+∞(𝑠 Tayl 𝑓)𝑥)))}) |
culm 26437 | class
⇝𝑢 |
df-ulm 26438 | ⊢ ⇝𝑢 = (𝑠 ∈ V ↦ {〈𝑓, 𝑦〉 ∣ ∃𝑛 ∈ ℤ (𝑓:(ℤ≥‘𝑛)⟶(ℂ
↑m 𝑠) ∧
𝑦:𝑠⟶ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑗 ∈
(ℤ≥‘𝑛)∀𝑘 ∈ (ℤ≥‘𝑗)∀𝑧 ∈ 𝑠 (abs‘(((𝑓‘𝑘)‘𝑧) − (𝑦‘𝑧))) < 𝑥)}) |
clog 26614 | class log |
ccxp 26615 | class
↑𝑐 |
df-log 26616 | ⊢ log = ◡(exp ↾ (◡ℑ “
(-π(,]π))) |
df-cxp 26617 | ⊢ ↑𝑐 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ if(𝑥 = 0, if(𝑦 = 0, 1, 0), (exp‘(𝑦 · (log‘𝑥))))) |
clogb 26825 | class
logb |
df-logb 26826 | ⊢ logb = (𝑥 ∈ (ℂ ∖ {0, 1}), 𝑦 ∈ (ℂ ∖ {0})
↦ ((log‘𝑦) /
(log‘𝑥))) |
casin 26923 | class arcsin |
cacos 26924 | class arccos |
catan 26925 | class arctan |
df-asin 26926 | ⊢ arcsin = (𝑥 ∈ ℂ ↦ (-i ·
(log‘((i · 𝑥)
+ (√‘(1 − (𝑥↑2))))))) |
df-acos 26927 | ⊢ arccos = (𝑥 ∈ ℂ ↦ ((π / 2) −
(arcsin‘𝑥))) |
df-atan 26928 | ⊢ arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i
/ 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) |
carea 27016 | class area |
df-area 27017 | ⊢ area = (𝑠 ∈ {𝑡 ∈ 𝒫 (ℝ × ℝ)
∣ (∀𝑥 ∈
ℝ (𝑡 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦
(vol‘(𝑡 “
{𝑥}))) ∈
𝐿1)} ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) |
cem 27053 | class γ |
df-em 27054 | ⊢ γ = Σ𝑘 ∈ ℕ ((1 / 𝑘) − (log‘(1 + (1 /
𝑘)))) |
czeta 27074 | class ζ |
df-zeta 27075 | ⊢ ζ = (℩𝑓 ∈ ((ℂ ∖ {1})–cn→ℂ)∀𝑠 ∈ (ℂ ∖ {1})((1 −
(2↑𝑐(1 − 𝑠))) · (𝑓‘𝑠)) = Σ𝑛 ∈ ℕ0 (Σ𝑘 ∈ (0...𝑛)(((-1↑𝑘) · (𝑛C𝑘)) · ((𝑘 + 1)↑𝑐𝑠)) / (2↑(𝑛 + 1)))) |
clgam 27077 | class log Γ |
cgam 27078 | class Γ |
cigam 27079 | class 1/Γ |
df-lgam 27080 | ⊢ log Γ = (𝑧 ∈ (ℂ ∖ (ℤ ∖
ℕ)) ↦ (Σ𝑚
∈ ℕ ((𝑧 ·
(log‘((𝑚 + 1) / 𝑚))) − (log‘((𝑧 / 𝑚) + 1))) − (log‘𝑧))) |
df-gam 27081 | ⊢ Γ = (exp ∘ log
Γ) |
df-igam 27082 | ⊢ 1/Γ = (𝑥 ∈ ℂ ↦ if(𝑥 ∈ (ℤ ∖ ℕ), 0, (1 /
(Γ‘𝑥)))) |
ccht 27152 | class θ |
cvma 27153 | class Λ |
cchp 27154 | class ψ |
cppi 27155 | class π |
cmu 27156 | class μ |
csgm 27157 | class σ |
df-cht 27158 | ⊢ θ = (𝑥 ∈ ℝ ↦ Σ𝑝 ∈ ((0[,]𝑥) ∩ ℙ)(log‘𝑝)) |
df-vma 27159 | ⊢ Λ = (𝑥 ∈ ℕ ↦ ⦋{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥} / 𝑠⦌if((♯‘𝑠) = 1, (log‘∪ 𝑠),
0)) |
df-chp 27160 | ⊢ ψ = (𝑥 ∈ ℝ ↦ Σ𝑛 ∈
(1...(⌊‘𝑥))(Λ‘𝑛)) |
df-ppi 27161 | ⊢ π = (𝑥 ∈ ℝ ↦
(♯‘((0[,]𝑥)
∩ ℙ))) |
df-mu 27162 | ⊢ μ = (𝑥 ∈ ℕ ↦ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝑥, 0,
(-1↑(♯‘{𝑝
∈ ℙ ∣ 𝑝
∥ 𝑥})))) |
df-sgm 27163 | ⊢ σ = (𝑥 ∈ ℂ, 𝑛 ∈ ℕ ↦ Σ𝑘 ∈ {𝑝 ∈ ℕ ∣ 𝑝 ∥ 𝑛} (𝑘↑𝑐𝑥)) |
cdchr 27294 | class DChr |
df-dchr 27295 | ⊢ DChr = (𝑛 ∈ ℕ ↦
⦋(ℤ/nℤ‘𝑛) / 𝑧⦌⦋{𝑥 ∈ ((mulGrp‘𝑧) MndHom
(mulGrp‘ℂfld)) ∣ (((Base‘𝑧) ∖ (Unit‘𝑧)) × {0}) ⊆ 𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘f · ↾ (𝑏 × 𝑏))〉}) |
clgs 27356 | class
/L |
df-lgs 27357 | ⊢ /L = (𝑎 ∈ ℤ, 𝑛 ∈ ℤ ↦ if(𝑛 = 0, if((𝑎↑2) = 1, 1, 0), (if((𝑛 < 0 ∧ 𝑎 < 0), -1, 1) · (seq1( · ,
(𝑚 ∈ ℕ ↦
if(𝑚 ∈ ℙ,
(if(𝑚 = 2, if(2 ∥
𝑎, 0, if((𝑎 mod 8) ∈ {1, 7}, 1, -1)),
((((𝑎↑((𝑚 − 1) / 2)) + 1) mod 𝑚) − 1))↑(𝑚 pCnt 𝑛)), 1)))‘(abs‘𝑛))))) |
csur 27702 | class No
|
cslt 27703 | class <s |
cbday 27704 | class bday
|
df-no 27705 | ⊢ No
= {𝑓 ∣
∃𝑎 ∈ On 𝑓:𝑎⟶{1o,
2o}} |
df-slt 27706 | ⊢ <s = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ No
∧ 𝑔 ∈ No ) ∧ ∃𝑥 ∈ On (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) = (𝑔‘𝑦) ∧ (𝑓‘𝑥){〈1o, ∅〉,
〈1o, 2o〉, 〈∅, 2o〉}
(𝑔‘𝑥)))} |
df-bday 27707 | ⊢ bday = (𝑥 ∈
No ↦ dom 𝑥) |
csle 27807 | class ≤s |
df-sle 27808 | ⊢ ≤s = (( No
× No ) ∖ ◡ <s ) |
csslt 27843 | class <<s |
df-sslt 27844 | ⊢ <<s = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ No
∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)} |
cscut 27845 | class |s |
df-scut 27846 | ⊢ |s = (𝑎 ∈ 𝒫 No
, 𝑏 ∈ (
<<s “ {𝑎})
↦ (℩𝑥
∈ {𝑦 ∈ No ∣ (𝑎 <<s {𝑦} ∧ {𝑦} <<s 𝑏)} ( bday
‘𝑥) = ∩ ( bday “ {𝑦 ∈
No ∣ (𝑎
<<s {𝑦} ∧ {𝑦} <<s 𝑏)}))) |
c0s 27885 | class 0s |
c1s 27886 | class 1s |
df-0s 27887 | ⊢ 0s = (∅ |s
∅) |
df-1s 27888 | ⊢ 1s = ({
0s } |s ∅) |
cmade 27899 | class M |
cold 27900 | class O |
cnew 27901 | class N |
cleft 27902 | class L |
cright 27903 | class R |
df-made 27904 | ⊢ M = recs((𝑓 ∈ V ↦ ( |s “ (𝒫
∪ ran 𝑓 × 𝒫 ∪ ran 𝑓)))) |
df-old 27905 | ⊢ O = (𝑥 ∈ On ↦ ∪ ( M “ 𝑥)) |
df-new 27906 | ⊢ N = (𝑥 ∈ On ↦ (( M ‘𝑥) ∖ ( O ‘𝑥))) |
df-left 27907 | ⊢ L = (𝑥 ∈ No
↦ {𝑦 ∈ ( O
‘( bday ‘𝑥)) ∣ 𝑦 <s 𝑥}) |
df-right 27908 | ⊢ R = (𝑥 ∈ No
↦ {𝑦 ∈ ( O
‘( bday ‘𝑥)) ∣ 𝑥 <s 𝑦}) |
cnorec 27988 | class norec (𝐹) |
df-norec 27989 | ⊢ norec (𝐹) = frecs({〈𝑥, 𝑦〉 ∣ 𝑥 ∈ (( L ‘𝑦) ∪ ( R ‘𝑦))}, No , 𝐹) |
cnorec2 27999 | class norec2 (𝐹) |
df-norec2 28000 | ⊢ norec2 (𝐹) = frecs({〈𝑎, 𝑏〉 ∣ (𝑎 ∈ ( No
× No ) ∧ 𝑏 ∈ ( No
× No ) ∧ (((1st ‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (1st ‘𝑏) ∨ (1st ‘𝑎) = (1st ‘𝑏)) ∧ ((2nd
‘𝑎){〈𝑐, 𝑑〉 ∣ 𝑐 ∈ (( L ‘𝑑) ∪ ( R ‘𝑑))} (2nd ‘𝑏) ∨ (2nd ‘𝑎) = (2nd ‘𝑏)) ∧ 𝑎 ≠ 𝑏))}, ( No
× No ), 𝐹) |
cadds 28010 | class +s |
df-adds 28011 | ⊢ +s = norec2 ((𝑥 ∈ V, 𝑎 ∈ V ↦ (({𝑦 ∣ ∃𝑙 ∈ ( L ‘(1st
‘𝑥))𝑦 = (𝑙𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑙 ∈ ( L ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑙)}) |s ({𝑦 ∣ ∃𝑟 ∈ ( R ‘(1st
‘𝑥))𝑦 = (𝑟𝑎(2nd ‘𝑥))} ∪ {𝑧 ∣ ∃𝑟 ∈ ( R ‘(2nd
‘𝑥))𝑧 = ((1st ‘𝑥)𝑎𝑟)})))) |
cnegs 28069 | class -us |
csubs 28070 | class -s |
df-negs 28071 | ⊢ -us = norec ((𝑥 ∈ V, 𝑛 ∈ V ↦ ((𝑛 “ ( R ‘𝑥)) |s (𝑛 “ ( L ‘𝑥))))) |
df-subs 28072 | ⊢ -s = (𝑥 ∈ No ,
𝑦 ∈ No ↦ (𝑥 +s ( -us ‘𝑦))) |
cmuls 28150 | class
·s |
df-muls 28151 | ⊢ ·s = norec2 ((𝑧 ∈ V, 𝑚 ∈ V ↦
⦋(1st ‘𝑧) / 𝑥⦌⦋(2nd
‘𝑧) / 𝑦⦌(({𝑎 ∣ ∃𝑝 ∈ ( L ‘𝑥)∃𝑞 ∈ ( L ‘𝑦)𝑎 = (((𝑝𝑚𝑦) +s (𝑥𝑚𝑞)) -s (𝑝𝑚𝑞))} ∪ {𝑏 ∣ ∃𝑟 ∈ ( R ‘𝑥)∃𝑠 ∈ ( R ‘𝑦)𝑏 = (((𝑟𝑚𝑦) +s (𝑥𝑚𝑠)) -s (𝑟𝑚𝑠))}) |s ({𝑐 ∣ ∃𝑡 ∈ ( L ‘𝑥)∃𝑢 ∈ ( R ‘𝑦)𝑐 = (((𝑡𝑚𝑦) +s (𝑥𝑚𝑢)) -s (𝑡𝑚𝑢))} ∪ {𝑑 ∣ ∃𝑣 ∈ ( R ‘𝑥)∃𝑤 ∈ ( L ‘𝑦)𝑑 = (((𝑣𝑚𝑦) +s (𝑥𝑚𝑤)) -s (𝑣𝑚𝑤))})))) |
cdivs 28231 | class
/su |
df-divs 28232 | ⊢ /su = (𝑥 ∈ No ,
𝑦 ∈ ( No ∖ { 0s }) ↦
(℩𝑧 ∈
No (𝑦 ·s 𝑧) = 𝑥)) |
cabss 28279 | class abss |
df-abss 28280 | ⊢ abss = (𝑥 ∈ No
↦ if( 0s ≤s 𝑥, 𝑥, ( -us ‘𝑥))) |
cons 28292 | class Ons |
df-ons 28293 | ⊢ Ons = {𝑥 ∈ No
∣ ( R ‘𝑥) =
∅} |
cseqs 28307 | class seqs𝑀( + , 𝐹) |
df-seqs 28308 | ⊢ seqs𝑀( + , 𝐹) = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 +s 1s ), (𝑦 + (𝐹‘(𝑥 +s 1s )))〉),
〈𝑀, (𝐹‘𝑀)〉) “ ω) |
cnn0s 28336 | class
ℕ0s |
cnns 28337 | class
ℕs |
df-n0s 28338 | ⊢ ℕ0s = (rec((𝑥 ∈ V ↦ (𝑥 +s 1s )),
0s ) “ ω) |
df-nns 28339 | ⊢ ℕs = (ℕ0s
∖ { 0s }) |
czs 28382 | class
ℤs |
df-zs 28383 | ⊢ ℤs = (
-s “ (ℕs ×
ℕs)) |
c2s 28412 | class 2s |
df-2s 28413 | ⊢ 2s = ({ 1s
} |s ∅) |
cexps 28414 | class
↑s |
df-exps 28415 | ⊢ ↑s = (𝑥 ∈ No ,
𝑦 ∈
ℤs ↦ if(𝑦 = 0s , 1s , if(
0s <s 𝑦,
(seqs 1s ( ·s , (ℕs
× {𝑥}))‘𝑦), ( 1s
/su (seqs 1s ( ·s ,
(ℕs × {𝑥}))‘( -us ‘𝑦)))))) |
czs12 28416 | class
ℤs[1/2] |
df-zs12 28417 | ⊢ ℤs[1/2] = {𝑥 ∣ ∃𝑦 ∈ ℤs
∃𝑧 ∈
ℕ0s 𝑥 =
(𝑦 /su
(2s↑s𝑧))} |
creno 28443 | class
ℝs |
df-reno 28444 | ⊢ ℝs = {𝑥 ∈ No
∣ (∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝑥 ∧ 𝑥 <s 𝑛) ∧ 𝑥 = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (𝑥 -s ( 1s
/su 𝑛))} |s
{𝑦 ∣ ∃𝑛 ∈ ℕs
𝑦 = (𝑥 +s ( 1s
/su 𝑛))}))} |
cstrkg 28453 | class TarskiG |
cstrkgc 28454 | class
TarskiGC |
cstrkgb 28455 | class
TarskiGB |
cstrkgcb 28456 | class
TarskiGCB |
cstrkgld 28457 | class
DimTarskiG≥ |
cstrkge 28458 | class
TarskiGE |
citv 28459 | class Itv |
clng 28460 | class LineG |
df-itv 28461 | ⊢ Itv = Slot ;16 |
df-lng 28462 | ⊢ LineG = Slot ;17 |
df-trkgc 28474 | ⊢ TarskiGC = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑥𝑑𝑦) = (𝑦𝑑𝑥) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ((𝑥𝑑𝑦) = (𝑧𝑑𝑧) → 𝑥 = 𝑦))} |
df-trkgb 28475 | ⊢ TarskiGB = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((𝑢 ∈ (𝑥𝑖𝑧) ∧ 𝑣 ∈ (𝑦𝑖𝑧)) → ∃𝑎 ∈ 𝑝 (𝑎 ∈ (𝑢𝑖𝑦) ∧ 𝑎 ∈ (𝑣𝑖𝑥))) ∧ ∀𝑠 ∈ 𝒫 𝑝∀𝑡 ∈ 𝒫 𝑝(∃𝑎 ∈ 𝑝 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑥 ∈ (𝑎𝑖𝑦) → ∃𝑏 ∈ 𝑝 ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑡 𝑏 ∈ (𝑥𝑖𝑦)))} |
df-trkgcb 28476 | ⊢ TarskiGCB = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∀𝑐 ∈ 𝑝 ∀𝑣 ∈ 𝑝 (((𝑥 ≠ 𝑦 ∧ 𝑦 ∈ (𝑥𝑖𝑧) ∧ 𝑏 ∈ (𝑎𝑖𝑐)) ∧ (((𝑥𝑑𝑦) = (𝑎𝑑𝑏) ∧ (𝑦𝑑𝑧) = (𝑏𝑑𝑐)) ∧ ((𝑥𝑑𝑢) = (𝑎𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑏𝑑𝑣)))) → (𝑧𝑑𝑢) = (𝑐𝑑𝑣)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑎 ∈ 𝑝 ∀𝑏 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑧) ∧ (𝑦𝑑𝑧) = (𝑎𝑑𝑏)))} |
df-trkge 28477 | ⊢ TarskiGE = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖]∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((𝑢 ∈ (𝑥𝑖𝑣) ∧ 𝑢 ∈ (𝑦𝑖𝑧) ∧ 𝑥 ≠ 𝑢) → ∃𝑎 ∈ 𝑝 ∃𝑏 ∈ 𝑝 (𝑦 ∈ (𝑥𝑖𝑎) ∧ 𝑧 ∈ (𝑥𝑖𝑏) ∧ 𝑣 ∈ (𝑎𝑖𝑏)))} |
df-trkgld 28478 | ⊢ DimTarskiG≥ = {〈𝑔, 𝑛〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑓(𝑓:(1..^𝑛)–1-1→𝑝 ∧ ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 (∀𝑗 ∈ (2..^𝑛)(((𝑓‘1)𝑑𝑥) = ((𝑓‘𝑗)𝑑𝑥) ∧ ((𝑓‘1)𝑑𝑦) = ((𝑓‘𝑗)𝑑𝑦) ∧ ((𝑓‘1)𝑑𝑧) = ((𝑓‘𝑗)𝑑𝑧)) ∧ ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} |
df-trkg 28479 | ⊢ TarskiG = ((TarskiGC ∩
TarskiGB) ∩ (TarskiGCB ∩ {𝑓 ∣ [(Base‘𝑓) / 𝑝][(Itv‘𝑓) / 𝑖](LineG‘𝑓) = (𝑥 ∈ 𝑝, 𝑦 ∈ (𝑝 ∖ {𝑥}) ↦ {𝑧 ∈ 𝑝 ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})})) |
ccgrg 28536 | class cgrG |
df-cgrg 28537 | ⊢ cgrG = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ((Base‘𝑔) ↑pm ℝ) ∧ 𝑏 ∈ ((Base‘𝑔) ↑pm ℝ))
∧ (dom 𝑎 = dom 𝑏 ∧ ∀𝑖 ∈ dom 𝑎∀𝑗 ∈ dom 𝑎((𝑎‘𝑖)(dist‘𝑔)(𝑎‘𝑗)) = ((𝑏‘𝑖)(dist‘𝑔)(𝑏‘𝑗))))}) |
cismt 28558 | class Ismt |
df-ismt 28559 | ⊢ Ismt = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑔)–1-1-onto→(Base‘ℎ) ∧ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)((𝑓‘𝑎)(dist‘ℎ)(𝑓‘𝑏)) = (𝑎(dist‘𝑔)𝑏))}) |
cleg 28608 | class ≤G |
df-leg 28609 | ⊢ ≤G = (𝑔 ∈ V ↦ {〈𝑒, 𝑓〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / 𝑑][(Itv‘𝑔) / 𝑖]∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑓 = (𝑥𝑑𝑦) ∧ ∃𝑧 ∈ 𝑝 (𝑧 ∈ (𝑥𝑖𝑦) ∧ 𝑒 = (𝑥𝑑𝑧)))}) |
chlg 28626 | class hlG |
df-hlg 28627 | ⊢ hlG = (𝑔 ∈ V ↦ (𝑐 ∈ (Base‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑔) ∧ 𝑏 ∈ (Base‘𝑔)) ∧ (𝑎 ≠ 𝑐 ∧ 𝑏 ≠ 𝑐 ∧ (𝑎 ∈ (𝑐(Itv‘𝑔)𝑏) ∨ 𝑏 ∈ (𝑐(Itv‘𝑔)𝑎))))})) |
cmir 28678 | class pInvG |
df-mir 28679 | ⊢ pInvG = (𝑔 ∈ V ↦ (𝑚 ∈ (Base‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑚(dist‘𝑔)𝑏) = (𝑚(dist‘𝑔)𝑎) ∧ 𝑚 ∈ (𝑏(Itv‘𝑔)𝑎)))))) |
crag 28719 | class ∟G |
df-rag 28720 | ⊢ ∟G = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Base‘𝑔) ∣ ((♯‘𝑤) = 3 ∧ ((𝑤‘0)(dist‘𝑔)(𝑤‘2)) = ((𝑤‘0)(dist‘𝑔)(((pInvG‘𝑔)‘(𝑤‘1))‘(𝑤‘2))))}) |
cperpg 28721 | class ⟂G |
df-perpg 28722 | ⊢ ⟂G = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ran (LineG‘𝑔) ∧ 𝑏 ∈ ran (LineG‘𝑔)) ∧ ∃𝑥 ∈ (𝑎 ∩ 𝑏)∀𝑢 ∈ 𝑎 ∀𝑣 ∈ 𝑏 〈“𝑢𝑥𝑣”〉 ∈ (∟G‘𝑔))}) |
chpg 28783 | class hpG |
df-hpg 28784 | ⊢ hpG = (𝑔 ∈ V ↦ (𝑑 ∈ ran (LineG‘𝑔) ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(Itv‘𝑔) / 𝑖]∃𝑐 ∈ 𝑝 (((𝑎 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑎𝑖𝑐)) ∧ ((𝑏 ∈ (𝑝 ∖ 𝑑) ∧ 𝑐 ∈ (𝑝 ∖ 𝑑)) ∧ ∃𝑡 ∈ 𝑑 𝑡 ∈ (𝑏𝑖𝑐)))})) |
cmid 28798 | class midG |
clmi 28799 | class lInvG |
df-mid 28800 | ⊢ midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)))) |
df-lmi 28801 | ⊢ lInvG = (𝑔 ∈ V ↦ (𝑚 ∈ ran (LineG‘𝑔) ↦ (𝑎 ∈ (Base‘𝑔) ↦ (℩𝑏 ∈ (Base‘𝑔)((𝑎(midG‘𝑔)𝑏) ∈ 𝑚 ∧ (𝑚(⟂G‘𝑔)(𝑎(LineG‘𝑔)𝑏) ∨ 𝑎 = 𝑏)))))) |
ccgra 28833 | class cgrA |
df-cgra 28834 | ⊢ cgrA = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ [(Base‘𝑔) / 𝑝][(hlG‘𝑔) / 𝑘]((𝑎 ∈ (𝑝 ↑m (0..^3)) ∧ 𝑏 ∈ (𝑝 ↑m (0..^3))) ∧
∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 (𝑎(cgrG‘𝑔)〈“𝑥(𝑏‘1)𝑦”〉 ∧ 𝑥(𝑘‘(𝑏‘1))(𝑏‘0) ∧ 𝑦(𝑘‘(𝑏‘1))(𝑏‘2)))}) |
cinag 28861 | class inA |
cleag 28862 | class
≤∠ |
df-inag 28863 | ⊢ inA = (𝑔 ∈ V ↦ {〈𝑝, 𝑡〉 ∣ ((𝑝 ∈ (Base‘𝑔) ∧ 𝑡 ∈ ((Base‘𝑔) ↑m (0..^3))) ∧ (((𝑡‘0) ≠ (𝑡‘1) ∧ (𝑡‘2) ≠ (𝑡‘1) ∧ 𝑝 ≠ (𝑡‘1)) ∧ ∃𝑥 ∈ (Base‘𝑔)(𝑥 ∈ ((𝑡‘0)(Itv‘𝑔)(𝑡‘2)) ∧ (𝑥 = (𝑡‘1) ∨ 𝑥((hlG‘𝑔)‘(𝑡‘1))𝑝))))}) |
df-leag 28872 | ⊢ ≤∠ = (𝑔 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ ((Base‘𝑔) ↑m (0..^3)) ∧ 𝑏 ∈ ((Base‘𝑔) ↑m (0..^3)))
∧ ∃𝑥 ∈
(Base‘𝑔)(𝑥(inA‘𝑔)〈“(𝑏‘0)(𝑏‘1)(𝑏‘2)”〉 ∧
〈“(𝑎‘0)(𝑎‘1)(𝑎‘2)”〉(cgrA‘𝑔)〈“(𝑏‘0)(𝑏‘1)𝑥”〉))}) |
ceqlg 28891 | class eqltrG |
df-eqlg 28892 | ⊢ eqltrG = (𝑔 ∈ V ↦ {𝑥 ∈ ((Base‘𝑔) ↑m (0..^3)) ∣ 𝑥(cgrG‘𝑔)〈“(𝑥‘1)(𝑥‘2)(𝑥‘0)”〉}) |
cttg 28899 | class toTG |
df-ttg 28900 | ⊢ toTG = (𝑤 ∈ V ↦ ⦋(𝑥 ∈ (Base‘𝑤), 𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ ∃𝑘 ∈ (0[,]1)(𝑧(-g‘𝑤)𝑥) = (𝑘( ·𝑠
‘𝑤)(𝑦(-g‘𝑤)𝑥))}) / 𝑖⦌((𝑤 sSet 〈(Itv‘ndx), 𝑖〉) sSet
〈(LineG‘ndx), (𝑥
∈ (Base‘𝑤),
𝑦 ∈ (Base‘𝑤) ↦ {𝑧 ∈ (Base‘𝑤) ∣ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))})〉)) |
cee 28921 | class 𝔼 |
cbtwn 28922 | class Btwn |
ccgr 28923 | class Cgr |
df-ee 28924 | ⊢ 𝔼 = (𝑛 ∈ ℕ ↦ (ℝ
↑m (1...𝑛))) |
df-btwn 28925 | ⊢ Btwn = ◡{〈〈𝑥, 𝑧〉, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ (𝔼‘𝑛) ∧ 𝑧 ∈ (𝔼‘𝑛) ∧ 𝑦 ∈ (𝔼‘𝑛)) ∧ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑛)(𝑦‘𝑖) = (((1 − 𝑡) · (𝑥‘𝑖)) + (𝑡 · (𝑧‘𝑖))))} |
df-cgr 28926 | ⊢ Cgr = {〈𝑥, 𝑦〉 ∣ ∃𝑛 ∈ ℕ ((𝑥 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑦 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛))) ∧ Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑥)‘𝑖) − ((2nd ‘𝑥)‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑛)((((1st ‘𝑦)‘𝑖) − ((2nd ‘𝑦)‘𝑖))↑2))} |
ceeng 29010 | class EEG |
df-eeng 29011 | ⊢ EEG = (𝑛 ∈ ℕ ↦
({〈(Base‘ndx), (𝔼‘𝑛)〉, 〈(dist‘ndx), (𝑥 ∈ (𝔼‘𝑛), 𝑦 ∈ (𝔼‘𝑛) ↦ Σ𝑖 ∈ (1...𝑛)(((𝑥‘𝑖) − (𝑦‘𝑖))↑2))〉} ∪
{〈(Itv‘ndx), (𝑥
∈ (𝔼‘𝑛),
𝑦 ∈
(𝔼‘𝑛) ↦
{𝑧 ∈
(𝔼‘𝑛) ∣
𝑧 Btwn 〈𝑥, 𝑦〉})〉, 〈(LineG‘ndx),
(𝑥 ∈
(𝔼‘𝑛), 𝑦 ∈ ((𝔼‘𝑛) ∖ {𝑥}) ↦ {𝑧 ∈ (𝔼‘𝑛) ∣ (𝑧 Btwn 〈𝑥, 𝑦〉 ∨ 𝑥 Btwn 〈𝑧, 𝑦〉 ∨ 𝑦 Btwn 〈𝑥, 𝑧〉)})〉})) |
cedgf 29021 | class .ef |
df-edgf 29022 | ⊢ .ef = Slot ;18 |
cvtx 29031 | class Vtx |
ciedg 29032 | class iEdg |
df-vtx 29033 | ⊢ Vtx = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (1st
‘𝑔),
(Base‘𝑔))) |
df-iedg 29034 | ⊢ iEdg = (𝑔 ∈ V ↦ if(𝑔 ∈ (V × V), (2nd
‘𝑔), (.ef‘𝑔))) |
cedg 29082 | class Edg |
df-edg 29083 | ⊢ Edg = (𝑔 ∈ V ↦ ran (iEdg‘𝑔)) |
cuhgr 29091 | class UHGraph |
cushgr 29092 | class USHGraph |
df-uhgr 29093 | ⊢ UHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶(𝒫 𝑣 ∖ {∅})} |
df-ushgr 29094 | ⊢ USHGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→(𝒫 𝑣 ∖ {∅})} |
cupgr 29115 | class UPGraph |
cumgr 29116 | class UMGraph |
df-upgr 29117 | ⊢ UPGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤
2}} |
df-umgr 29118 | ⊢ UMGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒⟶{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) =
2}} |
cuspgr 29183 | class USPGraph |
cusgr 29184 | class USGraph |
df-uspgr 29185 | ⊢ USPGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) ≤
2}} |
df-usgr 29186 | ⊢ USGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣][(iEdg‘𝑔) / 𝑒]𝑒:dom 𝑒–1-1→{𝑥 ∈ (𝒫 𝑣 ∖ {∅}) ∣
(♯‘𝑥) =
2}} |
csubgr 29302 | class SubGraph |
df-subgr 29303 | ⊢ SubGraph = {〈𝑠, 𝑔〉 ∣ ((Vtx‘𝑠) ⊆ (Vtx‘𝑔) ∧ (iEdg‘𝑠) = ((iEdg‘𝑔) ↾ dom (iEdg‘𝑠)) ∧ (Edg‘𝑠) ⊆ 𝒫 (Vtx‘𝑠))} |
cfusgr 29351 | class FinUSGraph |
df-fusgr 29352 | ⊢ FinUSGraph = {𝑔 ∈ USGraph ∣ (Vtx‘𝑔) ∈ Fin} |
cnbgr 29367 | class NeighbVtx |
df-nbgr 29368 | ⊢ NeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ {𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣}) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒}) |
cuvtx 29420 | class UnivVtx |
df-uvtx 29421 | ⊢ UnivVtx = (𝑔 ∈ V ↦ {𝑣 ∈ (Vtx‘𝑔) ∣ ∀𝑛 ∈ ((Vtx‘𝑔) ∖ {𝑣})𝑛 ∈ (𝑔 NeighbVtx 𝑣)}) |
ccplgr 29444 | class ComplGraph |
ccusgr 29445 | class ComplUSGraph |
df-cplgr 29446 | ⊢ ComplGraph = {𝑔 ∣ (UnivVtx‘𝑔) = (Vtx‘𝑔)} |
df-cusgr 29447 | ⊢ ComplUSGraph = (USGraph ∩
ComplGraph) |
cvtxdg 29501 | class VtxDeg |
df-vtxdg 29502 | ⊢ VtxDeg = (𝑔 ∈ V ↦
⦋(Vtx‘𝑔) / 𝑣⦌⦋(iEdg‘𝑔) / 𝑒⦌(𝑢 ∈ 𝑣 ↦ ((♯‘{𝑥 ∈ dom 𝑒 ∣ 𝑢 ∈ (𝑒‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) = {𝑢}})))) |
crgr 29591 | class RegGraph |
crusgr 29592 | class RegUSGraph |
df-rgr 29593 | ⊢ RegGraph = {〈𝑔, 𝑘〉 ∣ (𝑘 ∈ ℕ0* ∧
∀𝑣 ∈
(Vtx‘𝑔)((VtxDeg‘𝑔)‘𝑣) = 𝑘)} |
df-rusgr 29594 | ⊢ RegUSGraph = {〈𝑔, 𝑘〉 ∣ (𝑔 ∈ USGraph ∧ 𝑔 RegGraph 𝑘)} |
cewlks 29631 | class EdgWalks |
cwlks 29632 | class Walks |
cwlkson 29633 | class WalksOn |
df-ewlks 29634 | ⊢ EdgWalks = (𝑔 ∈ V, 𝑠 ∈ ℕ0*
↦ {𝑓 ∣
[(iEdg‘𝑔) /
𝑖](𝑓 ∈ Word dom 𝑖 ∧ ∀𝑘 ∈
(1..^(♯‘𝑓))𝑠 ≤ (♯‘((𝑖‘(𝑓‘(𝑘 − 1))) ∩ (𝑖‘(𝑓‘𝑘)))))}) |
df-wlks 29635 | ⊢ Walks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))if-((𝑝‘𝑘) = (𝑝‘(𝑘 + 1)), ((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘)}, {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))} ⊆ ((iEdg‘𝑔)‘(𝑓‘𝑘))))}) |
df-wlkson 29636 | ⊢ WalksOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = 𝑎 ∧ (𝑝‘(♯‘𝑓)) = 𝑏)})) |
ctrls 29726 | class Trails |
ctrlson 29727 | class TrailsOn |
df-trls 29728 | ⊢ Trails = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ Fun ◡𝑓)}) |
df-trlson 29729 | ⊢ TrailsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(WalksOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Trails‘𝑔)𝑝)})) |
cpths 29748 | class Paths |
cspths 29749 | class SPaths |
cpthson 29750 | class PathsOn |
cspthson 29751 | class SPathsOn |
df-pths 29752 | ⊢ Paths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡(𝑝 ↾ (1..^(♯‘𝑓))) ∧ ((𝑝 “ {0, (♯‘𝑓)}) ∩ (𝑝 “ (1..^(♯‘𝑓)))) =
∅)}) |
df-spths 29753 | ⊢ SPaths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ Fun ◡𝑝)}) |
df-pthson 29754 | ⊢ PathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(Paths‘𝑔)𝑝)})) |
df-spthson 29755 | ⊢ SPathsOn = (𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(𝑎(TrailsOn‘𝑔)𝑏)𝑝 ∧ 𝑓(SPaths‘𝑔)𝑝)})) |
cclwlks 29806 | class ClWalks |
df-clwlks 29807 | ⊢ ClWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Walks‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}) |
ccrcts 29820 | class Circuits |
ccycls 29821 | class Cycles |
df-crcts 29822 | ⊢ Circuits = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}) |
df-cycls 29823 | ⊢ Cycles = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Paths‘𝑔)𝑝 ∧ (𝑝‘0) = (𝑝‘(♯‘𝑓)))}) |
cwwlks 29858 | class WWalks |
cwwlksn 29859 | class WWalksN |
cwwlksnon 29860 | class WWalksNOn |
cwwspthsn 29861 | class WSPathsN |
cwwspthsnon 29862 | class WSPathsNOn |
df-wwlks 29863 | ⊢ WWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔))}) |
df-wwlksn 29864 | ⊢ WWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (WWalks‘𝑔) ∣ (♯‘𝑤) = (𝑛 + 1)}) |
df-wwlksnon 29865 | ⊢ WWalksNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ((𝑤‘0) = 𝑎 ∧ (𝑤‘𝑛) = 𝑏)})) |
df-wspthsn 29866 | ⊢ WSPathsN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (𝑛 WWalksN 𝑔) ∣ ∃𝑓 𝑓(SPaths‘𝑔)𝑤}) |
df-wspthsnon 29867 | ⊢ WSPathsNOn = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ (𝑎 ∈ (Vtx‘𝑔), 𝑏 ∈ (Vtx‘𝑔) ↦ {𝑤 ∈ (𝑎(𝑛 WWalksNOn 𝑔)𝑏) ∣ ∃𝑓 𝑓(𝑎(SPathsOn‘𝑔)𝑏)𝑤})) |
cclwwlk 30013 | class ClWWalks |
df-clwwlk 30014 | ⊢ ClWWalks = (𝑔 ∈ V ↦ {𝑤 ∈ Word (Vtx‘𝑔) ∣ (𝑤 ≠ ∅ ∧ ∀𝑖 ∈
(0..^((♯‘𝑤)
− 1)){(𝑤‘𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝑔) ∧ {(lastS‘𝑤), (𝑤‘0)} ∈ (Edg‘𝑔))}) |
cclwwlkn 30056 | class ClWWalksN |
df-clwwlkn 30057 | ⊢ ClWWalksN = (𝑛 ∈ ℕ0, 𝑔 ∈ V ↦ {𝑤 ∈ (ClWWalks‘𝑔) ∣ (♯‘𝑤) = 𝑛}) |
cclwwlknon 30119 | class ClWWalksNOn |
df-clwwlknon 30120 | ⊢ ClWWalksNOn = (𝑔 ∈ V ↦ (𝑣 ∈ (Vtx‘𝑔), 𝑛 ∈ ℕ0 ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝑔) ∣ (𝑤‘0) = 𝑣})) |
cconngr 30218 | class ConnGraph |
df-conngr 30219 | ⊢ ConnGraph = {𝑔 ∣ [(Vtx‘𝑔) / 𝑣]∀𝑘 ∈ 𝑣 ∀𝑛 ∈ 𝑣 ∃𝑓∃𝑝 𝑓(𝑘(PathsOn‘𝑔)𝑛)𝑝} |
ceupth 30229 | class EulerPaths |
df-eupth 30230 | ⊢ EulerPaths = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓(Trails‘𝑔)𝑝 ∧ 𝑓:(0..^(♯‘𝑓))–onto→dom (iEdg‘𝑔))}) |
cfrgr 30290 | class FriendGraph |
df-frgr 30291 | ⊢ FriendGraph = {𝑔 ∈ USGraph ∣
[(Vtx‘𝑔) /
𝑣][(Edg‘𝑔) / 𝑒]∀𝑘 ∈ 𝑣 ∀𝑙 ∈ (𝑣 ∖ {𝑘})∃!𝑥 ∈ 𝑣 {{𝑥, 𝑘}, {𝑥, 𝑙}} ⊆ 𝑒} |
ax-flt 30504 | ⊢ ((𝑁 ∈ (ℤ≥‘3)
∧ (𝑋 ∈ ℕ
∧ 𝑌 ∈ ℕ
∧ 𝑍 ∈ ℕ))
→ ((𝑋↑𝑁) + (𝑌↑𝑁)) ≠ (𝑍↑𝑁)) |
cplig 30506 | class Plig |
df-plig 30507 | ⊢ Plig = {𝑥 ∣ (∀𝑎 ∈ ∪ 𝑥∀𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 → ∃!𝑙 ∈ 𝑥 (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙)) ∧ ∀𝑙 ∈ 𝑥 ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥(𝑎 ≠ 𝑏 ∧ 𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙) ∧ ∃𝑎 ∈ ∪ 𝑥∃𝑏 ∈ ∪ 𝑥∃𝑐 ∈ ∪ 𝑥∀𝑙 ∈ 𝑥 ¬ (𝑎 ∈ 𝑙 ∧ 𝑏 ∈ 𝑙 ∧ 𝑐 ∈ 𝑙))} |
cgr 30521 | class GrpOp |
cgi 30522 | class GId |
cgn 30523 | class inv |
cgs 30524 | class
/𝑔 |
df-grpo 30525 | ⊢ GrpOp = {𝑔 ∣ ∃𝑡(𝑔:(𝑡 × 𝑡)⟶𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 ∀𝑧 ∈ 𝑡 ((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧)) ∧ ∃𝑢 ∈ 𝑡 ∀𝑥 ∈ 𝑡 ((𝑢𝑔𝑥) = 𝑥 ∧ ∃𝑦 ∈ 𝑡 (𝑦𝑔𝑥) = 𝑢))} |
df-gid 30526 | ⊢ GId = (𝑔 ∈ V ↦ (℩𝑢 ∈ ran 𝑔∀𝑥 ∈ ran 𝑔((𝑢𝑔𝑥) = 𝑥 ∧ (𝑥𝑔𝑢) = 𝑥))) |
df-ginv 30527 | ⊢ inv = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔 ↦ (℩𝑧 ∈ ran 𝑔(𝑧𝑔𝑥) = (GId‘𝑔)))) |
df-gdiv 30528 | ⊢ /𝑔 = (𝑔 ∈ GrpOp ↦ (𝑥 ∈ ran 𝑔, 𝑦 ∈ ran 𝑔 ↦ (𝑥𝑔((inv‘𝑔)‘𝑦)))) |
cablo 30576 | class AbelOp |
df-ablo 30577 | ⊢ AbelOp = {𝑔 ∈ GrpOp ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(𝑥𝑔𝑦) = (𝑦𝑔𝑥)} |
cvc 30590 | class
CVecOLD |
df-vc 30591 | ⊢ CVecOLD =
{〈𝑔, 𝑠〉 ∣ (𝑔 ∈ AbelOp ∧ 𝑠:(ℂ × ran 𝑔)⟶ran 𝑔 ∧ ∀𝑥 ∈ ran 𝑔((1𝑠𝑥) = 𝑥 ∧ ∀𝑦 ∈ ℂ (∀𝑧 ∈ ran 𝑔(𝑦𝑠(𝑥𝑔𝑧)) = ((𝑦𝑠𝑥)𝑔(𝑦𝑠𝑧)) ∧ ∀𝑧 ∈ ℂ (((𝑦 + 𝑧)𝑠𝑥) = ((𝑦𝑠𝑥)𝑔(𝑧𝑠𝑥)) ∧ ((𝑦 · 𝑧)𝑠𝑥) = (𝑦𝑠(𝑧𝑠𝑥))))))} |
cnv 30616 | class NrmCVec |
cpv 30617 | class
+𝑣 |
cba 30618 | class BaseSet |
cns 30619 | class
·𝑠OLD |
cn0v 30620 | class 0vec |
cnsb 30621 | class
−𝑣 |
cnmcv 30622 | class
normCV |
cims 30623 | class IndMet |
df-nv 30624 | ⊢ NrmCVec = {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ (〈𝑔, 𝑠〉 ∈ CVecOLD ∧ 𝑛:ran 𝑔⟶ℝ ∧ ∀𝑥 ∈ ran 𝑔(((𝑛‘𝑥) = 0 → 𝑥 = (GId‘𝑔)) ∧ ∀𝑦 ∈ ℂ (𝑛‘(𝑦𝑠𝑥)) = ((abs‘𝑦) · (𝑛‘𝑥)) ∧ ∀𝑦 ∈ ran 𝑔(𝑛‘(𝑥𝑔𝑦)) ≤ ((𝑛‘𝑥) + (𝑛‘𝑦))))} |
df-va 30627 | ⊢ +𝑣 =
(1st ∘ 1st ) |
df-ba 30628 | ⊢ BaseSet = (𝑥 ∈ V ↦ ran ( +𝑣
‘𝑥)) |
df-sm 30629 | ⊢
·𝑠OLD = (2nd ∘ 1st
) |
df-0v 30630 | ⊢ 0vec = (GId ∘
+𝑣 ) |
df-vs 30631 | ⊢ −𝑣 = (
/𝑔 ∘ +𝑣 ) |
df-nmcv 30632 | ⊢ normCV =
2nd |
df-ims 30633 | ⊢ IndMet = (𝑢 ∈ NrmCVec ↦
((normCV‘𝑢) ∘ ( −𝑣
‘𝑢))) |
cdip 30732 | class
·𝑖OLD |
df-dip 30733 | ⊢ ·𝑖OLD =
(𝑢 ∈ NrmCVec ↦
(𝑥 ∈
(BaseSet‘𝑢), 𝑦 ∈ (BaseSet‘𝑢) ↦ (Σ𝑘 ∈ (1...4)((i↑𝑘) ·
(((normCV‘𝑢)‘(𝑥( +𝑣 ‘𝑢)((i↑𝑘)( ·𝑠OLD
‘𝑢)𝑦)))↑2)) / 4))) |
css 30753 | class SubSp |
df-ssp 30754 | ⊢ SubSp = (𝑢 ∈ NrmCVec ↦ {𝑤 ∈ NrmCVec ∣ ((
+𝑣 ‘𝑤) ⊆ ( +𝑣
‘𝑢) ∧ (
·𝑠OLD ‘𝑤) ⊆ (
·𝑠OLD ‘𝑢) ∧ (normCV‘𝑤) ⊆
(normCV‘𝑢))}) |
clno 30772 | class LnOp |
cnmoo 30773 | class
normOpOLD |
cblo 30774 | class BLnOp |
c0o 30775 | class 0op |
df-lno 30776 | ⊢ LnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ∣ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (BaseSet‘𝑢)∀𝑧 ∈ (BaseSet‘𝑢)(𝑡‘((𝑥( ·𝑠OLD
‘𝑢)𝑦)( +𝑣 ‘𝑢)𝑧)) = ((𝑥( ·𝑠OLD
‘𝑤)(𝑡‘𝑦))( +𝑣 ‘𝑤)(𝑡‘𝑧))}) |
df-nmoo 30777 | ⊢ normOpOLD = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ (𝑡 ∈ ((BaseSet‘𝑤) ↑m (BaseSet‘𝑢)) ↦ sup({𝑥 ∣ ∃𝑧 ∈ (BaseSet‘𝑢)(((normCV‘𝑢)‘𝑧) ≤ 1 ∧ 𝑥 = ((normCV‘𝑤)‘(𝑡‘𝑧)))}, ℝ*, <
))) |
df-blo 30778 | ⊢ BLnOp = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {𝑡 ∈ (𝑢 LnOp 𝑤) ∣ ((𝑢 normOpOLD 𝑤)‘𝑡) < +∞}) |
df-0o 30779 | ⊢ 0op = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦
((BaseSet‘𝑢) ×
{(0vec‘𝑤)})) |
caj 30780 | class adj |
chmo 30781 | class HmOp |
df-aj 30782 | ⊢ adj = (𝑢 ∈ NrmCVec, 𝑤 ∈ NrmCVec ↦ {〈𝑡, 𝑠〉 ∣ (𝑡:(BaseSet‘𝑢)⟶(BaseSet‘𝑤) ∧ 𝑠:(BaseSet‘𝑤)⟶(BaseSet‘𝑢) ∧ ∀𝑥 ∈ (BaseSet‘𝑢)∀𝑦 ∈ (BaseSet‘𝑤)((𝑡‘𝑥)(·𝑖OLD‘𝑤)𝑦) = (𝑥(·𝑖OLD‘𝑢)(𝑠‘𝑦)))}) |
df-hmo 30783 | ⊢ HmOp = (𝑢 ∈ NrmCVec ↦ {𝑡 ∈ dom (𝑢adj𝑢) ∣ ((𝑢adj𝑢)‘𝑡) = 𝑡}) |
ccphlo 30844 | class
CPreHilOLD |
df-ph 30845 | ⊢ CPreHilOLD = (NrmCVec
∩ {〈〈𝑔, 𝑠〉, 𝑛〉 ∣ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛‘𝑥)↑2) + ((𝑛‘𝑦)↑2)))}) |
ccbn 30894 | class CBan |
df-cbn 30895 | ⊢ CBan = {𝑢 ∈ NrmCVec ∣ (IndMet‘𝑢) ∈
(CMet‘(BaseSet‘𝑢))} |
chlo 30917 | class
CHilOLD |
df-hlo 30918 | ⊢ CHilOLD = (CBan ∩
CPreHilOLD) |
The
list of syntax, axioms (ax-) and definitions (df-) for the Hilbert Space Explorer starts here |
chba 30951 | class ℋ |
cva 30952 | class
+ℎ |
csm 30953 | class
·ℎ |
csp 30954 | class
·ih |
cno 30955 | class
normℎ |
c0v 30956 | class
0ℎ |
cmv 30957 | class
−ℎ |
ccauold 30958 | class Cauchy |
chli 30959 | class
⇝𝑣 |
csh 30960 | class
Sℋ |
cch 30961 | class
Cℋ |
cort 30962 | class ⊥ |
cph 30963 | class
+ℋ |
cspn 30964 | class span |
chj 30965 | class
∨ℋ |
chsup 30966 | class ∨ℋ |
c0h 30967 | class
0ℋ |
ccm 30968 | class
𝐶ℋ |
cpjh 30969 | class
projℎ |
chos 30970 | class +op |
chot 30971 | class
·op |
chod 30972 | class
−op |
chfs 30973 | class +fn |
chft 30974 | class
·fn |
ch0o 30975 | class
0hop |
chio 30976 | class Iop |
cnop 30977 | class
normop |
ccop 30978 | class ContOp |
clo 30979 | class LinOp |
cbo 30980 | class BndLinOp |
cuo 30981 | class UniOp |
cho 30982 | class HrmOp |
cnmf 30983 | class
normfn |
cnl 30984 | class null |
ccnfn 30985 | class ContFn |
clf 30986 | class LinFn |
cado 30987 | class
adjℎ |
cbr 30988 | class bra |
ck 30989 | class ketbra |
cleo 30990 | class
≤op |
cei 30991 | class eigvec |
cel 30992 | class eigval |
cspc 30993 | class Lambda |
cst 30994 | class States |
chst 30995 | class CHStates |
ccv 30996 | class
⋖ℋ |
cat 30997 | class HAtoms |
cmd 30998 | class
𝑀ℋ |
cdmd 30999 | class
𝑀ℋ* |
df-hnorm 31000 | ⊢ normℎ = (𝑥 ∈ dom dom
·ih ↦ (√‘(𝑥 ·ih 𝑥))) |
df-hba 31001 | ⊢ ℋ = (BaseSet‘〈〈
+ℎ , ·ℎ 〉,
normℎ〉) |
df-h0v 31002 | ⊢ 0ℎ =
(0vec‘〈〈 +ℎ ,
·ℎ 〉,
normℎ〉) |
df-hvsub 31003 | ⊢ −ℎ = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑥 +ℎ (-1
·ℎ 𝑦))) |
df-hlim 31004 | ⊢ ⇝𝑣 = {〈𝑓, 𝑤〉 ∣ ((𝑓:ℕ⟶ ℋ ∧ 𝑤 ∈ ℋ) ∧
∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑧) −ℎ 𝑤)) < 𝑥)} |
df-hcau 31005 | ⊢ Cauchy = {𝑓 ∈ ( ℋ ↑m ℕ)
∣ ∀𝑥 ∈
ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} |
ax-hilex 31031 | ⊢ ℋ ∈ V |
ax-hfvadd 31032 | ⊢ +ℎ :( ℋ ×
ℋ)⟶ ℋ |
ax-hvcom 31033 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 +ℎ 𝐵) = (𝐵 +ℎ 𝐴)) |
ax-hvass 31034 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) +ℎ 𝐶) = (𝐴 +ℎ (𝐵 +ℎ 𝐶))) |
ax-hv0cl 31035 | ⊢ 0ℎ ∈
ℋ |
ax-hvaddid 31036 | ⊢ (𝐴 ∈ ℋ → (𝐴 +ℎ 0ℎ)
= 𝐴) |
ax-hfvmul 31037 | ⊢ ·ℎ :(ℂ
× ℋ)⟶ ℋ |
ax-hvmulid 31038 | ⊢ (𝐴 ∈ ℋ → (1
·ℎ 𝐴) = 𝐴) |
ax-hvmulass 31039 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 · 𝐵) ·ℎ 𝐶) = (𝐴 ·ℎ (𝐵
·ℎ 𝐶))) |
ax-hvdistr1 31040 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → (𝐴 ·ℎ (𝐵 +ℎ 𝐶)) = ((𝐴 ·ℎ 𝐵) +ℎ (𝐴
·ℎ 𝐶))) |
ax-hvdistr2 31041 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ) → ((𝐴 + 𝐵) ·ℎ 𝐶) = ((𝐴 ·ℎ 𝐶) +ℎ (𝐵
·ℎ 𝐶))) |
ax-hvmul0 31042 | ⊢ (𝐴 ∈ ℋ → (0
·ℎ 𝐴) = 0ℎ) |
ax-hfi 31111 | ⊢ ·ih :(
ℋ × ℋ)⟶ℂ |
ax-his1 31114 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) = (∗‘(𝐵
·ih 𝐴))) |
ax-his2 31115 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 +ℎ 𝐵) ·ih 𝐶) = ((𝐴 ·ih 𝐶) + (𝐵 ·ih 𝐶))) |
ax-his3 31116 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 ·ℎ 𝐵)
·ih 𝐶) = (𝐴 · (𝐵 ·ih 𝐶))) |
ax-his4 31117 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐴 ≠ 0ℎ) → 0 <
(𝐴
·ih 𝐴)) |
ax-hcompl 31234 | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣
𝑥) |
df-sh 31239 | ⊢
Sℋ = {ℎ ∈ 𝒫 ℋ ∣
(0ℎ ∈ ℎ ∧ ( +ℎ “ (ℎ × ℎ)) ⊆ ℎ ∧ ( ·ℎ
“ (ℂ × ℎ))
⊆ ℎ)} |
df-ch 31253 | ⊢
Cℋ = {ℎ ∈ Sℋ
∣ ( ⇝𝑣 “ (ℎ ↑m ℕ)) ⊆ ℎ} |
df-oc 31284 | ⊢ ⊥ = (𝑥 ∈ 𝒫 ℋ ↦ {𝑦 ∈ ℋ ∣
∀𝑧 ∈ 𝑥 (𝑦 ·ih 𝑧) = 0}) |
df-ch0 31285 | ⊢ 0ℋ =
{0ℎ} |
df-shs 31340 | ⊢ +ℋ = (𝑥 ∈ Sℋ ,
𝑦 ∈
Sℋ ↦ ( +ℎ “ (𝑥 × 𝑦))) |
df-span 31341 | ⊢ span = (𝑥 ∈ 𝒫 ℋ ↦ ∩ {𝑦
∈ Sℋ ∣ 𝑥 ⊆ 𝑦}) |
df-chj 31342 | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 ℋ, 𝑦 ∈ 𝒫 ℋ ↦
(⊥‘(⊥‘(𝑥 ∪ 𝑦)))) |
df-chsup 31343 | ⊢ ∨ℋ = (𝑥 ∈ 𝒫 𝒫 ℋ ↦
(⊥‘(⊥‘∪ 𝑥))) |
df-pjh 31427 | ⊢ projℎ = (ℎ ∈ Cℋ
↦ (𝑥 ∈ ℋ
↦ (℩𝑧
∈ ℎ ∃𝑦 ∈ (⊥‘ℎ)𝑥 = (𝑧 +ℎ 𝑦)))) |
df-cm 31615 | ⊢ 𝐶ℋ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ 𝑥 = ((𝑥 ∩ 𝑦) ∨ℋ (𝑥 ∩ (⊥‘𝑦))))} |
df-hosum 31762 | ⊢ +op = (𝑓 ∈ ( ℋ ↑m
ℋ), 𝑔 ∈ (
ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) +ℎ (𝑔‘𝑥)))) |
df-homul 31763 | ⊢ ·op = (𝑓 ∈ ℂ, 𝑔 ∈ ( ℋ
↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 ·ℎ (𝑔‘𝑥)))) |
df-hodif 31764 | ⊢ −op = (𝑓 ∈ ( ℋ ↑m
ℋ), 𝑔 ∈ (
ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) −ℎ (𝑔‘𝑥)))) |
df-hfsum 31765 | ⊢ +fn = (𝑓 ∈ (ℂ ↑m ℋ),
𝑔 ∈ (ℂ
↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓‘𝑥) + (𝑔‘𝑥)))) |
df-hfmul 31766 | ⊢ ·fn = (𝑓 ∈ ℂ, 𝑔 ∈ (ℂ
↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ (𝑓 · (𝑔‘𝑥)))) |
df-h0op 31780 | ⊢ 0hop =
(projℎ‘0ℋ) |
df-iop 31781 | ⊢ Iop =
(projℎ‘ ℋ) |
df-nmop 31871 | ⊢ normop = (𝑡 ∈ ( ℋ ↑m ℋ)
↦ sup({𝑥 ∣
∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (normℎ‘(𝑡‘𝑧)))}, ℝ*, <
)) |
df-cnop 31872 | ⊢ ContOp = {𝑡 ∈ ( ℋ ↑m ℋ)
∣ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 →
(normℎ‘((𝑡‘𝑤) −ℎ (𝑡‘𝑥))) < 𝑦)} |
df-lnop 31873 | ⊢ LinOp = {𝑡 ∈ ( ℋ ↑m ℋ)
∣ ∀𝑥 ∈
ℂ ∀𝑦 ∈
ℋ ∀𝑧 ∈
ℋ (𝑡‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 ·ℎ (𝑡‘𝑦)) +ℎ (𝑡‘𝑧))} |
df-bdop 31874 | ⊢ BndLinOp = {𝑡 ∈ LinOp ∣
(normop‘𝑡)
< +∞} |
df-unop 31875 | ⊢ UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦))} |
df-hmop 31876 | ⊢ HrmOp = {𝑡 ∈ ( ℋ ↑m ℋ)
∣ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℋ (𝑥
·ih (𝑡‘𝑦)) = ((𝑡‘𝑥) ·ih 𝑦)} |
df-nmfn 31877 | ⊢ normfn = (𝑡 ∈ (ℂ ↑m ℋ)
↦ sup({𝑥 ∣
∃𝑧 ∈ ℋ
((normℎ‘𝑧) ≤ 1 ∧ 𝑥 = (abs‘(𝑡‘𝑧)))}, ℝ*, <
)) |
df-nlfn 31878 | ⊢ null = (𝑡 ∈ (ℂ ↑m ℋ)
↦ (◡𝑡 “ {0})) |
df-cnfn 31879 | ⊢ ContFn = {𝑡 ∈ (ℂ ↑m ℋ)
∣ ∀𝑥 ∈
ℋ ∀𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ ℋ
((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑧 → (abs‘((𝑡‘𝑤) − (𝑡‘𝑥))) < 𝑦)} |
df-lnfn 31880 | ⊢ LinFn = {𝑡 ∈ (ℂ ↑m ℋ)
∣ ∀𝑥 ∈
ℂ ∀𝑦 ∈
ℋ ∀𝑧 ∈
ℋ (𝑡‘((𝑥
·ℎ 𝑦) +ℎ 𝑧)) = ((𝑥 · (𝑡‘𝑦)) + (𝑡‘𝑧))} |
df-adjh 31881 | ⊢ adjℎ = {〈𝑡, 𝑢〉 ∣ (𝑡: ℋ⟶ ℋ ∧ 𝑢: ℋ⟶ ℋ ∧
∀𝑥 ∈ ℋ
∀𝑦 ∈ ℋ
((𝑡‘𝑥)
·ih 𝑦) = (𝑥 ·ih (𝑢‘𝑦)))} |
df-bra 31882 | ⊢ bra = (𝑥 ∈ ℋ ↦ (𝑦 ∈ ℋ ↦ (𝑦 ·ih 𝑥))) |
df-kb 31883 | ⊢ ketbra = (𝑥 ∈ ℋ, 𝑦 ∈ ℋ ↦ (𝑧 ∈ ℋ ↦ ((𝑧 ·ih 𝑦)
·ℎ 𝑥))) |
df-leop 31884 | ⊢ ≤op = {〈𝑡, 𝑢〉 ∣ ((𝑢 −op 𝑡) ∈ HrmOp ∧ ∀𝑥 ∈ ℋ 0 ≤ (((𝑢 −op 𝑡)‘𝑥) ·ih 𝑥))} |
df-eigvec 31885 | ⊢ eigvec = (𝑡 ∈ ( ℋ ↑m ℋ)
↦ {𝑥 ∈ ( ℋ
∖ 0ℋ) ∣ ∃𝑧 ∈ ℂ (𝑡‘𝑥) = (𝑧 ·ℎ 𝑥)}) |
df-eigval 31886 | ⊢ eigval = (𝑡 ∈ ( ℋ ↑m ℋ)
↦ (𝑥 ∈
(eigvec‘𝑡) ↦
(((𝑡‘𝑥)
·ih 𝑥) / ((normℎ‘𝑥)↑2)))) |
df-spec 31887 | ⊢ Lambda = (𝑡 ∈ ( ℋ ↑m ℋ)
↦ {𝑥 ∈ ℂ
∣ ¬ (𝑡
−op (𝑥
·op ( I ↾ ℋ))): ℋ–1-1→ ℋ}) |
df-st 32243 | ⊢ States = {𝑓 ∈ ((0[,]1) ↑m
Cℋ ) ∣ ((𝑓‘ ℋ) = 1 ∧ ∀𝑥 ∈
Cℋ ∀𝑦 ∈ Cℋ
(𝑥 ⊆
(⊥‘𝑦) →
(𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) + (𝑓‘𝑦))))} |
df-hst 32244 | ⊢ CHStates = {𝑓 ∈ ( ℋ ↑m
Cℋ ) ∣
((normℎ‘(𝑓‘ ℋ)) = 1 ∧ ∀𝑥 ∈
Cℋ ∀𝑦 ∈ Cℋ
(𝑥 ⊆
(⊥‘𝑦) →
(((𝑓‘𝑥)
·ih (𝑓‘𝑦)) = 0 ∧ (𝑓‘(𝑥 ∨ℋ 𝑦)) = ((𝑓‘𝑥) +ℎ (𝑓‘𝑦)))))} |
df-cv 32311 | ⊢ ⋖ℋ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ (𝑥 ⊊ 𝑦 ∧ ¬ ∃𝑧 ∈
Cℋ (𝑥 ⊊ 𝑧 ∧ 𝑧 ⊊ 𝑦)))} |
df-md 32312 | ⊢ 𝑀ℋ =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ ∀𝑧 ∈
Cℋ (𝑧 ⊆ 𝑦 → ((𝑧 ∨ℋ 𝑥) ∩ 𝑦) = (𝑧 ∨ℋ (𝑥 ∩ 𝑦))))} |
df-dmd 32313 | ⊢ 𝑀ℋ* =
{〈𝑥, 𝑦〉 ∣ ((𝑥 ∈
Cℋ ∧ 𝑦 ∈ Cℋ )
∧ ∀𝑧 ∈
Cℋ (𝑦 ⊆ 𝑧 → ((𝑧 ∩ 𝑥) ∨ℋ 𝑦) = (𝑧 ∩ (𝑥 ∨ℋ 𝑦))))} |
df-at 32370 | ⊢ HAtoms = {𝑥 ∈ Cℋ
∣ 0ℋ ⋖ℋ 𝑥} |
The
list of syntax, axioms (ax-) and definitions (df-) for the User Mathboxes starts here |
w2reu 32506 | wff ∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 |
df-2reu 32507 | ⊢ (∃!𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵𝜑 ↔ (∃!𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ∧ ∃!𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑)) |
cdp2 32835 | class _𝐴𝐵 |
df-dp2 32836 | ⊢ _𝐴𝐵 = (𝐴 + (𝐵 / ;10)) |
cdp 32852 | class . |
df-dp 32853 | ⊢ . = (𝑥 ∈ ℕ0, 𝑦 ∈ ℝ ↦ _𝑥𝑦) |
cxdiv 32881 | class
/𝑒 |
df-xdiv 32882 | ⊢ /𝑒 = (𝑥 ∈ ℝ*, 𝑦 ∈ (ℝ ∖ {0})
↦ (℩𝑧
∈ ℝ* (𝑦 ·e 𝑧) = 𝑥)) |
cmnt 32951 | class Monot |
cmgc 32952 | class MGalConn |
df-mnt 32953 | ⊢ Monot = (𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))}) |
df-mgc 32954 | ⊢ MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦
⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))}) |
cchn 32977 | class ( < Chain𝐴) |
df-chn 32978 | ⊢ ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} |
ax-xrssca 32987 | ⊢ ℝfld =
(Scalar‘ℝ*𝑠) |
ax-xrsvsca 32988 | ⊢ ·e = (
·𝑠
‘ℝ*𝑠) |
comnd 33047 | class oMnd |
cogrp 33048 | class oGrp |
df-omnd 33049 | ⊢ oMnd = {𝑔 ∈ Mnd ∣ [(Base‘𝑔) / 𝑣][(+g‘𝑔) / 𝑝][(le‘𝑔) / 𝑙](𝑔 ∈ Toset ∧ ∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ∀𝑐 ∈ 𝑣 (𝑎𝑙𝑏 → (𝑎𝑝𝑐)𝑙(𝑏𝑝𝑐)))} |
df-ogrp 33050 | ⊢ oGrp = (Grp ∩ oMnd) |
ctocyc 33099 | class toCyc |
df-tocyc 33100 | ⊢ toCyc = (𝑑 ∈ V ↦ (𝑤 ∈ {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
csgns 33151 | class sgns |
df-sgns 33152 | ⊢ sgns = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟) ↦ if(𝑥 = (0g‘𝑟), 0, if((0g‘𝑟)(lt‘𝑟)𝑥, 1, -1)))) |
cinftm 33156 | class ⋘ |
carchi 33157 | class Archi |
df-inftm 33158 | ⊢ ⋘ = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (Base‘𝑤) ∧ 𝑦 ∈ (Base‘𝑤)) ∧ ((0g‘𝑤)(lt‘𝑤)𝑥 ∧ ∀𝑛 ∈ ℕ (𝑛(.g‘𝑤)𝑥)(lt‘𝑤)𝑦))}) |
df-archi 33159 | ⊢ Archi = {𝑤 ∣ (⋘‘𝑤) = ∅} |
cslmd 33179 | class SLMod |
df-slmd 33180 | ⊢ SLMod = {𝑔 ∈ CMnd ∣
[(Base‘𝑔) /
𝑣][(+g‘𝑔) / 𝑎][(
·𝑠 ‘𝑔) / 𝑠][(Scalar‘𝑔) / 𝑓][(Base‘𝑓) / 𝑘][(+g‘𝑓) / 𝑝][(.r‘𝑓) / 𝑡](𝑓 ∈ SRing ∧ ∀𝑞 ∈ 𝑘 ∀𝑟 ∈ 𝑘 ∀𝑥 ∈ 𝑣 ∀𝑤 ∈ 𝑣 (((𝑟𝑠𝑤) ∈ 𝑣 ∧ (𝑟𝑠(𝑤𝑎𝑥)) = ((𝑟𝑠𝑤)𝑎(𝑟𝑠𝑥)) ∧ ((𝑞𝑝𝑟)𝑠𝑤) = ((𝑞𝑠𝑤)𝑎(𝑟𝑠𝑤))) ∧ (((𝑞𝑡𝑟)𝑠𝑤) = (𝑞𝑠(𝑟𝑠𝑤)) ∧ ((1r‘𝑓)𝑠𝑤) = 𝑤 ∧ ((0g‘𝑓)𝑠𝑤) = (0g‘𝑔))))} |
cerl 33225 | class
~RL |
crloc 33226 | class RLocal |
df-erl 33227 | ⊢ ~RL = (𝑟 ∈ V, 𝑠 ∈ V ↦
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ∃𝑡 ∈ 𝑠 (𝑡𝑥(((1st ‘𝑎)𝑥(2nd ‘𝑏))(-g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))) = (0g‘𝑟))}) |
df-rloc 33228 | ⊢ RLocal = (𝑟 ∈ V, 𝑠 ∈ V ↦
⦋(.r‘𝑟) / 𝑥⦌⦋((Base‘𝑟) × 𝑠) / 𝑤⦌((({〈(Base‘ndx), 𝑤〉,
〈(+g‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈(((1st ‘𝑎)𝑥(2nd ‘𝑏))(+g‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉,
〈(.r‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ 〈((1st ‘𝑎)𝑥(1st ‘𝑏)), ((2nd ‘𝑎)𝑥(2nd ‘𝑏))〉)〉} ∪
{〈(Scalar‘ndx), (Scalar‘𝑟)〉, 〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑟)), 𝑎 ∈ 𝑤 ↦ 〈(𝑘( ·𝑠
‘𝑟)(1st
‘𝑎)), (2nd
‘𝑎)〉)〉,
〈(·𝑖‘ndx), ∅〉}) ∪
{〈(TopSet‘ndx), ((TopSet‘𝑟) ×t ((TopSet‘𝑟) ↾t 𝑠))〉, 〈(le‘ndx),
{〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ 𝑤 ∧ 𝑏 ∈ 𝑤) ∧ ((1st ‘𝑎)𝑥(2nd ‘𝑏))(le‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎)))}〉, 〈(dist‘ndx), (𝑎 ∈ 𝑤, 𝑏 ∈ 𝑤 ↦ (((1st ‘𝑎)𝑥(2nd ‘𝑏))(dist‘𝑟)((1st ‘𝑏)𝑥(2nd ‘𝑎))))〉}) /s (𝑟 ~RL 𝑠))) |
ceuf 33257 | class EuclF |
df-euf 33258 | ⊢ EuclF = Slot ;21 |
cedom 33261 | class EDomn |
df-edom 33262 | ⊢ EDomn = {𝑑 ∈ IDomn ∣
[(EuclF‘𝑑) /
𝑒][(Base‘𝑑) / 𝑣](Fun 𝑒 ∧ (𝑒 “ (𝑣 ∖ {(0g‘𝑑)})) ⊆ (0[,)+∞)
∧ ∀𝑎 ∈
𝑣 ∀𝑏 ∈ (𝑣 ∖ {(0g‘𝑑)})∃𝑞 ∈ 𝑣 ∃𝑟 ∈ 𝑣 (𝑎 = ((𝑏(.r‘𝑑)𝑞)(+g‘𝑑)𝑟) ∧ (𝑟 = (0g‘𝑑) ∨ (𝑒‘𝑟) < (𝑒‘𝑏))))} |
cfrac 33269 | class Frac |
df-frac 33270 | ⊢ Frac = (𝑟 ∈ V ↦ (𝑟 RLocal (RLReg‘𝑟))) |
cfldgen 33277 | class fldGen |
df-fldgen 33278 | ⊢ fldGen = (𝑓 ∈ V, 𝑠 ∈ V ↦ ∩ {𝑎
∈ (SubDRing‘𝑓)
∣ 𝑠 ⊆ 𝑎}) |
corng 33290 | class oRing |
cofld 33291 | class oField |
df-orng 33292 | ⊢ oRing = {𝑟 ∈ (Ring ∩ oGrp) ∣
[(Base‘𝑟) /
𝑣][(0g‘𝑟) / 𝑧][(.r‘𝑟) / 𝑡][(le‘𝑟) / 𝑙]∀𝑎 ∈ 𝑣 ∀𝑏 ∈ 𝑣 ((𝑧𝑙𝑎 ∧ 𝑧𝑙𝑏) → 𝑧𝑙(𝑎𝑡𝑏))} |
df-ofld 33293 | ⊢ oField = (Field ∩ oRing) |
cresv 33315 | class
↾v |
df-resv 33316 | ⊢ ↾v = (𝑤 ∈ V, 𝑥 ∈ V ↦
if((Base‘(Scalar‘𝑤)) ⊆ 𝑥, 𝑤, (𝑤 sSet 〈(Scalar‘ndx),
((Scalar‘𝑤)
↾s 𝑥)〉))) |
cprmidl 33428 | class PrmIdeal |
df-prmidl 33429 | ⊢ PrmIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑎 ∈ (LIdeal‘𝑟)∀𝑏 ∈ (LIdeal‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |
cmxidl 33452 | class MaxIdeal |
df-mxidl 33453 | ⊢ MaxIdeal = (𝑟 ∈ Ring ↦ {𝑖 ∈ (LIdeal‘𝑟) ∣ (𝑖 ≠ (Base‘𝑟) ∧ ∀𝑗 ∈ (LIdeal‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = (Base‘𝑟))))}) |
cidlsrg 33493 | class IDLsrg |
df-idlsrg 33494 | ⊢ IDLsrg = (𝑟 ∈ V ↦
⦋(LIdeal‘𝑟) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (LSSum‘𝑟)〉, 〈(.r‘ndx),
(𝑖 ∈ 𝑏, 𝑗 ∈ 𝑏 ↦ ((RSpan‘𝑟)‘(𝑖(LSSum‘(mulGrp‘𝑟))𝑗)))〉} ∪ {〈(TopSet‘ndx),
ran (𝑖 ∈ 𝑏 ↦ {𝑗 ∈ 𝑏 ∣ ¬ 𝑖 ⊆ 𝑗})〉, 〈(le‘ndx), {〈𝑖, 𝑗〉 ∣ ({𝑖, 𝑗} ⊆ 𝑏 ∧ 𝑖 ⊆ 𝑗)}〉})) |
cufd 33531 | class UFD |
df-ufd 33532 | ⊢ UFD = {𝑟 ∈ IDomn ∣ ∀𝑖 ∈ ((PrmIdeal‘𝑟) ∖
{{(0g‘𝑟)}})(𝑖 ∩ (RPrime‘𝑟)) ≠ ∅} |
cldim 33611 | class dim |
df-dim 33612 | ⊢ dim = (𝑓 ∈ V ↦ ∪ (♯ “ (LBasis‘𝑓))) |
cfldext 33651 | class
/FldExt |
cfinext 33652 | class
/FinExt |
calgext 33653 | class
/AlgExt |
cextdg 33654 | class [:] |
df-fldext 33655 | ⊢ /FldExt = {〈𝑒, 𝑓〉 ∣ ((𝑒 ∈ Field ∧ 𝑓 ∈ Field) ∧ (𝑓 = (𝑒 ↾s (Base‘𝑓)) ∧ (Base‘𝑓) ∈ (SubRing‘𝑒)))} |
df-extdg 33656 | ⊢ [:] = (𝑒 ∈ V, 𝑓 ∈ (/FldExt “ {𝑒}) ↦
(dim‘((subringAlg ‘𝑒)‘(Base‘𝑓)))) |
df-finext 33657 | ⊢ /FinExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ (𝑒[:]𝑓) ∈
ℕ0)} |
df-algext 33658 | ⊢ /AlgExt = {〈𝑒, 𝑓〉 ∣ (𝑒/FldExt𝑓 ∧ ∀𝑥 ∈ (Base‘𝑒)∃𝑝 ∈ (Poly1‘𝑓)(((eval1‘𝑓)‘𝑝)‘𝑥) = (0g‘𝑒))} |
cirng 33683 | class IntgRing |
df-irng 33684 | ⊢ IntgRing = (𝑟 ∈ V, 𝑠 ∈ V ↦ ∪ 𝑓 ∈ (Monic1p‘(𝑟 ↾s 𝑠))(◡((𝑟 evalSub1 𝑠)‘𝑓) “ {(0g‘𝑟)})) |
cminply 33692 | class minPoly |
df-minply 33693 | ⊢ minPoly = (𝑒 ∈ V, 𝑓 ∈ V ↦ (𝑥 ∈ (Base‘𝑒) ↦ ((idlGen1p‘(𝑒 ↾s 𝑓))‘{𝑝 ∈ dom (𝑒 evalSub1 𝑓) ∣ (((𝑒 evalSub1 𝑓)‘𝑝)‘𝑥) = (0g‘𝑒)}))) |
cconstr 33720 | class Constr |
df-constr 33721 | ⊢ Constr = (rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧
(ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) “
ω) |
csmat 33739 | class subMat1 |
df-smat 33740 | ⊢ subMat1 = (𝑚 ∈ V ↦ (𝑘 ∈ ℕ, 𝑙 ∈ ℕ ↦ (𝑚 ∘ (𝑖 ∈ ℕ, 𝑗 ∈ ℕ ↦ 〈if(𝑖 < 𝑘, 𝑖, (𝑖 + 1)), if(𝑗 < 𝑙, 𝑗, (𝑗 + 1))〉)))) |
clmat 33757 | class litMat |
df-lmat 33758 | ⊢ litMat = (𝑚 ∈ V ↦ (𝑖 ∈ (1...(♯‘𝑚)), 𝑗 ∈ (1...(♯‘(𝑚‘0))) ↦ ((𝑚‘(𝑖 − 1))‘(𝑗 − 1)))) |
ccref 33788 | class CovHasRef𝐴 |
df-cref 33789 | ⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪
𝑗 = ∪ 𝑦
→ ∃𝑧 ∈
(𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} |
cldlf 33798 | class Ldlf |
df-ldlf 33799 | ⊢ Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} |
cpcmp 33801 | class Paracomp |
df-pcmp 33802 | ⊢ Paracomp = {𝑗 ∣ 𝑗 ∈ CovHasRef(LocFin‘𝑗)} |
crspec 33808 | class Spec |
df-rspec 33809 | ⊢ Spec = (𝑟 ∈ Ring ↦ ((IDLsrg‘𝑟) ↾s
(PrmIdeal‘𝑟))) |
cmetid 33832 | class ~Met |
cpstm 33833 | class pstoMet |
df-metid 33834 | ⊢ ~Met = (𝑑 ∈ ∪ ran
PsMet ↦ {〈𝑥,
𝑦〉 ∣ ((𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)}) |
df-pstm 33835 | ⊢ pstoMet = (𝑑 ∈ ∪ ran
PsMet ↦ (𝑎 ∈
(dom dom 𝑑 /
(~Met‘𝑑)),
𝑏 ∈ (dom dom 𝑑 /
(~Met‘𝑑))
↦ ∪ {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)})) |
chcmp 33902 | class HCmp |
df-hcmp 33903 | ⊢ HCmp = {〈𝑢, 𝑤〉 ∣ ((𝑢 ∈ ∪ ran
UnifOn ∧ 𝑤 ∈
CUnifSp) ∧ ((UnifSt‘𝑤) ↾t dom ∪ 𝑢) =
𝑢 ∧
((cls‘(TopOpen‘𝑤))‘dom ∪
𝑢) = (Base‘𝑤))} |
cqqh 33918 | class ℚHom |
df-qqh 33919 | ⊢ ℚHom = (𝑟 ∈ V ↦ ran (𝑥 ∈ ℤ, 𝑦 ∈ (◡(ℤRHom‘𝑟) “ (Unit‘𝑟)) ↦ 〈(𝑥 / 𝑦), (((ℤRHom‘𝑟)‘𝑥)(/r‘𝑟)((ℤRHom‘𝑟)‘𝑦))〉)) |
crrh 33939 | class ℝHom |
crrext 33940 | class ℝExt |
df-rrh 33941 | ⊢ ℝHom = (𝑟 ∈ V ↦ (((topGen‘ran
(,))CnExt(TopOpen‘𝑟))‘(ℚHom‘𝑟))) |
df-rrext 33945 | ⊢ ℝExt = {𝑟 ∈ (NrmRing ∩ DivRing) ∣
(((ℤMod‘𝑟)
∈ NrmMod ∧ (chr‘𝑟) = 0) ∧ (𝑟 ∈ CUnifSp ∧ (UnifSt‘𝑟) =
(metUnif‘((dist‘𝑟) ↾ ((Base‘𝑟) × (Base‘𝑟))))))} |
cxrh 33962 | class
ℝ*Hom |
df-xrh 33963 | ⊢ ℝ*Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ,
((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “
ℝ)))))) |
cmntop 33968 | class ManTop |
df-mntop 33969 | ⊢ ManTop = {〈𝑛, 𝑗〉 ∣ (𝑛 ∈ ℕ0 ∧ (𝑗 ∈ 2ndω
∧ 𝑗 ∈ Haus ∧
𝑗 ∈ Locally
[(TopOpen‘(𝔼hil‘𝑛))] ≃ ))} |
cind 33974 | class 𝟭 |
df-ind 33975 | ⊢ 𝟭 = (𝑜 ∈ V ↦ (𝑎 ∈ 𝒫 𝑜 ↦ (𝑥 ∈ 𝑜 ↦ if(𝑥 ∈ 𝑎, 1, 0)))) |
cesum 33991 | class Σ*𝑘 ∈ 𝐴𝐵 |
df-esum 33992 | ⊢ Σ*𝑘 ∈ 𝐴𝐵 = ∪
((ℝ*𝑠 ↾s (0[,]+∞))
tsums (𝑘 ∈ 𝐴 ↦ 𝐵)) |
cofc 34059 | class ∘f/c 𝑅 |
df-ofc 34060 | ⊢ ∘f/c 𝑅 = (𝑓 ∈ V, 𝑐 ∈ V ↦ (𝑥 ∈ dom 𝑓 ↦ ((𝑓‘𝑥)𝑅𝑐))) |
csiga 34072 | class sigAlgebra |
df-siga 34073 | ⊢ sigAlgebra = (𝑜 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ 𝒫 𝑜 ∧ (𝑜 ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 (𝑜 ∖ 𝑥) ∈ 𝑠 ∧ ∀𝑥 ∈ 𝒫 𝑠(𝑥 ≼ ω → ∪ 𝑥
∈ 𝑠)))}) |
csigagen 34102 | class sigaGen |
df-sigagen 34103 | ⊢ sigaGen = (𝑥 ∈ V ↦ ∩ {𝑠
∈ (sigAlgebra‘∪ 𝑥) ∣ 𝑥 ⊆ 𝑠}) |
cbrsiga 34145 | class
𝔅ℝ |
df-brsiga 34146 | ⊢ 𝔅ℝ =
(sigaGen‘(topGen‘ran (,))) |
csx 34152 | class
×s |
df-sx 34153 | ⊢ ×s = (𝑠 ∈ V, 𝑡 ∈ V ↦ (sigaGen‘ran (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)))) |
cmeas 34159 | class measures |
df-meas 34160 | ⊢ measures = (𝑠 ∈ ∪ ran
sigAlgebra ↦ {𝑚
∣ (𝑚:𝑠⟶(0[,]+∞) ∧
(𝑚‘∅) = 0 ∧
∀𝑥 ∈ 𝒫
𝑠((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑚‘∪ 𝑥) = Σ*𝑦 ∈ 𝑥(𝑚‘𝑦)))}) |
cdde 34196 | class δ |
df-dde 34197 | ⊢ δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈
𝑎, 1, 0)) |
cae 34201 | class a.e. |
cfae 34202 | class ~ a.e. |
df-ae 34203 | ⊢ a.e. = {〈𝑎, 𝑚〉 ∣ (𝑚‘(∪ dom
𝑚 ∖ 𝑎)) = 0} |
df-fae 34209 | ⊢ ~ a.e. = (𝑟 ∈ V, 𝑚 ∈ ∪ ran
measures ↦ {〈𝑓,
𝑔〉 ∣ ((𝑓 ∈ (dom 𝑟 ↑m ∪ dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟 ↑m ∪ dom 𝑚)) ∧ {𝑥 ∈ ∪ dom
𝑚 ∣ (𝑓‘𝑥)𝑟(𝑔‘𝑥)}a.e.𝑚)}) |
cmbfm 34213 | class MblFnM |
df-mbfm 34214 | ⊢ MblFnM = (𝑠 ∈ ∪ ran
sigAlgebra, 𝑡 ∈ ∪ ran sigAlgebra ↦ {𝑓 ∈ (∪ 𝑡 ↑m ∪ 𝑠)
∣ ∀𝑥 ∈
𝑡 (◡𝑓 “ 𝑥) ∈ 𝑠}) |
coms 34256 | class toOMeas |
df-oms 34257 | ⊢ toOMeas = (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 ∪ dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦
Σ*𝑦 ∈
𝑥(𝑟‘𝑦)), (0[,]+∞), < ))) |
ccarsg 34266 | class toCaraSiga |
df-carsg 34267 | ⊢ toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 ∪ dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 ∪ dom 𝑚((𝑚‘(𝑒 ∩ 𝑎)) +𝑒 (𝑚‘(𝑒 ∖ 𝑎))) = (𝑚‘𝑒)}) |
citgm 34292 | class itgm |
csitm 34293 | class sitm |
csitg 34294 | class sitg |
df-sitg 34295 | ⊢ sitg = (𝑤 ∈ V, 𝑚 ∈ ∪ ran
measures ↦ (𝑓 ∈
{𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g‘𝑤)})(𝑚‘(◡𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg
(𝑥 ∈ (ran 𝑓 ∖
{(0g‘𝑤)})
↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(◡𝑓 “ {𝑥})))( ·𝑠
‘𝑤)𝑥))))) |
df-sitm 34296 | ⊢ sitm = (𝑤 ∈ V, 𝑚 ∈ ∪ ran
measures ↦ (𝑓 ∈
dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦
(((ℝ*𝑠 ↾s
(0[,]+∞))sitg𝑚)‘(𝑓 ∘f (dist‘𝑤)𝑔)))) |
df-itgm 34318 | ⊢ itgm = (𝑤 ∈ V, 𝑚 ∈ ∪ ran
measures ↦ (((metUnif‘(𝑤sitm𝑚))CnExt(UnifSt‘𝑤))‘(𝑤sitg𝑚))) |
csseq 34348 | class
seqstr |
df-sseq 34349 | ⊢ seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)}))))) |
cfib 34361 | class Fibci |
df-fib 34362 | ⊢ Fibci =
(〈“01”〉seqstr(𝑤 ∈ (Word ℕ0 ∩
(◡♯ “
(ℤ≥‘2))) ↦ ((𝑤‘((♯‘𝑤) − 2)) + (𝑤‘((♯‘𝑤) − 1))))) |
cprb 34372 | class Prob |
df-prob 34373 | ⊢ Prob = {𝑝 ∈ ∪ ran
measures ∣ (𝑝‘∪ dom 𝑝) = 1} |
ccprob 34396 | class cprob |
df-cndprob 34397 | ⊢ cprob = (𝑝 ∈ Prob ↦ (𝑎 ∈ dom 𝑝, 𝑏 ∈ dom 𝑝 ↦ ((𝑝‘(𝑎 ∩ 𝑏)) / (𝑝‘𝑏)))) |
crrv 34405 | class rRndVar |
df-rrv 34406 | ⊢ rRndVar = (𝑝 ∈ Prob ↦ (dom 𝑝MblFnM𝔅ℝ)) |
corvc 34420 | class
∘RV/𝑐𝑅 |
df-orvc 34421 | ⊢ ∘RV/𝑐𝑅 = (𝑥 ∈ {𝑥 ∣ Fun 𝑥}, 𝑎 ∈ V ↦ (◡𝑥 “ {𝑦 ∣ 𝑦𝑅𝑎})) |
crepr 34585 | class repr |
df-repr 34586 | ⊢ repr = (𝑠 ∈ ℕ0 ↦ (𝑏 ∈ 𝒫 ℕ, 𝑚 ∈ ℤ ↦ {𝑐 ∈ (𝑏 ↑m (0..^𝑠)) ∣ Σ𝑎 ∈ (0..^𝑠)(𝑐‘𝑎) = 𝑚})) |
cvts 34612 | class vts |
df-vts 34613 | ⊢ vts = (𝑙 ∈ (ℂ ↑m ℕ),
𝑛 ∈
ℕ0 ↦ (𝑥 ∈ ℂ ↦ Σ𝑎 ∈ (1...𝑛)((𝑙‘𝑎) · (exp‘((i · (2
· π)) · (𝑎
· 𝑥)))))) |
ax-hgt749 34621 | ⊢ ∀𝑛 ∈ {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} ((;10↑;27) ≤ 𝑛 → ∃ℎ ∈ ((0[,)+∞) ↑m
ℕ)∃𝑘 ∈
((0[,)+∞) ↑m ℕ)(∀𝑚 ∈ ℕ (𝑘‘𝑚) ≤ (1._0_7_9_9_55)
∧ ∀𝑚 ∈
ℕ (ℎ‘𝑚) ≤ (1._4_14)
∧ ((0._0_0_0_4_2_2_48)
· (𝑛↑2)) ≤
∫(0(,)1)(((((Λ ∘f · ℎ)vts𝑛)‘𝑥) · ((((Λ ∘f
· 𝑘)vts𝑛)‘𝑥)↑2)) · (exp‘((i ·
(2 · π)) · (-𝑛 · 𝑥)))) d𝑥)) |
ax-ros335 34622 | ⊢ ∀𝑥 ∈ ℝ+
(ψ‘𝑥) <
((1._0_3_8_83)
· 𝑥) |
ax-ros336 34623 | ⊢ ∀𝑥 ∈ ℝ+
((ψ‘𝑥) −
(θ‘𝑥)) <
((1._4_2_62)
· (√‘𝑥)) |
cstrkg2d 34641 | class
TarskiG2D |
df-trkg2d 34642 | ⊢ TarskiG2D = {𝑓 ∣ [(Base‘𝑓) / 𝑝][(dist‘𝑓) / 𝑑][(Itv‘𝑓) / 𝑖](∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ¬ (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ∀𝑥 ∈ 𝑝 ∀𝑦 ∈ 𝑝 ∀𝑧 ∈ 𝑝 ∀𝑢 ∈ 𝑝 ∀𝑣 ∈ 𝑝 ((((𝑥𝑑𝑢) = (𝑥𝑑𝑣) ∧ (𝑦𝑑𝑢) = (𝑦𝑑𝑣) ∧ (𝑧𝑑𝑢) = (𝑧𝑑𝑣)) ∧ 𝑢 ≠ 𝑣) → (𝑧 ∈ (𝑥𝑖𝑦) ∨ 𝑥 ∈ (𝑧𝑖𝑦) ∨ 𝑦 ∈ (𝑥𝑖𝑧))))} |
cafs 34646 | class AFS |
df-afs 34647 | ⊢ AFS = (𝑔 ∈ TarskiG ↦ {〈𝑒, 𝑓〉 ∣ [(Base‘𝑔) / 𝑝][(dist‘𝑔) / ℎ][(Itv‘𝑔) / 𝑖]∃𝑎 ∈ 𝑝 ∃𝑏 ∈ 𝑝 ∃𝑐 ∈ 𝑝 ∃𝑑 ∈ 𝑝 ∃𝑥 ∈ 𝑝 ∃𝑦 ∈ 𝑝 ∃𝑧 ∈ 𝑝 ∃𝑤 ∈ 𝑝 (𝑒 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑓 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 ∈ (𝑎𝑖𝑐) ∧ 𝑦 ∈ (𝑥𝑖𝑧)) ∧ ((𝑎ℎ𝑏) = (𝑥ℎ𝑦) ∧ (𝑏ℎ𝑐) = (𝑦ℎ𝑧)) ∧ ((𝑎ℎ𝑑) = (𝑥ℎ𝑤) ∧ (𝑏ℎ𝑑) = (𝑦ℎ𝑤))))}) |
clpad 34651 | class leftpad |
df-lpad 34652 | ⊢ leftpad = (𝑐 ∈ V, 𝑤 ∈ V ↦ (𝑙 ∈ ℕ0 ↦
(((0..^(𝑙 −
(♯‘𝑤))) ×
{𝑐}) ++ 𝑤))) |
w-bnj17 34662 | wff (𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) |
df-bnj17 34663 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃)) |
c-bnj14 34664 | class pred(𝑋, 𝐴, 𝑅) |
df-bnj14 34665 | ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} |
w-bnj13 34666 | wff 𝑅 Se 𝐴 |
df-bnj13 34667 | ⊢ (𝑅 Se 𝐴 ↔ ∀𝑥 ∈ 𝐴 pred(𝑥, 𝐴, 𝑅) ∈ V) |
w-bnj15 34668 | wff 𝑅 FrSe 𝐴 |
df-bnj15 34669 | ⊢ (𝑅 FrSe 𝐴 ↔ (𝑅 Fr 𝐴 ∧ 𝑅 Se 𝐴)) |
c-bnj18 34670 | class trCl(𝑋, 𝐴, 𝑅) |
df-bnj18 34671 | ⊢ trCl(𝑋, 𝐴, 𝑅) = ∪
𝑓 ∈ {𝑓 ∣ ∃𝑛 ∈ (ω ∖
{∅})(𝑓 Fn 𝑛 ∧ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅) ∧ ∀𝑖 ∈ ω (suc 𝑖 ∈ 𝑛 → (𝑓‘suc 𝑖) = ∪ 𝑦 ∈ (𝑓‘𝑖) pred(𝑦, 𝐴, 𝑅)))}∪
𝑖 ∈ dom 𝑓(𝑓‘𝑖) |
w-bnj19 34672 | wff TrFo(𝐵, 𝐴, 𝑅) |
df-bnj19 34673 | ⊢ ( TrFo(𝐵, 𝐴, 𝑅) ↔ ∀𝑥 ∈ 𝐵 pred(𝑥, 𝐴, 𝑅) ⊆ 𝐵) |
cacycgr 35110 | class AcyclicGraph |
df-acycgr 35111 | ⊢ AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} |
ax-7d 35127 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
ax-8d 35128 | ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) |
ax-9d1 35129 | ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑥 |
ax-9d2 35130 | ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 |
ax-10d 35131 | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
ax-11d 35132 | ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
cretr 35185 | class Retr |
df-retr 35186 | ⊢ Retr = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟 ∘ 𝑠)(𝑗 Htpy 𝑗)( I ↾ ∪
𝑗)) ≠
∅}) |
cpconn 35187 | class PConn |
csconn 35188 | class SConn |
df-pconn 35189 | ⊢ PConn = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} |
df-sconn 35190 | ⊢ SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}))} |
ccvm 35223 | class CovMap |
df-cvm 35224 | ⊢ CovMap = (𝑐 ∈ Top, 𝑗 ∈ Top ↦ {𝑓 ∈ (𝑐 Cn 𝑗) ∣ ∀𝑥 ∈ ∪ 𝑗∃𝑘 ∈ 𝑗 (𝑥 ∈ 𝑘 ∧ ∃𝑠 ∈ (𝒫 𝑐 ∖ {∅})(∪ 𝑠 =
(◡𝑓 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝑓 ↾ 𝑢) ∈ ((𝑐 ↾t 𝑢)Homeo(𝑗 ↾t 𝑘)))))}) |
cgoe 35301 | class
∈𝑔 |
cgna 35302 | class
⊼𝑔 |
cgol 35303 | class
∀𝑔𝑁𝑈 |
csat 35304 | class Sat |
cfmla 35305 | class Fmla |
csate 35306 | class
Sat∈ |
cprv 35307 | class ⊧ |
df-goel 35308 | ⊢ ∈𝑔 = (𝑥 ∈ (ω ×
ω) ↦ 〈∅, 𝑥〉) |
df-gona 35309 | ⊢ ⊼𝑔 = (𝑥 ∈ (V × V) ↦
〈1o, 𝑥〉) |
df-goal 35310 | ⊢ ∀𝑔𝑁𝑈 = 〈2o, 〈𝑁, 𝑈〉〉 |
df-sat 35311 | ⊢ Sat = (𝑚 ∈ V, 𝑒 ∈ V ↦ (rec((𝑓 ∈ V ↦ (𝑓 ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝑓 (∃𝑣 ∈ 𝑓 (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑚 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑m ω) ∣
∀𝑧 ∈ 𝑚 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})), {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑎 ∈ (𝑚 ↑m ω) ∣ (𝑎‘𝑖)𝑒(𝑎‘𝑗)})}) ↾ suc ω)) |
df-sate 35312 | ⊢ Sat∈ = (𝑚 ∈ V, 𝑢 ∈ V ↦ (((𝑚 Sat ( E ∩ (𝑚 × 𝑚)))‘ω)‘𝑢)) |
df-fmla 35313 | ⊢ Fmla = (𝑛 ∈ suc ω ↦ dom ((∅ Sat
∅)‘𝑛)) |
df-prv 35314 | ⊢ ⊧ = {〈𝑚, 𝑢〉 ∣ (𝑚 Sat∈ 𝑢) = (𝑚 ↑m
ω)} |
cgon 35400 | class ¬𝑔𝑈 |
cgoa 35401 | class
∧𝑔 |
cgoi 35402 | class
→𝑔 |
cgoo 35403 | class
∨𝑔 |
cgob 35404 | class
↔𝑔 |
cgoq 35405 | class
=𝑔 |
cgox 35406 | class ∃𝑔𝑁𝑈 |
df-gonot 35407 | ⊢ ¬𝑔𝑈 = (𝑈⊼𝑔𝑈) |
df-goan 35408 | ⊢ ∧𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦
¬𝑔(𝑢⊼𝑔𝑣)) |
df-goim 35409 | ⊢ →𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ (𝑢⊼𝑔¬𝑔𝑣)) |
df-goor 35410 | ⊢ ∨𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦
(¬𝑔𝑢
→𝑔 𝑣)) |
df-gobi 35411 | ⊢ ↔𝑔 = (𝑢 ∈ V, 𝑣 ∈ V ↦ ((𝑢 →𝑔 𝑣)∧𝑔(𝑣 →𝑔
𝑢))) |
df-goeq 35412 | ⊢ =𝑔 = (𝑢 ∈ ω, 𝑣 ∈ ω ↦ ⦋suc
(𝑢 ∪ 𝑣) / 𝑤⦌∀𝑔𝑤((𝑤∈𝑔𝑢) ↔𝑔 (𝑤∈𝑔𝑣))) |
df-goex 35413 | ⊢ ∃𝑔𝑁𝑈 =
¬𝑔∀𝑔𝑁¬𝑔𝑈 |
cgze 35414 | class AxExt |
cgzr 35415 | class AxRep |
cgzp 35416 | class AxPow |
cgzu 35417 | class AxUn |
cgzg 35418 | class AxReg |
cgzi 35419 | class AxInf |
cgzf 35420 | class ZF |
df-gzext 35421 | ⊢ AxExt =
(∀𝑔2o((2o∈𝑔∅)
↔𝑔 (2o∈𝑔1o))
→𝑔 (∅=𝑔1o)) |
df-gzrep 35422 | ⊢ AxRep = (𝑢 ∈ (Fmla‘ω) ↦
(∀𝑔3o∃𝑔1o∀𝑔2o(∀𝑔1o𝑢 →𝑔 (2o=𝑔1o)) →𝑔
∀𝑔1o∀𝑔2o((2o∈𝑔1o) ↔𝑔
∃𝑔3o((3o∈𝑔∅)∧𝑔∀𝑔1o𝑢)))) |
df-gzpow 35423 | ⊢ AxPow =
∃𝑔1o∀𝑔2o(∀𝑔1o((1o∈𝑔2o)
↔𝑔 (1o∈𝑔∅)) →𝑔 (2o∈𝑔1o)) |
df-gzun 35424 | ⊢ AxUn =
∃𝑔1o∀𝑔2o(∃𝑔1o((2o∈𝑔1o)∧𝑔(1o∈𝑔∅))
→𝑔 (2o∈𝑔1o)) |
df-gzreg 35425 | ⊢ AxReg =
(∃𝑔1o(1o∈𝑔∅)
→𝑔
∃𝑔1o((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o)
→𝑔 ¬𝑔(2o∈𝑔∅)))) |
df-gzinf 35426 | ⊢ AxInf =
∃𝑔1o((∅∈𝑔1o)∧𝑔∀𝑔2o((2o∈𝑔1o)
→𝑔 ∃𝑔∅((2o∈𝑔∅)∧𝑔(∅∈𝑔1o)))) |
df-gzf 35427 | ⊢ ZF =
{𝑚 ∣ ((Tr 𝑚 ∧ 𝑚⊧AxExt ∧ 𝑚⊧AxPow) ∧ (𝑚⊧AxUn ∧ 𝑚⊧AxReg ∧ 𝑚⊧AxInf) ∧ ∀𝑢 ∈
(Fmla‘ω)𝑚⊧(AxRep‘𝑢))} |
cmcn 35428 | class mCN |
cmvar 35429 | class mVR |
cmty 35430 | class mType |
cmvt 35431 | class mVT |
cmtc 35432 | class mTC |
cmax 35433 | class mAx |
cmrex 35434 | class mREx |
cmex 35435 | class mEx |
cmdv 35436 | class mDV |
cmvrs 35437 | class mVars |
cmrsub 35438 | class mRSubst |
cmsub 35439 | class mSubst |
cmvh 35440 | class mVH |
cmpst 35441 | class mPreSt |
cmsr 35442 | class mStRed |
cmsta 35443 | class mStat |
cmfs 35444 | class mFS |
cmcls 35445 | class mCls |
cmpps 35446 | class mPPSt |
cmthm 35447 | class mThm |
df-mcn 35448 | ⊢ mCN = Slot 1 |
df-mvar 35449 | ⊢ mVR = Slot 2 |
df-mty 35450 | ⊢ mType = Slot 3 |
df-mtc 35451 | ⊢ mTC = Slot 4 |
df-mmax 35452 | ⊢ mAx = Slot 5 |
df-mvt 35453 | ⊢ mVT = (𝑡 ∈ V ↦ ran (mType‘𝑡)) |
df-mrex 35454 | ⊢ mREx = (𝑡 ∈ V ↦ Word ((mCN‘𝑡) ∪ (mVR‘𝑡))) |
df-mex 35455 | ⊢ mEx = (𝑡 ∈ V ↦ ((mTC‘𝑡) × (mREx‘𝑡))) |
df-mdv 35456 | ⊢ mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I )) |
df-mvrs 35457 | ⊢ mVars = (𝑡 ∈ V ↦ (𝑒 ∈ (mEx‘𝑡) ↦ (ran (2nd ‘𝑒) ∩ (mVR‘𝑡)))) |
df-mrsub 35458 | ⊢ mRSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mREx‘𝑡) ↦ ((freeMnd‘((mCN‘𝑡) ∪ (mVR‘𝑡))) Σg
((𝑣 ∈
((mCN‘𝑡) ∪
(mVR‘𝑡)) ↦
if(𝑣 ∈ dom 𝑓, (𝑓‘𝑣), 〈“𝑣”〉)) ∘ 𝑒))))) |
df-msub 35459 | ⊢ mSubst = (𝑡 ∈ V ↦ (𝑓 ∈ ((mREx‘𝑡) ↑pm (mVR‘𝑡)) ↦ (𝑒 ∈ (mEx‘𝑡) ↦ 〈(1st ‘𝑒), (((mRSubst‘𝑡)‘𝑓)‘(2nd ‘𝑒))〉))) |
df-mvh 35460 | ⊢ mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ 〈((mType‘𝑡)‘𝑣), 〈“𝑣”〉〉)) |
df-mpst 35461 | ⊢ mPreSt = (𝑡 ∈ V ↦ (({𝑑 ∈ 𝒫 (mDV‘𝑡) ∣ ◡𝑑 = 𝑑} × (𝒫 (mEx‘𝑡) ∩ Fin)) ×
(mEx‘𝑡))) |
df-msr 35462 | ⊢ mStRed = (𝑡 ∈ V ↦ (𝑠 ∈ (mPreSt‘𝑡) ↦ ⦋(2nd
‘(1st ‘𝑠)) / ℎ⦌⦋(2nd
‘𝑠) / 𝑎⦌〈((1st
‘(1st ‘𝑠)) ∩ ⦋∪ ((mVars‘𝑡) “ (ℎ ∪ {𝑎})) / 𝑧⦌(𝑧 × 𝑧)), ℎ, 𝑎〉)) |
df-msta 35463 | ⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) |
df-mfs 35464 | ⊢ mFS = {𝑡 ∣ ((((mCN‘𝑡) ∩ (mVR‘𝑡)) = ∅ ∧ (mType‘𝑡):(mVR‘𝑡)⟶(mTC‘𝑡)) ∧ ((mAx‘𝑡) ⊆ (mStat‘𝑡) ∧ ∀𝑣 ∈ (mVT‘𝑡) ¬ (◡(mType‘𝑡) “ {𝑣}) ∈ Fin))} |
df-mcls 35465 | ⊢ mCls = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑐
∣ ((ℎ ∪ ran
(mVH‘𝑡)) ⊆
𝑐 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(((𝑠 “ (𝑜 ∪ ran (mVH‘𝑡))) ⊆ 𝑐 ∧ ∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑)) → (𝑠‘𝑝) ∈ 𝑐)))})) |
df-mpps 35466 | ⊢ mPPSt = (𝑡 ∈ V ↦ {〈〈𝑑, ℎ〉, 𝑎〉 ∣ (〈𝑑, ℎ, 𝑎〉 ∈ (mPreSt‘𝑡) ∧ 𝑎 ∈ (𝑑(mCls‘𝑡)ℎ))}) |
df-mthm 35467 | ⊢ mThm = (𝑡 ∈ V ↦ (◡(mStRed‘𝑡) “ ((mStRed‘𝑡) “ (mPPSt‘𝑡)))) |
cm0s 35553 | class m0St |
cmsa 35554 | class mSA |
cmwgfs 35555 | class mWGFS |
cmsy 35556 | class mSyn |
cmesy 35557 | class mESyn |
cmgfs 35558 | class mGFS |
cmtree 35559 | class mTree |
cmst 35560 | class mST |
cmsax 35561 | class mSAX |
cmufs 35562 | class mUFS |
df-m0s 35563 | ⊢ m0St = (𝑎 ∈ V ↦ 〈∅, ∅,
𝑎〉) |
df-msa 35564 | ⊢ mSA = (𝑡 ∈ V ↦ {𝑎 ∈ (mEx‘𝑡) ∣ ((m0St‘𝑎) ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡) ∧ Fun (◡(2nd ‘𝑎) ↾ (mVR‘𝑡)))}) |
df-mwgfs 35565 | ⊢ mWGFS = {𝑡 ∈ mFS ∣ ∀𝑑∀ℎ∀𝑎((〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) ∧ (1st ‘𝑎) ∈ (mVT‘𝑡)) → ∃𝑠 ∈ ran (mSubst‘𝑡)𝑎 ∈ (𝑠 “ (mSA‘𝑡)))} |
df-msyn 35566 | ⊢ mSyn = Slot 6 |
df-mesyn 35567 | ⊢ mESyn = (𝑡 ∈ V ↦ (𝑐 ∈ (mTC‘𝑡), 𝑒 ∈ (mREx‘𝑡) ↦ (((mSyn‘𝑡)‘𝑐)m0St𝑒))) |
df-mgfs 35568 | ⊢ mGFS = {𝑡 ∈ mWGFS ∣ ((mSyn‘𝑡):(mTC‘𝑡)⟶(mVT‘𝑡) ∧ ∀𝑐 ∈ (mVT‘𝑡)((mSyn‘𝑡)‘𝑐) = 𝑐 ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ∀𝑒 ∈ (ℎ ∪ {𝑎})((mESyn‘𝑡)‘𝑒) ∈ (mPPSt‘𝑡)))} |
df-mtree 35569 | ⊢ mTree = (𝑡 ∈ V ↦ (𝑑 ∈ 𝒫 (mDV‘𝑡), ℎ ∈ 𝒫 (mEx‘𝑡) ↦ ∩ {𝑟
∣ (∀𝑒 ∈
ran (mVH‘𝑡)𝑒𝑟〈(m0St‘𝑒), ∅〉 ∧ ∀𝑒 ∈ ℎ 𝑒𝑟〈((mStRed‘𝑡)‘〈𝑑, ℎ, 𝑒〉), ∅〉 ∧ ∀𝑚∀𝑜∀𝑝(〈𝑚, 𝑜, 𝑝〉 ∈ (mAx‘𝑡) → ∀𝑠 ∈ ran (mSubst‘𝑡)(∀𝑥∀𝑦(𝑥𝑚𝑦 → (((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑥))) × ((mVars‘𝑡)‘(𝑠‘((mVH‘𝑡)‘𝑦)))) ⊆ 𝑑) → ({(𝑠‘𝑝)} × X𝑒 ∈ (𝑜 ∪ ((mVH‘𝑡) “ ∪
((mVars‘𝑡) “
(𝑜 ∪ {𝑝}))))(𝑟 “ {(𝑠‘𝑒)})) ⊆ 𝑟)))})) |
df-mst 35570 | ⊢ mST = (𝑡 ∈ V ↦ ((∅(mTree‘𝑡)∅) ↾
((mEx‘𝑡) ↾
(mVT‘𝑡)))) |
df-msax 35571 | ⊢ mSAX = (𝑡 ∈ V ↦ (𝑝 ∈ (mSA‘𝑡) ↦ ((mVH‘𝑡) “ ((mVars‘𝑡)‘𝑝)))) |
df-mufs 35572 | ⊢ mUFS = {𝑡 ∈ mGFS ∣ Fun (mST‘𝑡)} |
cmuv 35573 | class mUV |
cmvl 35574 | class mVL |
cmvsb 35575 | class mVSubst |
cmfsh 35576 | class mFresh |
cmfr 35577 | class mFRel |
cmevl 35578 | class mEval |
cmdl 35579 | class mMdl |
cusyn 35580 | class mUSyn |
cgmdl 35581 | class mGMdl |
cmitp 35582 | class mItp |
cmfitp 35583 | class mFromItp |
df-muv 35584 | ⊢ mUV = Slot 7 |
df-mfsh 35585 | ⊢ mFresh = Slot ;19 |
df-mevl 35586 | ⊢ mEval = Slot ;20 |
df-mvl 35587 | ⊢ mVL = (𝑡 ∈ V ↦ X𝑣 ∈
(mVR‘𝑡)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑣)})) |
df-mvsb 35588 | ⊢ mVSubst = (𝑡 ∈ V ↦ {〈〈𝑠, 𝑚〉, 𝑥〉 ∣ ((𝑠 ∈ ran (mSubst‘𝑡) ∧ 𝑚 ∈ (mVL‘𝑡)) ∧ ∀𝑣 ∈ (mVR‘𝑡)𝑚dom (mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)) ∧ 𝑥 = (𝑣 ∈ (mVR‘𝑡) ↦ (𝑚(mEval‘𝑡)(𝑠‘((mVH‘𝑡)‘𝑣)))))}) |
df-mfrel 35589 | ⊢ mFRel = (𝑡 ∈ V ↦ {𝑟 ∈ 𝒫 ((mUV‘𝑡) × (mUV‘𝑡)) ∣ (◡𝑟 = 𝑟 ∧ ∀𝑐 ∈ (mVT‘𝑡)∀𝑤 ∈ (𝒫 (mUV‘𝑡) ∩ Fin)∃𝑣 ∈ ((mUV‘𝑡) “ {𝑐})𝑤 ⊆ (𝑟 “ {𝑣}))}) |
df-mdl 35590 | ⊢ mMdl = {𝑡 ∈ mFS ∣ [(mUV‘𝑡) / 𝑢][(mEx‘𝑡) / 𝑥][(mVL‘𝑡) / 𝑣][(mEval‘𝑡) / 𝑛][(mFresh‘𝑡) / 𝑓]((𝑢 ⊆ ((mTC‘𝑡) × V) ∧ 𝑓 ∈ (mFRel‘𝑡) ∧ 𝑛 ∈ (𝑢 ↑pm (𝑣 × (mEx‘𝑡)))) ∧ ∀𝑚 ∈ 𝑣 ((∀𝑒 ∈ 𝑥 (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑢 “ {(1st ‘𝑒)}) ∧ ∀𝑦 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑦)〉𝑛(𝑚‘𝑦) ∧ ∀𝑑∀ℎ∀𝑎(〈𝑑, ℎ, 𝑎〉 ∈ (mAx‘𝑡) → ((∀𝑦∀𝑧(𝑦𝑑𝑧 → (𝑚‘𝑦)𝑓(𝑚‘𝑧)) ∧ ℎ ⊆ (dom 𝑛 “ {𝑚})) → 𝑚dom 𝑛 𝑎))) ∧ (∀𝑠 ∈ ran (mSubst‘𝑡)∀𝑒 ∈ (mEx‘𝑡)∀𝑦(〈𝑠, 𝑚〉(mVSubst‘𝑡)𝑦 → (𝑛 “ {〈𝑚, (𝑠‘𝑒)〉}) = (𝑛 “ {〈𝑦, 𝑒〉})) ∧ ∀𝑝 ∈ 𝑣 ∀𝑒 ∈ 𝑥 ((𝑚 ↾ ((mVars‘𝑡)‘𝑒)) = (𝑝 ↾ ((mVars‘𝑡)‘𝑒)) → (𝑛 “ {〈𝑚, 𝑒〉}) = (𝑛 “ {〈𝑝, 𝑒〉})) ∧ ∀𝑦 ∈ 𝑢 ∀𝑒 ∈ 𝑥 ((𝑚 “ ((mVars‘𝑡)‘𝑒)) ⊆ (𝑓 “ {𝑦}) → (𝑛 “ {〈𝑚, 𝑒〉}) ⊆ (𝑓 “ {𝑦})))))} |
df-musyn 35591 | ⊢ mUSyn = (𝑡 ∈ V ↦ (𝑣 ∈ (mUV‘𝑡) ↦ 〈((mSyn‘𝑡)‘(1st
‘𝑣)), (2nd
‘𝑣)〉)) |
df-gmdl 35592 | ⊢ mGMdl = {𝑡 ∈ (mGFS ∩ mMdl) ∣
(∀𝑐 ∈
(mTC‘𝑡)((mUV‘𝑡) “ {𝑐}) ⊆ ((mUV‘𝑡) “ {((mSyn‘𝑡)‘𝑐)}) ∧ ∀𝑣 ∈ (mUV‘𝑐)∀𝑤 ∈ (mUV‘𝑐)(𝑣(mFresh‘𝑡)𝑤 ↔ 𝑣(mFresh‘𝑡)((mUSyn‘𝑡)‘𝑤)) ∧ ∀𝑚 ∈ (mVL‘𝑡)∀𝑒 ∈ (mEx‘𝑡)((mEval‘𝑡) “ {〈𝑚, 𝑒〉}) = (((mEval‘𝑡) “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})))} |
df-mitp 35593 | ⊢ mItp = (𝑡 ∈ V ↦ (𝑎 ∈ (mSA‘𝑡) ↦ (𝑔 ∈ X𝑖 ∈ ((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)}) ↦ (℩𝑥∃𝑚 ∈ (mVL‘𝑡)(𝑔 = (𝑚 ↾ ((mVars‘𝑡)‘𝑎)) ∧ 𝑥 = (𝑚(mEval‘𝑡)𝑎)))))) |
df-mfitp 35594 | ⊢ mFromItp = (𝑡 ∈ V ↦ (𝑓 ∈ X𝑎 ∈ (mSA‘𝑡)(((mUV‘𝑡) “ {((1st ‘𝑡)‘𝑎)}) ↑m X𝑖 ∈
((mVars‘𝑡)‘𝑎)((mUV‘𝑡) “ {((mType‘𝑡)‘𝑖)})) ↦ (℩𝑛 ∈ ((mUV‘𝑡) ↑pm
((mVL‘𝑡) ×
(mEx‘𝑡)))∀𝑚 ∈ (mVL‘𝑡)(∀𝑣 ∈ (mVR‘𝑡)〈𝑚, ((mVH‘𝑡)‘𝑣)〉𝑛(𝑚‘𝑣) ∧ ∀𝑒∀𝑎∀𝑔(𝑒(mST‘𝑡)〈𝑎, 𝑔〉 → 〈𝑚, 𝑒〉𝑛(𝑓‘(𝑖 ∈ ((mVars‘𝑡)‘𝑎) ↦ (𝑚𝑛(𝑔‘((mVH‘𝑡)‘𝑖)))))) ∧ ∀𝑒 ∈ (mEx‘𝑡)(𝑛 “ {〈𝑚, 𝑒〉}) = ((𝑛 “ {〈𝑚, ((mESyn‘𝑡)‘𝑒)〉}) ∩ ((mUV‘𝑡) “ {(1st
‘𝑒)})))))) |
ccpms 35595 | class cplMetSp |
chlb 35596 | class HomLimB |
chlim 35597 | class HomLim |
cpfl 35598 | class polyFld |
csf1 35599 | class
splitFld1 |
csf 35600 | class splitFld |
cpsl 35601 | class polySplitLim |
df-cplmet 35602 | ⊢ cplMetSp = (𝑤 ∈ V ↦ ⦋((𝑤 ↑s
ℕ) ↾s (Cau‘(dist‘𝑤))) / 𝑟⦌⦋(Base‘𝑟) / 𝑣⦌⦋{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℤ (𝑓 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶((𝑔‘𝑗)(ball‘(dist‘𝑤))𝑥))} / 𝑒⦌((𝑟 /s 𝑒) sSet {〈(dist‘ndx),
{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ∃𝑝 ∈ 𝑣 ∃𝑞 ∈ 𝑣 ((𝑥 = [𝑝]𝑒 ∧ 𝑦 = [𝑞]𝑒) ∧ (𝑝 ∘f (dist‘𝑟)𝑞) ⇝ 𝑧)}〉})) |
df-homlimb 35603 | ⊢ HomLimB = (𝑓 ∈ V ↦ ⦋∪ 𝑛 ∈ ℕ ({𝑛} × dom (𝑓‘𝑛)) / 𝑣⦌⦋∩ {𝑠
∣ (𝑠 Er 𝑣 ∧ (𝑥 ∈ 𝑣 ↦ 〈((1st ‘𝑥) + 1), ((𝑓‘(1st ‘𝑥))‘(2nd
‘𝑥))〉) ⊆
𝑠)} / 𝑒⦌〈(𝑣 / 𝑒), (𝑛 ∈ ℕ ↦ (𝑥 ∈ dom (𝑓‘𝑛) ↦ [〈𝑛, 𝑥〉]𝑒))〉) |
df-homlim 35604 | ⊢ HomLim = (𝑟 ∈ V, 𝑓 ∈ V ↦ ⦋( HomLimB
‘𝑓) / 𝑒⦌⦋(1st
‘𝑒) / 𝑣⦌⦋(2nd
‘𝑒) / 𝑔⦌({〈(Base‘ndx),
𝑣〉,
〈(+g‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(+g‘(𝑟‘𝑛))𝑦))〉)〉,
〈(.r‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom (𝑔‘𝑛), 𝑦 ∈ dom (𝑔‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, ((𝑔‘𝑛)‘(𝑥(.r‘(𝑟‘𝑛))𝑦))〉)〉} ∪
{〈(TopOpen‘ndx), {𝑠 ∈ 𝒫 𝑣 ∣ ∀𝑛 ∈ ℕ (◡(𝑔‘𝑛) “ 𝑠) ∈ (TopOpen‘(𝑟‘𝑛))}〉, 〈(dist‘ndx), ∪ 𝑛 ∈ ℕ ran (𝑥 ∈ dom ((𝑔‘𝑛)‘𝑛), 𝑦 ∈ dom ((𝑔‘𝑛)‘𝑛) ↦ 〈〈((𝑔‘𝑛)‘𝑥), ((𝑔‘𝑛)‘𝑦)〉, (𝑥(dist‘(𝑟‘𝑛))𝑦)〉)〉, 〈(le‘ndx),
∪ 𝑛 ∈ ℕ (◡(𝑔‘𝑛) ∘ ((le‘(𝑟‘𝑛)) ∘ (𝑔‘𝑛)))〉})) |
df-plfl 35605 | ⊢ polyFld = (𝑟 ∈ V, 𝑝 ∈ V ↦
⦋(Poly1‘𝑟) / 𝑠⦌⦋((RSpan‘𝑠)‘{𝑝}) / 𝑖⦌⦋(𝑐 ∈ (Base‘𝑟) ↦ [(𝑐( ·𝑠
‘𝑠)(1r‘𝑠))](𝑠 ~QG 𝑖)) / 𝑓⦌〈⦋(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡⦌((𝑡 toNrmGrp (℩𝑛 ∈ (AbsVal‘𝑡)(𝑛 ∘ 𝑓) = (norm‘𝑟))) sSet 〈(le‘ndx),
⦋(𝑧 ∈
(Base‘𝑡) ↦
(℩𝑞 ∈ 𝑧 (𝑞(rem1p‘𝑟)𝑝) = 𝑞)) / 𝑔⦌(◡𝑔 ∘ ((le‘𝑠) ∘ 𝑔))〉), 𝑓〉) |
df-sfl1 35612 | ⊢ splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1‘𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦
⦋(Poly1‘𝑠) / 𝑚⦌⦋{𝑔 ∈
((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st
‘𝑡), (𝑓 ∘ (2nd
‘𝑡))〉)), 𝑗)‘(card‘(1...(𝑟deg1𝑝)))))) |
df-sfl 35613 | ⊢ splitFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (℩𝑥∃𝑓(𝑓 Isom < , (lt‘𝑟)((1...(♯‘𝑝)), 𝑝) ∧ 𝑥 = (seq0((𝑒 ∈ V, 𝑔 ∈ V ↦ ((𝑟 splitFld1 𝑒)‘𝑔)), (𝑓 ∪ {〈0, 〈𝑟, ( I ↾ (Base‘𝑟))〉〉}))‘(♯‘𝑝))))) |
df-psl 35614 | ⊢ polySplitLim = (𝑟 ∈ V, 𝑝 ∈ ((𝒫 (Base‘𝑟) ∩ Fin) ↑m
ℕ) ↦ ⦋(1st ∘ seq0((𝑔 ∈ V, 𝑞 ∈ V ↦
⦋(1st ‘𝑔) / 𝑒⦌⦋(1st
‘𝑒) / 𝑠⦌⦋(𝑠 splitFld ran (𝑥 ∈ 𝑞 ↦ (𝑥 ∘ (2nd ‘𝑔)))) / 𝑓⦌〈𝑓, ((2nd ‘𝑔) ∘ (2nd ‘𝑓))〉), (𝑝 ∪ {〈0, 〈〈𝑟, ∅〉, ( I ↾
(Base‘𝑟))〉〉}))) / 𝑓⦌((1st ∘
(𝑓 shift 1)) HomLim
(2nd ∘ 𝑓))) |
czr 35615 | class ZRing |
cgf 35616 | class GF |
cgfo 35617 | class
GF∞ |
ceqp 35618 | class ~Qp |
crqp 35619 | class /Qp |
cqp 35620 | class Qp |
czp 35621 | class Zp |
cqpa 35622 | class _Qp |
ccp 35623 | class Cp |
df-zrng 35624 | ⊢ ZRing = (𝑟 ∈ V ↦ (𝑟 IntgRing ran (ℤRHom‘𝑟))) |
df-gf 35625 | ⊢ GF = (𝑝 ∈ ℙ, 𝑛 ∈ ℕ ↦
⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(1st ‘(𝑟 splitFld
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) |
df-gfoo 35626 | ⊢ GF∞ = (𝑝 ∈ ℙ ↦
⦋(ℤ/nℤ‘𝑝) / 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦
{⦋(Poly1‘𝑟) / 𝑠⦌⦋(var1‘𝑟) / 𝑥⦌(((𝑝↑𝑛)(.g‘(mulGrp‘𝑠))𝑥)(-g‘𝑠)𝑥)}))) |
df-eqp 35627 | ⊢ ~Qp = (𝑝 ∈ ℙ ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (ℤ ↑m
ℤ) ∧ ∀𝑛
∈ ℤ Σ𝑘
∈ (ℤ≥‘-𝑛)(((𝑓‘-𝑘) − (𝑔‘-𝑘)) / (𝑝↑(𝑘 + (𝑛 + 1)))) ∈ ℤ)}) |
df-rqp 35628 | ⊢ /Qp = (𝑝 ∈ ℙ ↦ (~Qp ∩
⦋{𝑓 ∈
(ℤ ↑m ℤ) ∣ ∃𝑥 ∈ ran ℤ≥(◡𝑓 “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑦⦌(𝑦 × (𝑦 ∩ (ℤ ↑m
(0...(𝑝 −
1))))))) |
df-qp 35629 | ⊢ Qp = (𝑝 ∈ ℙ ↦ ⦋{ℎ ∈ (ℤ
↑m (0...(𝑝
− 1))) ∣ ∃𝑥 ∈ ran ℤ≥(◡ℎ “ (ℤ ∖ {0})) ⊆ 𝑥} / 𝑏⦌(({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑓 ∘f + 𝑔)))〉, 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ ((/Qp‘𝑝)‘(𝑛 ∈ ℤ ↦ Σ𝑘 ∈ ℤ ((𝑓‘𝑘) · (𝑔‘(𝑛 − 𝑘))))))〉} ∪ {〈(le‘ndx),
{〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑏 ∧ Σ𝑘 ∈ ℤ ((𝑓‘-𝑘) · ((𝑝 + 1)↑-𝑘)) < Σ𝑘 ∈ ℤ ((𝑔‘-𝑘) · ((𝑝 + 1)↑-𝑘)))}〉}) toNrmGrp (𝑓 ∈ 𝑏 ↦ if(𝑓 = (ℤ × {0}), 0, (𝑝↑-inf((◡𝑓 “ (ℤ ∖ {0})), ℝ,
< )))))) |
df-zp 35630 | ⊢ Zp = (ZRing ∘
Qp) |
df-qpa 35631 | ⊢ _Qp = (𝑝 ∈ ℙ ↦
⦋(Qp‘𝑝)
/ 𝑟⦌(𝑟 polySplitLim (𝑛 ∈ ℕ ↦ {𝑓 ∈
(Poly1‘𝑟)
∣ ((𝑟deg1𝑓) ≤ 𝑛 ∧ ∀𝑑 ∈ ran (coe1‘𝑓)(◡𝑑 “ (ℤ ∖ {0})) ⊆
(0...𝑛))}))) |
df-cp 35632 | ⊢ Cp = ( cplMetSp ∘
_Qp) |
ccloneop 35657 | class CloneOp |
df-cloneop 35658 | ⊢ CloneOp = (𝑎 ∈ V ↦ {𝑥 ∣ ∃𝑛 ∈ (ω ∖ 1o)𝑥 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛))}) |
cprj 35659 | class prj |
df-prj 35660 | ⊢ prj = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o),
𝑖 ∈ 𝑛 ↦ (𝑥 ∈ (𝑎 ↑m 𝑛) ↦ (𝑥‘𝑖)))) |
csuppos 35661 | class suppos |
df-suppos 35662 | ⊢ suppos = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o),
𝑚 ∈ (ω ∖
1o) ↦ (𝑓
∈ (𝑎
↑m (𝑎
↑m 𝑛)),
𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))))))) |
cwsuc 35774 | class wsuc(𝑅, 𝐴, 𝑋) |
cwlim 35775 | class WLim(𝑅, 𝐴) |
df-wsuc 35776 | ⊢ wsuc(𝑅, 𝐴, 𝑋) = inf(Pred(◡𝑅, 𝐴, 𝑋), 𝐴, 𝑅) |
df-wlim 35777 | ⊢ WLim(𝑅, 𝐴) = {𝑥 ∈ 𝐴 ∣ (𝑥 ≠ inf(𝐴, 𝐴, 𝑅) ∧ 𝑥 = sup(Pred(𝑅, 𝐴, 𝑥), 𝐴, 𝑅))} |
ctxp 35794 | class (𝐴 ⊗ 𝐵) |
cpprod 35795 | class pprod(𝑅, 𝑆) |
csset 35796 | class SSet
|
ctrans 35797 | class Trans
|
cbigcup 35798 | class Bigcup
|
cfix 35799 | class Fix
𝐴 |
climits 35800 | class Limits
|
cfuns 35801 | class Funs
|
csingle 35802 | class Singleton |
csingles 35803 | class
Singletons |
cimage 35804 | class Image𝐴 |
ccart 35805 | class Cart |
cimg 35806 | class Img |
cdomain 35807 | class Domain |
crange 35808 | class Range |
capply 35809 | class Apply |
ccup 35810 | class Cup |
ccap 35811 | class Cap |
csuccf 35812 | class Succ |
cfunpart 35813 | class Funpart𝐹 |
cfullfn 35814 | class FullFun𝐹 |
crestrict 35815 | class Restrict |
cub 35816 | class UB𝑅 |
clb 35817 | class LB𝑅 |
df-txp 35818 | ⊢ (𝐴 ⊗ 𝐵) = ((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵)) |
df-pprod 35819 | ⊢ pprod(𝐴, 𝐵) = ((𝐴 ∘ (1st ↾ (V ×
V))) ⊗ (𝐵 ∘
(2nd ↾ (V × V)))) |
df-sset 35820 | ⊢ SSet = ((V
× V) ∖ ran ( E ⊗ (V ∖ E ))) |
df-trans 35821 | ⊢ Trans = (V
∖ ran (( E ∘ E ) ∖ E )) |
df-bigcup 35822 | ⊢ Bigcup = ((V
× V) ∖ ran ((V ⊗ E ) △ (( E ∘ E ) ⊗
V))) |
df-fix 35823 | ⊢ Fix 𝐴 = dom (𝐴 ∩ I ) |
df-limits 35824 | ⊢ Limits = ((On
∩ Fix Bigcup )
∖ {∅}) |
df-funs 35825 | ⊢ Funs =
(𝒫 (V × V) ∖ Fix ( E ∘
((1st ⊗ ((V ∖ I ) ∘ 2nd )) ∘
◡ E ))) |
df-singleton 35826 | ⊢ Singleton = ((V × V) ∖ ran ((V
⊗ E ) △ ( I ⊗ V))) |
df-singles 35827 | ⊢ Singletons =
ran Singleton |
df-image 35828 | ⊢ Image𝐴 = ((V × V) ∖ ran ((V ⊗ E
) △ (( E ∘ ◡𝐴) ⊗ V))) |
df-cart 35829 | ⊢ Cart = (((V × V) × V) ∖ ran
((V ⊗ E ) △ (pprod( E , E ) ⊗ V))) |
df-img 35830 | ⊢ Img = (Image((2nd ∘
1st ) ↾ (1st ↾ (V × V))) ∘
Cart) |
df-domain 35831 | ⊢ Domain = Image(1st ↾ (V
× V)) |
df-range 35832 | ⊢ Range = Image(2nd ↾ (V
× V)) |
df-cup 35833 | ⊢ Cup = (((V × V) × V) ∖ ran
((V ⊗ E ) △ (((◡1st ∘ E ) ∪ (◡2nd ∘ E )) ⊗
V))) |
df-cap 35834 | ⊢ Cap = (((V × V) × V) ∖ ran
((V ⊗ E ) △ (((◡1st ∘ E ) ∩ (◡2nd ∘ E )) ⊗
V))) |
df-restrict 35835 | ⊢ Restrict = (Cap ∘ (1st
⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st
))))) |
df-succf 35836 | ⊢ Succ = (Cup ∘ ( I ⊗
Singleton)) |
df-apply 35837 | ⊢ Apply = (( Bigcup
∘ Bigcup ) ∘ (((V × V)
∖ ran ((V ⊗ E ) △ (( E ↾
Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘
pprod( I , Singleton)))) |
df-funpart 35838 | ⊢ Funpart𝐹 = (𝐹 ↾ dom ((Image𝐹 ∘ Singleton) ∩ (V × Singletons ))) |
df-fullfun 35839 | ⊢ FullFun𝐹 = (Funpart𝐹 ∪ ((V ∖ dom Funpart𝐹) ×
{∅})) |
df-ub 35840 | ⊢ UB𝑅 = ((V × V) ∖ ((V ∖ 𝑅) ∘ ◡ E )) |
df-lb 35841 | ⊢ LB𝑅 = UB◡𝑅 |
caltop 35920 | class ⟪𝐴, 𝐵⟫ |
caltxp 35921 | class (𝐴 ×× 𝐵) |
df-altop 35922 | ⊢ ⟪𝐴, 𝐵⟫ = {{𝐴}, {𝐴, {𝐵}}} |
df-altxp 35923 | ⊢ (𝐴 ×× 𝐵) = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟪𝑥, 𝑦⟫} |
cofs 35946 | class OuterFiveSeg |
df-ofs 35947 | ⊢ OuterFiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 Btwn 〈𝑎, 𝑐〉 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉) ∧ (〈𝑎, 𝑏〉Cgr〈𝑥, 𝑦〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑦, 𝑧〉) ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} |
ctransport 35993 | class TransportTo |
df-transport 35994 | ⊢ TransportTo = {〈〈𝑝, 𝑞〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd
‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st
‘𝑞), 𝑟〉 ∧
〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))} |
cifs 35999 | class InnerFiveSeg |
ccgr3 36000 | class Cgr3 |
ccolin 36001 | class Colinear |
cfs 36002 | class FiveSeg |
df-colinear 36003 | ⊢ Colinear = ◡{〈〈𝑏, 𝑐〉, 𝑎〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉))} |
df-ifs 36004 | ⊢ InnerFiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 Btwn 〈𝑎, 𝑐〉 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉) ∧ (〈𝑎, 𝑐〉Cgr〈𝑥, 𝑧〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑦, 𝑧〉) ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑐, 𝑑〉Cgr〈𝑧, 𝑤〉)))} |
df-cgr3 36005 | ⊢ Cgr3 = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = 〈𝑎, 〈𝑏, 𝑐〉〉 ∧ 𝑞 = 〈𝑑, 〈𝑒, 𝑓〉〉 ∧ (〈𝑎, 𝑏〉Cgr〈𝑑, 𝑒〉 ∧ 〈𝑎, 𝑐〉Cgr〈𝑑, 𝑓〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑒, 𝑓〉))} |
df-fs 36006 | ⊢ FiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} |
csegle 36070 | class
Seg≤ |
df-segle 36071 | ⊢ Seg≤ = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝑞 = 〈𝑐, 𝑑〉 ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn 〈𝑐, 𝑑〉 ∧ 〈𝑎, 𝑏〉Cgr〈𝑐, 𝑦〉))} |
coutsideof 36083 | class OutsideOf |
df-outsideof 36084 | ⊢ OutsideOf = ( Colinear ∖ Btwn
) |
cline2 36098 | class Line |
cray 36099 | class Ray |
clines2 36100 | class LinesEE |
df-line2 36101 | ⊢ Line = {〈〈𝑎, 𝑏〉, 𝑙〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑎 ≠ 𝑏) ∧ 𝑙 = [〈𝑎, 𝑏〉]◡ Colinear )} |
df-ray 36102 | ⊢ Ray = {〈〈𝑝, 𝑎〉, 𝑟〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ (𝔼‘𝑛) ∧ 𝑎 ∈ (𝔼‘𝑛) ∧ 𝑝 ≠ 𝑎) ∧ 𝑟 = {𝑥 ∈ (𝔼‘𝑛) ∣ 𝑝OutsideOf〈𝑎, 𝑥〉})} |
df-lines2 36103 | ⊢ LinesEE = ran Line |
cfwddif 36122 | class △ |
df-fwddif 36123 | ⊢ △ = (𝑓 ∈ (ℂ ↑pm ℂ)
↦ (𝑥 ∈ {𝑦 ∈ dom 𝑓 ∣ (𝑦 + 1) ∈ dom 𝑓} ↦ ((𝑓‘(𝑥 + 1)) − (𝑓‘𝑥)))) |
cfwddifn 36124 | class
△n |
df-fwddifn 36125 | ⊢ △n = (𝑛 ∈ ℕ0, 𝑓 ∈ (ℂ
↑pm ℂ) ↦ (𝑥 ∈ {𝑦 ∈ ℂ ∣ ∀𝑘 ∈ (0...𝑛)(𝑦 + 𝑘) ∈ dom 𝑓} ↦ Σ𝑘 ∈ (0...𝑛)((𝑛C𝑘) · ((-1↑(𝑛 − 𝑘)) · (𝑓‘(𝑥 + 𝑘)))))) |
chf 36136 | class Hf |
df-hf 36137 | ⊢ Hf = ∪ (𝑅1 “ ω) |
cfne 36302 | class Fne |
df-fne 36303 | ⊢ Fne = {〈𝑥, 𝑦〉 ∣ (∪
𝑥 = ∪ 𝑦
∧ ∀𝑧 ∈
𝑥 𝑧 ⊆ ∪ (𝑦 ∩ 𝒫 𝑧))} |
w3nand 36363 | wff (𝜑 ⊼ 𝜓 ⊼ 𝜒) |
df-3nand 36364 | ⊢ ((𝜑 ⊼ 𝜓 ⊼ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) |
cgcdOLD 36425 | class gcdOLD (𝐴, 𝐵) |
df-gcdOLD 36426 | ⊢ gcdOLD (𝐴, 𝐵) = sup({𝑥 ∈ ℕ ∣ ((𝐴 / 𝑥) ∈ ℕ ∧ (𝐵 / 𝑥) ∈ ℕ)}, ℕ, <
) |
cprvb 36563 | wff Prv 𝜑 |
ax-prv1 36564 | ⊢ 𝜑 ⇒ ⊢ Prv 𝜑 |
ax-prv2 36565 | ⊢ (Prv (𝜑 → 𝜓) → (Prv 𝜑 → Prv 𝜓)) |
ax-prv3 36566 | ⊢ (Prv 𝜑 → Prv Prv 𝜑) |
wmoo 36617 | wff ∃**𝑥𝜑 |
df-bj-mo 36618 | ⊢ (∃**𝑥𝜑 ↔ ∀𝑧∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
wnnf 36689 | wff Ⅎ'𝑥𝜑 |
df-bj-nnf 36690 | ⊢ (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑))) |
bj-cgab 36899 | class {𝐴 ∣ 𝑥 ∣ 𝜑} |
df-bj-gab 36900 | ⊢ {𝐴 ∣ 𝑥 ∣ 𝜑} = {𝑦 ∣ ∃𝑥(𝐴 = 𝑦 ∧ 𝜑)} |
wrnf 36907 | wff Ⅎ𝑥 ∈ 𝐴𝜑 |
df-bj-rnf 36908 | ⊢ (Ⅎ𝑥 ∈ 𝐴𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 𝜑)) |
bj-csngl 36931 | class sngl 𝐴 |
df-bj-sngl 36932 | ⊢ sngl 𝐴 = {𝑥 ∣ ∃𝑦 ∈ 𝐴 𝑥 = {𝑦}} |
bj-ctag 36940 | class tag 𝐴 |
df-bj-tag 36941 | ⊢ tag 𝐴 = (sngl 𝐴 ∪ {∅}) |
bj-cproj 36956 | class (𝐴 Proj 𝐵) |
df-bj-proj 36957 | ⊢ (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} |
bj-c1upl 36963 | class ⦅𝐴⦆ |
df-bj-1upl 36964 | ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) |
bj-cpr1 36966 | class pr1 𝐴 |
df-bj-pr1 36967 | ⊢ pr1 𝐴 = (∅ Proj 𝐴) |
bj-c2uple 36976 | class ⦅𝐴, 𝐵⦆ |
df-bj-2upl 36977 | ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1o} × tag
𝐵)) |
bj-cpr2 36980 | class pr2 𝐴 |
df-bj-pr2 36981 | ⊢ pr2 𝐴 = (1o Proj 𝐴) |
ax-bj-sn 36999 | ⊢ ∀𝑥∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 = 𝑥) |
ax-bj-bun 37003 | ⊢ ∀𝑥∀𝑦∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 ∈ 𝑦)) |
ax-bj-adj 37008 | ⊢ ∀𝑥∀𝑦∃𝑧∀𝑡(𝑡 ∈ 𝑧 ↔ (𝑡 ∈ 𝑥 ∨ 𝑡 = 𝑦)) |
celwise 37045 | class elwise |
df-elwise 37046 | ⊢ elwise = (𝑜 ∈ V ↦ (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑧 ∣ ∃𝑢 ∈ 𝑥 ∃𝑣 ∈ 𝑦 𝑧 = (𝑢𝑜𝑣)})) |
cmoore 37069 | class Moore |
df-bj-moore 37070 | ⊢ Moore = {𝑥 ∣ ∀𝑦 ∈ 𝒫 𝑥(∪ 𝑥 ∩ ∩ 𝑦)
∈ 𝑥} |
cmpt3 37086 | class (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶 ↦ 𝐷) |
df-bj-mpt3 37087 | ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, 𝑧 ∈ 𝐶 ↦ 𝐷) = {〈𝑠, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ∃𝑧 ∈ 𝐶 (𝑠 = 〈𝑥, 𝑦, 𝑧〉 ∧ 𝑡 = 𝐷)} |
csethom 37088 | class Set⟶ |
df-bj-sethom 37089 | ⊢ Set⟶ = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑥⟶𝑦}) |
ctophom 37090 | class Top⟶ |
df-bj-tophom 37091 | ⊢ Top⟶ = (𝑥 ∈ TopSp, 𝑦 ∈ TopSp ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (TopOpen‘𝑦)(◡𝑓 “ 𝑢) ∈ (TopOpen‘𝑥)}) |
cmgmhom 37092 | class Mgm⟶ |
df-bj-mgmhom 37093 | ⊢ Mgm⟶ = (𝑥 ∈ Mgm, 𝑦 ∈ Mgm ↦ {𝑓 ∈ ((Base‘𝑥) Set⟶ (Base‘𝑦)) ∣ ∀𝑢 ∈ (Base‘𝑥)∀𝑣 ∈ (Base‘𝑥)(𝑓‘(𝑢(+g‘𝑥)𝑣)) = ((𝑓‘𝑢)(+g‘𝑦)(𝑓‘𝑣))}) |
ctopmgmhom 37094 | class TopMgm⟶ |
df-bj-topmgmhom 37095 | ⊢ TopMgm⟶ = (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦))) |
ccur- 37096 | class curry_ |
df-bj-cur 37097 | ⊢ curry_ = (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ ((𝑥 × 𝑦) Set⟶ 𝑧) ↦ (𝑎 ∈ 𝑥 ↦ (𝑏 ∈ 𝑦 ↦ (𝑓‘〈𝑎, 𝑏〉))))) |
cunc- 37098 | class uncurry_ |
df-bj-unc 37099 | ⊢ uncurry_ = (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ (𝑥 Set⟶ (𝑦 Set⟶ 𝑧)) ↦ (𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 ↦ ((𝑓‘𝑎)‘𝑏)))) |
cstrset 37100 | class [𝐵 / 𝐴]struct𝑆 |
df-strset 37101 | ⊢ [𝐵 / 𝐴]struct𝑆 = ((𝑆 ↾ (V ∖ {(𝐴‘ndx)})) ∪ {〈(𝐴‘ndx), 𝐵〉}) |
cdiag2 37138 | class Id |
df-bj-diag 37139 | ⊢ Id = (𝑥 ∈ V ↦ ( I ↾ 𝑥)) |
cimdir 37144 | class
𝒫* |
df-imdir 37145 | ⊢ 𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ (𝑟 “ 𝑥) = 𝑦)})) |
ciminv 37157 | class
𝒫* |
df-iminv 37158 | ⊢ 𝒫* = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑟 ∈ 𝒫 (𝑎 × 𝑏) ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ⊆ 𝑎 ∧ 𝑦 ⊆ 𝑏) ∧ 𝑥 = (◡𝑟 “ 𝑦))})) |
cfractemp 37162 | class
{R |
df-bj-fractemp 37163 | ⊢ {R = (𝑥 ∈ R ↦
(℩𝑦 ∈
R ((𝑦 =
0R ∨ (0R
<R 𝑦 ∧ 𝑦 <R
1R)) ∧ ∃𝑛 ∈ ω ([〈{𝑧 ∈ Q ∣ 𝑧 <Q
〈suc 𝑛,
1o〉}, 1P〉]
~R +R 𝑦) = 𝑥))) |
cinftyexpitau 37164 | class
+∞eiτ |
df-bj-inftyexpitau 37165 | ⊢ +∞eiτ = (𝑥 ∈ ℝ ↦
〈({R‘(1st ‘𝑥)),
{R}〉) |
cccinftyN 37166 | class
ℂ∞N |
df-bj-ccinftyN 37167 | ⊢ ℂ∞N = ran
+∞eiτ |
chalf 37169 | class 1/2 |
df-bj-onehalf 37170 | ⊢ 1/2 = (℩𝑥 ∈ R (𝑥 +R 𝑥) =
1R) |
cinftyexpi 37172 | class
+∞ei |
df-bj-inftyexpi 37173 | ⊢ +∞ei = (𝑥 ∈ (-π(,]π) ↦ 〈𝑥,
ℂ〉) |
cccinfty 37177 | class
ℂ∞ |
df-bj-ccinfty 37178 | ⊢ ℂ∞ = ran
+∞ei |
cccbar 37181 | class ℂ̅ |
df-bj-ccbar 37182 | ⊢ ℂ̅ = (ℂ ∪
ℂ∞) |
cpinfty 37185 | class +∞ |
df-bj-pinfty 37186 | ⊢ +∞ =
(+∞ei‘0) |
cminfty 37189 | class -∞ |
df-bj-minfty 37190 | ⊢ -∞ =
(+∞ei‘π) |
crrbar 37194 | class ℝ̅ |
df-bj-rrbar 37195 | ⊢ ℝ̅ = (ℝ ∪ {-∞,
+∞}) |
cinfty 37196 | class ∞ |
df-bj-infty 37197 | ⊢ ∞ = 𝒫 ∪ ℂ |
ccchat 37198 | class ℂ̂ |
df-bj-cchat 37199 | ⊢ ℂ̂ = (ℂ ∪
{∞}) |
crrhat 37200 | class ℝ̂ |
df-bj-rrhat 37201 | ⊢ ℝ̂ = (ℝ ∪
{∞}) |
caddcc 37203 | class
+ℂ̅ |
df-bj-addc 37204 | ⊢ +ℂ̅ = (𝑥 ∈ (((ℂ ×
ℂ̅) ∪ (ℂ̅ × ℂ)) ∪ ((ℂ̂
× ℂ̂) ∪ ( I ↾ ℂ∞))) ↦
if(((1st ‘𝑥) = ∞ ∨ (2nd ‘𝑥) = ∞), ∞,
if((1st ‘𝑥) ∈ ℂ, if((2nd
‘𝑥) ∈ ℂ,
〈((1st ‘(1st ‘𝑥)) +R
(1st ‘(2nd ‘𝑥))), ((2nd ‘(1st
‘𝑥))
+R (2nd ‘(2nd ‘𝑥)))〉, (2nd
‘𝑥)), (1st
‘𝑥)))) |
coppcc 37205 | class
-ℂ̅ |
df-bj-oppc 37206 | ⊢ -ℂ̅ = (𝑥 ∈ (ℂ̅ ∪
ℂ̂) ↦ if(𝑥 = ∞, ∞, if(𝑥 ∈ ℂ, (℩𝑦 ∈ ℂ (𝑥 +ℂ̅
𝑦) = 0),
(+∞eiτ‘(𝑥 +ℂ̅ 〈1/2,
0R〉))))) |
cltxr 37207 | class
<ℝ̅ |
df-bj-lt 37208 | ⊢ <ℝ̅ = ({𝑥 ∈ (ℝ̅ ×
ℝ̅) ∣ ∃𝑦∃𝑧(((1st ‘𝑥) = 〈𝑦, 0R〉 ∧
(2nd ‘𝑥) =
〈𝑧,
0R〉) ∧ 𝑦 <R 𝑧)} ∪ ((({-∞} ×
ℝ) ∪ (ℝ × {+∞})) ∪ ({-∞} ×
{+∞}))) |
carg 37209 | class Arg |
df-bj-arg 37210 | ⊢ Arg = (𝑥 ∈ (ℂ̅ ∖ {0}) ↦
if(𝑥 ∈ ℂ,
(ℑ‘(log‘𝑥)), if(𝑥<ℝ̅0, π,
(((1st ‘𝑥)
/ (2 · π)) − π)))) |
cmulc 37211 | class
·ℂ̅ |
df-bj-mulc 37212 | ⊢ ·ℂ̅ = (𝑥 ∈ ((ℂ̅ ×
ℂ̅) ∪ (ℂ̂ × ℂ̂)) ↦
if(((1st ‘𝑥) = 0 ∨ (2nd ‘𝑥) = 0), 0, if(((1st
‘𝑥) = ∞ ∨
(2nd ‘𝑥) =
∞), ∞, if(𝑥
∈ (ℂ × ℂ), ((1st ‘𝑥) · (2nd ‘𝑥)),
(+∞eiτ‘(((Arg‘(1st ‘𝑥)) +ℂ̅
(Arg‘(2nd ‘𝑥))) / τ)))))) |
cinvc 37213 | class
-1ℂ̅ |
df-bj-invc 37214 | ⊢ -1ℂ̅ =
(𝑥 ∈ (ℂ̅
∪ ℂ̂) ↦ if(𝑥 = 0, ∞, if(𝑥 ∈ ℂ, (℩𝑦 ∈ ℂ (𝑥 ·ℂ̅
𝑦) = 1),
0))) |
ciomnn 37215 | class
iω↪ℕ |
df-bj-iomnn 37216 | ⊢ iω↪ℕ =
((𝑛 ∈ ω ↦
〈[〈{𝑟 ∈
Q ∣ 𝑟
<Q 〈suc 𝑛, 1o〉},
1P〉] ~R ,
0R〉) ∪ {〈ω,
+∞〉}) |
cnnbar 37226 | class ℕ̅ |
df-bj-nnbar 37227 | ⊢ ℕ̅ = (ℕ0 ∪
{+∞}) |
czzbar 37228 | class ℤ̅ |
df-bj-zzbar 37229 | ⊢ ℤ̅ = (ℤ ∪ {-∞,
+∞}) |
czzhat 37230 | class ℤ̂ |
df-bj-zzhat 37231 | ⊢ ℤ̂ = (ℤ ∪
{∞}) |
cdivc 37232 | class
∥ℂ |
df-bj-divc 37233 | ⊢ ∥ℂ = {〈𝑥, 𝑦〉 ∣ (〈𝑥, 𝑦〉 ∈ ((ℂ̅ ×
ℂ̅) ∪ (ℂ̂ × ℂ̂)) ∧
∃𝑛 ∈
(ℤ̅ ∪ ℤ̂)(𝑛 ·ℂ̅ 𝑥) = 𝑦)} |
cfinsum 37249 | class FinSum |
df-bj-finsum 37250 | ⊢ FinSum = (𝑥 ∈ {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ CMnd ∧ ∃𝑡 ∈ Fin 𝑧:𝑡⟶(Base‘𝑦))} ↦ (℩𝑠∃𝑚 ∈ ℕ0 ∃𝑓(𝑓:(1...𝑚)–1-1-onto→dom
(2nd ‘𝑥)
∧ 𝑠 =
(seq1((+g‘(1st ‘𝑥)), (𝑛 ∈ ℕ ↦ ((2nd
‘𝑥)‘(𝑓‘𝑛))))‘𝑚)))) |
crrvec 37258 | class ℝ-Vec |
df-bj-rvec 37259 | ⊢ ℝ-Vec = (LMod ∩ (◡Scalar “
{ℝfld})) |
cend 37279 | class End |
df-bj-end 37280 | ⊢ End = (𝑐 ∈ Cat ↦ (𝑥 ∈ (Base‘𝑐) ↦ {〈(Base‘ndx), (𝑥(Hom ‘𝑐)𝑥)〉, 〈(+g‘ndx),
(〈𝑥, 𝑥〉(comp‘𝑐)𝑥)〉})) |
cfinxp 37349 | class (𝑈↑↑𝑁) |
df-finxp 37350 | ⊢ (𝑈↑↑𝑁) = {𝑦 ∣ (𝑁 ∈ ω ∧ ∅ = (rec((𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o ∧ 𝑥 ∈ 𝑈), ∅, if(𝑥 ∈ (V × 𝑈), 〈∪ 𝑛, (1st ‘𝑥)〉, 〈𝑛, 𝑥〉))), 〈𝑁, 𝑦〉)‘𝑁))} |
ax-luk1 37385 | ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝜒) → (𝜑 → 𝜒))) |
ax-luk2 37386 | ⊢ ((¬ 𝜑 → 𝜑) → 𝜑) |
ax-luk3 37387 | ⊢ (𝜑 → (¬ 𝜑 → 𝜓)) |
ax-wl-13v 37459 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) |
ax-wl-11v 37538 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
ctotbnd 37726 | class TotBnd |
cbnd 37727 | class Bnd |
df-totbnd 37728 | ⊢ TotBnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ Fin (∪ 𝑣 =
𝑥 ∧ ∀𝑏 ∈ 𝑣 ∃𝑦 ∈ 𝑥 𝑏 = (𝑦(ball‘𝑚)𝑑))}) |
df-bnd 37739 | ⊢ Bnd = (𝑥 ∈ V ↦ {𝑚 ∈ (Met‘𝑥) ∣ ∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ 𝑥 = (𝑦(ball‘𝑚)𝑟)}) |
cismty 37758 | class Ismty |
df-ismty 37759 | ⊢ Ismty = (𝑚 ∈ ∪ ran
∞Met, 𝑛 ∈ ∪ ran ∞Met ↦ {𝑓 ∣ (𝑓:dom dom 𝑚–1-1-onto→dom
dom 𝑛 ∧ ∀𝑥 ∈ dom dom 𝑚∀𝑦 ∈ dom dom 𝑚(𝑥𝑚𝑦) = ((𝑓‘𝑥)𝑛(𝑓‘𝑦)))}) |
crrn 37785 | class
ℝn |
df-rrn 37786 | ⊢ ℝn = (𝑖 ∈ Fin ↦ (𝑥 ∈ (ℝ
↑m 𝑖),
𝑦 ∈ (ℝ
↑m 𝑖)
↦ (√‘Σ𝑘 ∈ 𝑖 (((𝑥‘𝑘) − (𝑦‘𝑘))↑2)))) |
cass 37802 | class Ass |
df-ass 37803 | ⊢ Ass = {𝑔 ∣ ∀𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))} |
cexid 37804 | class ExId |
df-exid 37805 | ⊢ ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)} |
cmagm 37808 | class Magma |
df-mgmOLD 37809 | ⊢ Magma = {𝑔 ∣ ∃𝑡 𝑔:(𝑡 × 𝑡)⟶𝑡} |
csem 37820 | class SemiGrp |
df-sgrOLD 37821 | ⊢ SemiGrp = (Magma ∩ Ass) |
cmndo 37826 | class MndOp |
df-mndo 37827 | ⊢ MndOp = (SemiGrp ∩ ExId
) |
cghomOLD 37843 | class GrpOpHom |
df-ghomOLD 37844 | ⊢ GrpOpHom = (𝑔 ∈ GrpOp, ℎ ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)))}) |
crngo 37854 | class RingOps |
df-rngo 37855 | ⊢ RingOps = {〈𝑔, ℎ〉 ∣ ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)))} |
cdrng 37908 | class DivRingOps |
df-drngo 37909 | ⊢ DivRingOps = {〈𝑔, ℎ〉 ∣ (〈𝑔, ℎ〉 ∈ RingOps ∧ (ℎ ↾ ((ran 𝑔 ∖ {(GId‘𝑔)}) × (ran 𝑔 ∖ {(GId‘𝑔)}))) ∈ GrpOp)} |
crngohom 37920 | class RingOpsHom |
crngoiso 37921 | class RingOpsIso |
crisc 37922 | class
≃𝑟 |
df-rngohom 37923 | ⊢ RingOpsHom = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (ran (1st ‘𝑠) ↑m ran
(1st ‘𝑟))
∣ ((𝑓‘(GId‘(2nd
‘𝑟))) =
(GId‘(2nd ‘𝑠)) ∧ ∀𝑥 ∈ ran (1st ‘𝑟)∀𝑦 ∈ ran (1st ‘𝑟)((𝑓‘(𝑥(1st ‘𝑟)𝑦)) = ((𝑓‘𝑥)(1st ‘𝑠)(𝑓‘𝑦)) ∧ (𝑓‘(𝑥(2nd ‘𝑟)𝑦)) = ((𝑓‘𝑥)(2nd ‘𝑠)(𝑓‘𝑦))))}) |
df-rngoiso 37936 | ⊢ RingOpsIso = (𝑟 ∈ RingOps, 𝑠 ∈ RingOps ↦ {𝑓 ∈ (𝑟 RingOpsHom 𝑠) ∣ 𝑓:ran (1st ‘𝑟)–1-1-onto→ran
(1st ‘𝑠)}) |
df-risc 37943 | ⊢ ≃𝑟 = {〈𝑟, 𝑠〉 ∣ ((𝑟 ∈ RingOps ∧ 𝑠 ∈ RingOps) ∧ ∃𝑓 𝑓 ∈ (𝑟 RingOpsIso 𝑠))} |
ccm2 37949 | class Com2 |
df-com2 37950 | ⊢ Com2 = {〈𝑔, ℎ〉 ∣ ∀𝑎 ∈ ran 𝑔∀𝑏 ∈ ran 𝑔(𝑎ℎ𝑏) = (𝑏ℎ𝑎)} |
cfld 37951 | class Fld |
df-fld 37952 | ⊢ Fld = (DivRingOps ∩
Com2) |
ccring 37953 | class CRingOps |
df-crngo 37954 | ⊢ CRingOps = (RingOps ∩
Com2) |
cidl 37967 | class Idl |
cpridl 37968 | class PrIdl |
cmaxidl 37969 | class MaxIdl |
df-idl 37970 | ⊢ Idl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ 𝒫 ran (1st
‘𝑟) ∣
((GId‘(1st ‘𝑟)) ∈ 𝑖 ∧ ∀𝑥 ∈ 𝑖 (∀𝑦 ∈ 𝑖 (𝑥(1st ‘𝑟)𝑦) ∈ 𝑖 ∧ ∀𝑧 ∈ ran (1st ‘𝑟)((𝑧(2nd ‘𝑟)𝑥) ∈ 𝑖 ∧ (𝑥(2nd ‘𝑟)𝑧) ∈ 𝑖)))}) |
df-pridl 37971 | ⊢ PrIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑎 ∈ (Idl‘𝑟)∀𝑏 ∈ (Idl‘𝑟)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥(2nd ‘𝑟)𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) |
df-maxidl 37972 | ⊢ MaxIdl = (𝑟 ∈ RingOps ↦ {𝑖 ∈ (Idl‘𝑟) ∣ (𝑖 ≠ ran (1st ‘𝑟) ∧ ∀𝑗 ∈ (Idl‘𝑟)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = ran (1st ‘𝑟))))}) |
cprrng 38006 | class PrRing |
cdmn 38007 | class Dmn |
df-prrngo 38008 | ⊢ PrRing = {𝑟 ∈ RingOps ∣
{(GId‘(1st ‘𝑟))} ∈ (PrIdl‘𝑟)} |
df-dmn 38009 | ⊢ Dmn = (PrRing ∩ Com2) |
cigen 38019 | class IdlGen |
df-igen 38020 | ⊢ IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st
‘𝑟) ↦ ∩ {𝑗
∈ (Idl‘𝑟)
∣ 𝑠 ⊆ 𝑗}) |
cxrn 38134 | class (𝐴 ⋉ 𝐵) |
ccoss 38135 | class ≀ 𝑅 |
ccoels 38136 | class ∼ 𝐴 |
crels 38137 | class Rels |
cssr 38138 | class S |
crefs 38139 | class Refs |
crefrels 38140 | class RefRels |
wrefrel 38141 | wff RefRel 𝑅 |
ccnvrefs 38142 | class CnvRefs |
ccnvrefrels 38143 | class CnvRefRels |
wcnvrefrel 38144 | wff CnvRefRel 𝑅 |
csyms 38145 | class Syms |
csymrels 38146 | class SymRels |
wsymrel 38147 | wff SymRel 𝑅 |
ctrs 38148 | class Trs |
ctrrels 38149 | class TrRels |
wtrrel 38150 | wff TrRel 𝑅 |
ceqvrels 38151 | class EqvRels |
weqvrel 38152 | wff EqvRel 𝑅 |
ccoeleqvrels 38153 | class CoElEqvRels |
wcoeleqvrel 38154 | wff CoElEqvRel 𝐴 |
credunds 38155 | class Redunds |
wredund 38156 | wff 𝐴 Redund 〈𝐵, 𝐶〉 |
wredundp 38157 | wff redund (𝜑, 𝜓, 𝜒) |
cdmqss 38158 | class DomainQss |
wdmqs 38159 | wff 𝑅 DomainQs 𝐴 |
cers 38160 | class Ers |
werALTV 38161 | wff 𝑅 ErALTV 𝐴 |
ccomembers 38162 | class CoMembErs |
wcomember 38163 | wff CoMembEr 𝐴 |
cfunss 38164 | class Funss |
cfunsALTV 38165 | class FunsALTV |
wfunALTV 38166 | wff FunALTV 𝐹 |
cdisjss 38167 | class Disjss |
cdisjs 38168 | class Disjs |
wdisjALTV 38169 | wff Disj 𝑅 |
celdisjs 38170 | class ElDisjs |
weldisj 38171 | wff ElDisj 𝐴 |
wantisymrel 38172 | wff AntisymRel 𝑅 |
cparts 38173 | class Parts |
wpart 38174 | wff 𝑅 Part 𝐴 |
cmembparts 38175 | class MembParts |
wmembpart 38176 | wff MembPart 𝐴 |
df-xrn 38327 | ⊢ (𝐴 ⋉ 𝐵) = ((◡(1st ↾ (V × V))
∘ 𝐴) ∩ (◡(2nd ↾ (V × V))
∘ 𝐵)) |
df-coss 38367 | ⊢ ≀ 𝑅 = {〈𝑥, 𝑦〉 ∣ ∃𝑢(𝑢𝑅𝑥 ∧ 𝑢𝑅𝑦)} |
df-coels 38368 | ⊢ ∼ 𝐴 = ≀ (◡ E ↾ 𝐴) |
df-rels 38441 | ⊢ Rels = 𝒫 (V ×
V) |
df-ssr 38454 | ⊢ S = {〈𝑥, 𝑦〉 ∣ 𝑥 ⊆ 𝑦} |
df-refs 38466 | ⊢ Refs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} |
df-refrels 38467 | ⊢ RefRels = ( Refs ∩ Rels
) |
df-refrel 38468 | ⊢ ( RefRel 𝑅 ↔ (( I ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
df-cnvrefs 38481 | ⊢ CnvRefs = {𝑥 ∣ ( I ∩ (dom 𝑥 × ran 𝑥))◡ S
(𝑥 ∩ (dom 𝑥 × ran 𝑥))} |
df-cnvrefrels 38482 | ⊢ CnvRefRels = ( CnvRefs ∩ Rels
) |
df-cnvrefrel 38483 | ⊢ ( CnvRefRel 𝑅 ↔ ((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ ( I ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
df-syms 38498 | ⊢ Syms = {𝑥 ∣ ◡(𝑥 ∩ (dom 𝑥 × ran 𝑥)) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} |
df-symrels 38499 | ⊢ SymRels = ( Syms ∩ Rels
) |
df-symrel 38500 | ⊢ ( SymRel 𝑅 ↔ (◡(𝑅 ∩ (dom 𝑅 × ran 𝑅)) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
df-trs 38528 | ⊢ Trs = {𝑥 ∣ ((𝑥 ∩ (dom 𝑥 × ran 𝑥)) ∘ (𝑥 ∩ (dom 𝑥 × ran 𝑥))) S (𝑥 ∩ (dom 𝑥 × ran 𝑥))} |
df-trrels 38529 | ⊢ TrRels = ( Trs ∩ Rels ) |
df-trrel 38530 | ⊢ ( TrRel 𝑅 ↔ (((𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∘ (𝑅 ∩ (dom 𝑅 × ran 𝑅))) ⊆ (𝑅 ∩ (dom 𝑅 × ran 𝑅)) ∧ Rel 𝑅)) |
df-eqvrels 38540 | ⊢ EqvRels = (( RefRels ∩ SymRels ) ∩
TrRels ) |
df-eqvrel 38541 | ⊢ ( EqvRel 𝑅 ↔ ( RefRel 𝑅 ∧ SymRel 𝑅 ∧ TrRel 𝑅)) |
df-coeleqvrels 38542 | ⊢ CoElEqvRels = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) ∈ EqvRels } |
df-coeleqvrel 38543 | ⊢ ( CoElEqvRel 𝐴 ↔ EqvRel ≀ (◡ E ↾ 𝐴)) |
df-redunds 38579 | ⊢ Redunds = ◡{〈〈𝑦, 𝑧〉, 𝑥〉 ∣ (𝑥 ⊆ 𝑦 ∧ (𝑥 ∩ 𝑧) = (𝑦 ∩ 𝑧))} |
df-redund 38580 | ⊢ (𝐴 Redund 〈𝐵, 𝐶〉 ↔ (𝐴 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶))) |
df-redundp 38581 | ⊢ ( redund (𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒)))) |
df-dmqss 38594 | ⊢ DomainQss = {〈𝑥, 𝑦〉 ∣ (dom 𝑥 / 𝑥) = 𝑦} |
df-dmqs 38595 | ⊢ (𝑅 DomainQs 𝐴 ↔ (dom 𝑅 / 𝑅) = 𝐴) |
df-ers 38619 | ⊢ Ers = ( DomainQss ↾ EqvRels
) |
df-erALTV 38620 | ⊢ (𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴)) |
df-comembers 38621 | ⊢ CoMembErs = {𝑎 ∣ ≀ (◡ E ↾ 𝑎) Ers 𝑎} |
df-comember 38622 | ⊢ ( CoMembEr 𝐴 ↔ ≀ (◡ E ↾ 𝐴) ErALTV 𝐴) |
df-funss 38636 | ⊢ Funss = {𝑥 ∣ ≀ 𝑥 ∈ CnvRefRels } |
df-funsALTV 38637 | ⊢ FunsALTV = ( Funss ∩ Rels
) |
df-funALTV 38638 | ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) |
df-disjss 38659 | ⊢ Disjss = {𝑥 ∣ ≀ ◡𝑥 ∈ CnvRefRels } |
df-disjs 38660 | ⊢ Disjs = ( Disjss ∩ Rels
) |
df-disjALTV 38661 | ⊢ ( Disj 𝑅 ↔ ( CnvRefRel ≀ ◡𝑅 ∧ Rel 𝑅)) |
df-eldisjs 38662 | ⊢ ElDisjs = {𝑎 ∣ (◡ E ↾ 𝑎) ∈ Disjs } |
df-eldisj 38663 | ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) |
df-antisymrel 38716 | ⊢ ( AntisymRel 𝑅 ↔ ( CnvRefRel (𝑅 ∩ ◡𝑅) ∧ Rel 𝑅)) |
df-parts 38721 | ⊢ Parts = ( DomainQss ↾ Disjs
) |
df-part 38722 | ⊢ (𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ 𝑅 DomainQs 𝐴)) |
df-membparts 38723 | ⊢ MembParts = {𝑎 ∣ (◡ E ↾ 𝑎) Parts 𝑎} |
df-membpart 38724 | ⊢ ( MembPart 𝐴 ↔ (◡ E ↾ 𝐴) Part 𝐴) |
wprt 38827 | wff Prt 𝐴 |
df-prt 38828 | ⊢ (Prt 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
ax-c5 38839 | ⊢ (∀𝑥𝜑 → 𝜑) |
ax-c4 38840 | ⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
ax-c7 38841 | ⊢ (¬ ∀𝑥 ¬ ∀𝑥𝜑 → 𝜑) |
ax-c10 38842 | ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) |
ax-c11 38843 | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
ax-c11n 38844 | ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) |
ax-c15 38845 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) |
ax-c9 38846 | ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
ax-c14 38847 | ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 ∈ 𝑦 → ∀𝑧 𝑥 ∈ 𝑦))) |
ax-c16 38848 | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) |
ax-riotaBAD 38909 | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = if(∃!𝑥 ∈ 𝐴 𝜑, (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)), (Undef‘{𝑥 ∣ 𝑥 ∈ 𝐴})) |
clsa 38930 | class LSAtoms |
clsh 38931 | class LSHyp |
df-lsatoms 38932 | ⊢ LSAtoms = (𝑤 ∈ V ↦ ran (𝑣 ∈ ((Base‘𝑤) ∖ {(0g‘𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣}))) |
df-lshyp 38933 | ⊢ LSHyp = (𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))}) |
clcv 38974 | class
⋖L |
df-lcv 38975 | ⊢ ⋖L = (𝑤 ∈ V ↦ {〈𝑡, 𝑢〉 ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡 ⊊ 𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡 ⊊ 𝑠 ∧ 𝑠 ⊊ 𝑢)))}) |
clfn 39013 | class LFnl |
df-lfl 39014 | ⊢ LFnl = (𝑤 ∈ V ↦ {𝑓 ∈ ((Base‘(Scalar‘𝑤)) ↑m
(Base‘𝑤)) ∣
∀𝑟 ∈
(Base‘(Scalar‘𝑤))∀𝑥 ∈ (Base‘𝑤)∀𝑦 ∈ (Base‘𝑤)(𝑓‘((𝑟( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)𝑦)) = ((𝑟(.r‘(Scalar‘𝑤))(𝑓‘𝑥))(+g‘(Scalar‘𝑤))(𝑓‘𝑦))}) |
clk 39041 | class LKer |
df-lkr 39042 | ⊢ LKer = (𝑤 ∈ V ↦ (𝑓 ∈ (LFnl‘𝑤) ↦ (◡𝑓 “
{(0g‘(Scalar‘𝑤))}))) |
cld 39079 | class LDual |
df-ldual 39080 | ⊢ LDual = (𝑣 ∈ V ↦ ({〈(Base‘ndx),
(LFnl‘𝑣)〉,
〈(+g‘ndx), ( ∘f
(+g‘(Scalar‘𝑣)) ↾ ((LFnl‘𝑣) × (LFnl‘𝑣)))〉, 〈(Scalar‘ndx),
(oppr‘(Scalar‘𝑣))〉} ∪ {〈(
·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑣)), 𝑓 ∈ (LFnl‘𝑣) ↦ (𝑓 ∘f
(.r‘(Scalar‘𝑣))((Base‘𝑣) × {𝑘})))〉})) |
cops 39128 | class OP |
ccmtN 39129 | class cm |
col 39130 | class OL |
coml 39131 | class OML |
df-oposet 39132 | ⊢ OP = {𝑝 ∈ Poset ∣ (((Base‘𝑝) ∈ dom (lub‘𝑝) ∧ (Base‘𝑝) ∈ dom (glb‘𝑝)) ∧ ∃𝑜(𝑜 = (oc‘𝑝) ∧ ∀𝑎 ∈ (Base‘𝑝)∀𝑏 ∈ (Base‘𝑝)(((𝑜‘𝑎) ∈ (Base‘𝑝) ∧ (𝑜‘(𝑜‘𝑎)) = 𝑎 ∧ (𝑎(le‘𝑝)𝑏 → (𝑜‘𝑏)(le‘𝑝)(𝑜‘𝑎))) ∧ (𝑎(join‘𝑝)(𝑜‘𝑎)) = (1.‘𝑝) ∧ (𝑎(meet‘𝑝)(𝑜‘𝑎)) = (0.‘𝑝))))} |
df-cmtN 39133 | ⊢ cm = (𝑝 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))}) |
df-ol 39134 | ⊢ OL = (Lat ∩
OP) |
df-oml 39135 | ⊢ OML = {𝑙 ∈ OL ∣ ∀𝑎 ∈ (Base‘𝑙)∀𝑏 ∈ (Base‘𝑙)(𝑎(le‘𝑙)𝑏 → 𝑏 = (𝑎(join‘𝑙)(𝑏(meet‘𝑙)((oc‘𝑙)‘𝑎))))} |
ccvr 39218 | class ⋖ |
catm 39219 | class Atoms |
cal 39220 | class AtLat |
clc 39221 | class CvLat |
df-covers 39222 | ⊢ ⋖ = (𝑝 ∈ V ↦ {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (Base‘𝑝) ∧ 𝑏 ∈ (Base‘𝑝)) ∧ 𝑎(lt‘𝑝)𝑏 ∧ ¬ ∃𝑧 ∈ (Base‘𝑝)(𝑎(lt‘𝑝)𝑧 ∧ 𝑧(lt‘𝑝)𝑏))}) |
df-ats 39223 | ⊢ Atoms = (𝑝 ∈ V ↦ {𝑎 ∈ (Base‘𝑝) ∣ (0.‘𝑝)( ⋖ ‘𝑝)𝑎}) |
df-atl 39254 | ⊢ AtLat = {𝑘 ∈ Lat ∣ ((Base‘𝑘) ∈ dom (glb‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)(𝑥 ≠ (0.‘𝑘) → ∃𝑝 ∈ (Atoms‘𝑘)𝑝(le‘𝑘)𝑥))} |
df-cvlat 39278 | ⊢ CvLat = {𝑘 ∈ AtLat ∣ ∀𝑎 ∈ (Atoms‘𝑘)∀𝑏 ∈ (Atoms‘𝑘)∀𝑐 ∈ (Base‘𝑘)((¬ 𝑎(le‘𝑘)𝑐 ∧ 𝑎(le‘𝑘)(𝑐(join‘𝑘)𝑏)) → 𝑏(le‘𝑘)(𝑐(join‘𝑘)𝑎))} |
chlt 39306 | class HL |
df-hlat 39307 | ⊢ HL = {𝑙 ∈ ((OML ∩ CLat) ∩ CvLat)
∣ (∀𝑎 ∈
(Atoms‘𝑙)∀𝑏 ∈ (Atoms‘𝑙)(𝑎 ≠ 𝑏 → ∃𝑐 ∈ (Atoms‘𝑙)(𝑐 ≠ 𝑎 ∧ 𝑐 ≠ 𝑏 ∧ 𝑐(le‘𝑙)(𝑎(join‘𝑙)𝑏))) ∧ ∃𝑎 ∈ (Base‘𝑙)∃𝑏 ∈ (Base‘𝑙)∃𝑐 ∈ (Base‘𝑙)(((0.‘𝑙)(lt‘𝑙)𝑎 ∧ 𝑎(lt‘𝑙)𝑏) ∧ (𝑏(lt‘𝑙)𝑐 ∧ 𝑐(lt‘𝑙)(1.‘𝑙))))} |
clln 39448 | class LLines |
clpl 39449 | class LPlanes |
clvol 39450 | class LVols |
clines 39451 | class Lines |
cpointsN 39452 | class Points |
cpsubsp 39453 | class PSubSp |
cpmap 39454 | class pmap |
df-llines 39455 | ⊢ LLines = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) |
df-lplanes 39456 | ⊢ LPlanes = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LLines‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) |
df-lvols 39457 | ⊢ LVols = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ ∃𝑝 ∈ (LPlanes‘𝑘)𝑝( ⋖ ‘𝑘)𝑥}) |
df-lines 39458 | ⊢ Lines = (𝑘 ∈ V ↦ {𝑠 ∣ ∃𝑞 ∈ (Atoms‘𝑘)∃𝑟 ∈ (Atoms‘𝑘)(𝑞 ≠ 𝑟 ∧ 𝑠 = {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)(𝑞(join‘𝑘)𝑟)})}) |
df-pointsN 39459 | ⊢ Points = (𝑘 ∈ V ↦ {𝑞 ∣ ∃𝑝 ∈ (Atoms‘𝑘)𝑞 = {𝑝}}) |
df-psubsp 39460 | ⊢ PSubSp = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ∀𝑝 ∈ 𝑠 ∀𝑞 ∈ 𝑠 ∀𝑟 ∈ (Atoms‘𝑘)(𝑟(le‘𝑘)(𝑝(join‘𝑘)𝑞) → 𝑟 ∈ 𝑠))}) |
df-pmap 39461 | ⊢ pmap = (𝑘 ∈ V ↦ (𝑎 ∈ (Base‘𝑘) ↦ {𝑝 ∈ (Atoms‘𝑘) ∣ 𝑝(le‘𝑘)𝑎})) |
cpadd 39752 | class
+𝑃 |
df-padd 39753 | ⊢ +𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙), 𝑛 ∈ 𝒫 (Atoms‘𝑙) ↦ ((𝑚 ∪ 𝑛) ∪ {𝑝 ∈ (Atoms‘𝑙) ∣ ∃𝑞 ∈ 𝑚 ∃𝑟 ∈ 𝑛 𝑝(le‘𝑙)(𝑞(join‘𝑙)𝑟)}))) |
cpclN 39844 | class PCl |
df-pclN 39845 | ⊢ PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦
∈ (PSubSp‘𝑘)
∣ 𝑥 ⊆ 𝑦})) |
cpolN 39859 | class
⊥𝑃 |
df-polarityN 39860 | ⊢ ⊥𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫
(Atoms‘𝑙) ↦
((Atoms‘𝑙) ∩
∩ 𝑝 ∈ 𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝))))) |
cpscN 39891 | class PSubCl |
df-psubclN 39892 | ⊢ PSubCl = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧
((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)}) |
clh 39941 | class LHyp |
claut 39942 | class LAut |
cwpointsN 39943 | class WAtoms |
cpautN 39944 | class PAut |
df-lhyp 39945 | ⊢ LHyp = (𝑘 ∈ V ↦ {𝑥 ∈ (Base‘𝑘) ∣ 𝑥( ⋖ ‘𝑘)(1.‘𝑘)}) |
df-laut 39946 | ⊢ LAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(Base‘𝑘)–1-1-onto→(Base‘𝑘) ∧ ∀𝑥 ∈ (Base‘𝑘)∀𝑦 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑦 ↔ (𝑓‘𝑥)(le‘𝑘)(𝑓‘𝑦)))}) |
df-watsN 39947 | ⊢ WAtoms = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ ((Atoms‘𝑘) ∖
((⊥𝑃‘𝑘)‘{𝑑})))) |
df-pautN 39948 | ⊢ PAut = (𝑘 ∈ V ↦ {𝑓 ∣ (𝑓:(PSubSp‘𝑘)–1-1-onto→(PSubSp‘𝑘) ∧ ∀𝑥 ∈ (PSubSp‘𝑘)∀𝑦 ∈ (PSubSp‘𝑘)(𝑥 ⊆ 𝑦 ↔ (𝑓‘𝑥) ⊆ (𝑓‘𝑦)))}) |
cldil 40057 | class LDil |
cltrn 40058 | class LTrn |
cdilN 40059 | class Dil |
ctrnN 40060 | class Trn |
df-ldil 40061 | ⊢ LDil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ (LAut‘𝑘) ∣ ∀𝑥 ∈ (Base‘𝑘)(𝑥(le‘𝑘)𝑤 → (𝑓‘𝑥) = 𝑥)})) |
df-ltrn 40062 | ⊢ LTrn = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∈ ((LDil‘𝑘)‘𝑤) ∣ ∀𝑝 ∈ (Atoms‘𝑘)∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑝(le‘𝑘)𝑤 ∧ ¬ 𝑞(le‘𝑘)𝑤) → ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤) = ((𝑞(join‘𝑘)(𝑓‘𝑞))(meet‘𝑘)𝑤))})) |
df-dilN 40063 | ⊢ Dil = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ (PAut‘𝑘) ∣ ∀𝑥 ∈ (PSubSp‘𝑘)(𝑥 ⊆ ((WAtoms‘𝑘)‘𝑑) → (𝑓‘𝑥) = 𝑥)})) |
df-trnN 40064 | ⊢ Trn = (𝑘 ∈ V ↦ (𝑑 ∈ (Atoms‘𝑘) ↦ {𝑓 ∈ ((Dil‘𝑘)‘𝑑) ∣ ∀𝑞 ∈ ((WAtoms‘𝑘)‘𝑑)∀𝑟 ∈ ((WAtoms‘𝑘)‘𝑑)((𝑞(+𝑃‘𝑘)(𝑓‘𝑞)) ∩
((⊥𝑃‘𝑘)‘{𝑑})) = ((𝑟(+𝑃‘𝑘)(𝑓‘𝑟)) ∩
((⊥𝑃‘𝑘)‘{𝑑}))})) |
ctrl 40115 | class trL |
df-trl 40116 | ⊢ trL = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (℩𝑥 ∈ (Base‘𝑘)∀𝑝 ∈ (Atoms‘𝑘)(¬ 𝑝(le‘𝑘)𝑤 → 𝑥 = ((𝑝(join‘𝑘)(𝑓‘𝑝))(meet‘𝑘)𝑤)))))) |
ctgrp 40699 | class TGrp |
df-tgrp 40700 | ⊢ TGrp = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx),
((LTrn‘𝑘)‘𝑤)〉,
〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) |
ctendo 40709 | class TEndo |
cedring 40710 | class EDRing |
cedring-rN 40711 | class
EDRingR |
df-tendo 40712 | ⊢ TEndo = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))})) |
df-edring-rN 40713 | ⊢ EDRingR = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx),
((TEndo‘𝑘)‘𝑤)〉, 〈(+g‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡 ∘ 𝑠))〉})) |
df-edring 40714 | ⊢ EDRing = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx),
((TEndo‘𝑘)‘𝑤)〉, 〈(+g‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx),
(𝑠 ∈
((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑠 ∘ 𝑡))〉})) |
cdveca 40959 | class DVecA |
df-dveca 40960 | ⊢ DVecA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({〈(Base‘ndx),
((LTrn‘𝑘)‘𝑤)〉,
〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉, 〈(Scalar‘ndx),
((EDRing‘𝑘)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑠‘𝑓))〉}))) |
cdia 40985 | class DIsoA |
df-disoa 40986 | ⊢ DIsoA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ {𝑦 ∈ (Base‘𝑘) ∣ 𝑦(le‘𝑘)𝑤} ↦ {𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ∣ (((trL‘𝑘)‘𝑤)‘𝑓)(le‘𝑘)𝑥}))) |
cdvh 41035 | class DVecH |
df-dvech 41036 | ⊢ DVecH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ({〈(Base‘ndx),
(((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝑘)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) |
cocaN 41076 | class ocA |
df-docaN 41077 | ⊢ ocA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((DIsoA‘𝑘)‘𝑤)‘((((oc‘𝑘)‘(◡((DIsoA‘𝑘)‘𝑤)‘∩ {𝑧 ∈ ran ((DIsoA‘𝑘)‘𝑤) ∣ 𝑥 ⊆ 𝑧}))(join‘𝑘)((oc‘𝑘)‘𝑤))(meet‘𝑘)𝑤))))) |
cdjaN 41088 | class vA |
df-djaN 41089 | ⊢ vA = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤), 𝑦 ∈ 𝒫 ((LTrn‘𝑘)‘𝑤) ↦ (((ocA‘𝑘)‘𝑤)‘((((ocA‘𝑘)‘𝑤)‘𝑥) ∩ (((ocA‘𝑘)‘𝑤)‘𝑦)))))) |
cdib 41095 | class DIsoB |
df-dib 41096 | ⊢ DIsoB = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ dom ((DIsoA‘𝑘)‘𝑤) ↦ ((((DIsoA‘𝑘)‘𝑤)‘𝑥) × {(𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ( I ↾ (Base‘𝑘)))})))) |
cdic 41129 | class DIsoC |
df-dic 41130 | ⊢ DIsoC = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑞 ∈ {𝑟 ∈ (Atoms‘𝑘) ∣ ¬ 𝑟(le‘𝑘)𝑤} ↦ {〈𝑓, 𝑠〉 ∣ (𝑓 = (𝑠‘(℩𝑔 ∈ ((LTrn‘𝑘)‘𝑤)(𝑔‘((oc‘𝑘)‘𝑤)) = 𝑞)) ∧ 𝑠 ∈ ((TEndo‘𝑘)‘𝑤))}))) |
cdih 41185 | class DIsoH |
df-dih 41186 | ⊢ DIsoH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ (Base‘𝑘) ↦ if(𝑥(le‘𝑘)𝑤, (((DIsoB‘𝑘)‘𝑤)‘𝑥), (℩𝑢 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤))∀𝑞 ∈ (Atoms‘𝑘)((¬ 𝑞(le‘𝑘)𝑤 ∧ (𝑞(join‘𝑘)(𝑥(meet‘𝑘)𝑤)) = 𝑥) → 𝑢 = ((((DIsoC‘𝑘)‘𝑤)‘𝑞)(LSSum‘((DVecH‘𝑘)‘𝑤))(((DIsoB‘𝑘)‘𝑤)‘(𝑥(meet‘𝑘)𝑤))))))))) |
coch 41304 | class ocH |
df-doch 41305 | ⊢ ocH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((DIsoH‘𝑘)‘𝑤)‘((oc‘𝑘)‘((glb‘𝑘)‘{𝑦 ∈ (Base‘𝑘) ∣ 𝑥 ⊆ (((DIsoH‘𝑘)‘𝑤)‘𝑦)})))))) |
cdjh 41351 | class joinH |
df-djh 41352 | ⊢ joinH = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)), 𝑦 ∈ 𝒫
(Base‘((DVecH‘𝑘)‘𝑤)) ↦ (((ocH‘𝑘)‘𝑤)‘((((ocH‘𝑘)‘𝑤)‘𝑥) ∩ (((ocH‘𝑘)‘𝑤)‘𝑦)))))) |
clpoN 41437 | class LPol |
df-lpolN 41438 | ⊢ LPol = (𝑤 ∈ V ↦ {𝑜 ∈ ((LSubSp‘𝑤) ↑m 𝒫
(Base‘𝑤)) ∣
((𝑜‘(Base‘𝑤)) = {(0g‘𝑤)} ∧ ∀𝑥∀𝑦((𝑥 ⊆ (Base‘𝑤) ∧ 𝑦 ⊆ (Base‘𝑤) ∧ 𝑥 ⊆ 𝑦) → (𝑜‘𝑦) ⊆ (𝑜‘𝑥)) ∧ ∀𝑥 ∈ (LSAtoms‘𝑤)((𝑜‘𝑥) ∈ (LSHyp‘𝑤) ∧ (𝑜‘(𝑜‘𝑥)) = 𝑥))}) |
clcd 41543 | class LCDual |
df-lcdual 41544 | ⊢ LCDual = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)}))) |
cmpd 41581 | class mapd |
df-mapd 41582 | ⊢ mapd = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑠 ∈ (LSubSp‘((DVecH‘𝑘)‘𝑤)) ↦ {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ ((((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓) ∧ (((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)) ⊆ 𝑠)}))) |
chvm 41713 | class HVMap |
df-hvmap 41714 | ⊢ HVMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ (𝑥 ∈ ((Base‘((DVecH‘𝑘)‘𝑤)) ∖
{(0g‘((DVecH‘𝑘)‘𝑤))}) ↦ (𝑣 ∈ (Base‘((DVecH‘𝑘)‘𝑤)) ↦ (℩𝑗 ∈
(Base‘(Scalar‘((DVecH‘𝑘)‘𝑤)))∃𝑡 ∈ (((ocH‘𝑘)‘𝑤)‘{𝑥})𝑣 = (𝑡(+g‘((DVecH‘𝑘)‘𝑤))(𝑗( ·𝑠
‘((DVecH‘𝑘)‘𝑤))𝑥))))))) |
chdma1 41748 | class HDMap1 |
chdma 41749 | class HDMap |
df-hdmap1 41750 | ⊢ HDMap1 = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][(LSpan‘𝑢) / 𝑛][((LCDual‘𝑘)‘𝑤) / 𝑐][(Base‘𝑐) / 𝑑][(LSpan‘𝑐) / 𝑗][((mapd‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ ((𝑣 × 𝑑) × 𝑣) ↦ if((2nd ‘𝑥) = (0g‘𝑢), (0g‘𝑐), (℩ℎ ∈ 𝑑 ((𝑚‘(𝑛‘{(2nd ‘𝑥)})) = (𝑗‘{ℎ}) ∧ (𝑚‘(𝑛‘{((1st
‘(1st ‘𝑥))(-g‘𝑢)(2nd ‘𝑥))})) = (𝑗‘{((2nd
‘(1st ‘𝑥))(-g‘𝑐)ℎ)})))))})) |
df-hdmap 41751 | ⊢ HDMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [〈( I ↾
(Base‘𝑘)), ( I
↾ ((LTrn‘𝑘)‘𝑤))〉 / 𝑒][((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘𝑢) / 𝑣][((HDMap1‘𝑘)‘𝑤) / 𝑖]𝑎 ∈ (𝑡 ∈ 𝑣 ↦ (℩𝑦 ∈ (Base‘((LCDual‘𝑘)‘𝑤))∀𝑧 ∈ 𝑣 (¬ 𝑧 ∈ (((LSpan‘𝑢)‘{𝑒}) ∪ ((LSpan‘𝑢)‘{𝑡})) → 𝑦 = (𝑖‘〈𝑧, (𝑖‘〈𝑒, (((HVMap‘𝑘)‘𝑤)‘𝑒), 𝑧〉), 𝑡〉))))})) |
chg 41840 | class HGMap |
df-hgmap 41841 | ⊢ HGMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠
‘𝑢)𝑣)) = (𝑦( ·𝑠
‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))))})) |
chlh 41889 | class HLHil |
df-hlhil 41890 | ⊢ HLHil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉,
〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx),
(((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx),
((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑢)〉,
〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) |
ccsrg 41923 | class CSRing |
df-csring 41924 | ⊢ CSRing = {𝑓 ∈ SRing ∣ (mulGrp‘𝑓) ∈ CMnd} |
cprimroots 42048 | class PrimRoots |
df-primroots 42049 | ⊢ PrimRoots = (𝑟 ∈ CMnd, 𝑘 ∈ ℕ0 ↦
⦋(Base‘𝑟) / 𝑏⦌{𝑎 ∈ 𝑏 ∣ ((𝑘(.g‘𝑟)𝑎) = (0g‘𝑟) ∧ ∀𝑙 ∈ ℕ0 ((𝑙(.g‘𝑟)𝑎) = (0g‘𝑟) → 𝑘 ∥ 𝑙))}) |
ax-exfinfld 42159 | ⊢ ∀𝑝 ∈ ℙ ∀𝑛 ∈ ℕ ∃𝑘 ∈ Field
((♯‘(Base‘𝑘)) = (𝑝↑𝑛) ∧ (chr‘𝑘) = 𝑝) |
cresub 42341 | class
−ℝ |
df-resub 42342 | ⊢ −ℝ = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦
(℩𝑧 ∈
ℝ (𝑦 + 𝑧) = 𝑥)) |
cprjsp 42556 | class
ℙ𝕣𝕠𝕛 |
df-prjsp 42557 | ⊢ ℙ𝕣𝕠𝕛 = (𝑣 ∈ LVec ↦
⦋((Base‘𝑣) ∖ {(0g‘𝑣)}) / 𝑏⦌(𝑏 / {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏) ∧ ∃𝑙 ∈ (Base‘(Scalar‘𝑣))𝑥 = (𝑙( ·𝑠
‘𝑣)𝑦))})) |
cprjspn 42569 | class
ℙ𝕣𝕠𝕛n |
df-prjspn 42570 | ⊢
ℙ𝕣𝕠𝕛n = (𝑛 ∈ ℕ0, 𝑘 ∈ DivRing ↦
(ℙ𝕣𝕠𝕛‘(𝑘 freeLMod (0...𝑛)))) |
cprjcrv 42584 | class
ℙ𝕣𝕠𝕛Crv |
df-prjcrv 42585 | ⊢ ℙ𝕣𝕠𝕛Crv =
(𝑛 ∈
ℕ0, 𝑘
∈ Field ↦ (𝑓
∈ ∪ ran ((0...𝑛) mHomP 𝑘) ↦ {𝑝 ∈ (𝑛ℙ𝕣𝕠𝕛n𝑘) ∣ ((((0...𝑛) eval 𝑘)‘𝑓) “ 𝑝) = {(0g‘𝑘)}})) |
cnacs 42658 | class NoeACS |
df-nacs 42659 | ⊢ NoeACS = (𝑥 ∈ V ↦ {𝑐 ∈ (ACS‘𝑥) ∣ ∀𝑠 ∈ 𝑐 ∃𝑔 ∈ (𝒫 𝑥 ∩ Fin)𝑠 = ((mrCls‘𝑐)‘𝑔)}) |
cmzpcl 42677 | class mzPolyCld |
cmzp 42678 | class mzPoly |
df-mzpcl 42679 | ⊢ mzPolyCld = (𝑣 ∈ V ↦ {𝑝 ∈ 𝒫 (ℤ ↑m
(ℤ ↑m 𝑣)) ∣ ((∀𝑖 ∈ ℤ ((ℤ ↑m
𝑣) × {𝑖}) ∈ 𝑝 ∧ ∀𝑗 ∈ 𝑣 (𝑥 ∈ (ℤ ↑m 𝑣) ↦ (𝑥‘𝑗)) ∈ 𝑝) ∧ ∀𝑓 ∈ 𝑝 ∀𝑔 ∈ 𝑝 ((𝑓 ∘f + 𝑔) ∈ 𝑝 ∧ (𝑓 ∘f · 𝑔) ∈ 𝑝))}) |
df-mzp 42680 | ⊢ mzPoly = (𝑣 ∈ V ↦ ∩ (mzPolyCld‘𝑣)) |
cdioph 42711 | class Dioph |
df-dioph 42712 | ⊢ Dioph = (𝑛 ∈ ℕ0 ↦ ran
(𝑘 ∈
(ℤ≥‘𝑛), 𝑝 ∈ (mzPoly‘(1...𝑘)) ↦ {𝑡 ∣ ∃𝑢 ∈ (ℕ0
↑m (1...𝑘))(𝑡 = (𝑢 ↾ (1...𝑛)) ∧ (𝑝‘𝑢) = 0)})) |
csquarenn 42792 | class
◻NN |
cpell1qr 42793 | class Pell1QR |
cpell1234qr 42794 | class Pell1234QR |
cpell14qr 42795 | class Pell14QR |
cpellfund 42796 | class PellFund |
df-squarenn 42797 | ⊢ ◻NN = {𝑥 ∈ ℕ ∣
(√‘𝑥) ∈
ℚ} |
df-pell1qr 42798 | ⊢ Pell1QR = (𝑥 ∈ (ℕ ∖
◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0
∃𝑤 ∈
ℕ0 (𝑦 =
(𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) |
df-pell14qr 42799 | ⊢ Pell14QR = (𝑥 ∈ (ℕ ∖
◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0
∃𝑤 ∈ ℤ
(𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) |
df-pell1234qr 42800 | ⊢ Pell1234QR = (𝑥 ∈ (ℕ ∖
◻NN) ↦ {𝑦 ∈ ℝ ∣ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ (𝑦 = (𝑧 + ((√‘𝑥) · 𝑤)) ∧ ((𝑧↑2) − (𝑥 · (𝑤↑2))) = 1)}) |
df-pellfund 42801 | ⊢ PellFund = (𝑥 ∈ (ℕ ∖
◻NN) ↦ inf({𝑧 ∈ (Pell14QR‘𝑥) ∣ 1 < 𝑧}, ℝ, < )) |
crmx 42856 | class Xrm |
crmy 42857 | class Yrm |
df-rmx 42858 | ⊢ Xrm = (𝑎 ∈ (ℤ≥‘2),
𝑛 ∈ ℤ ↦
(1st ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) |
df-rmy 42859 | ⊢ Yrm = (𝑎 ∈ (ℤ≥‘2),
𝑛 ∈ ℤ ↦
(2nd ‘(◡(𝑏 ∈ (ℕ0
× ℤ) ↦ ((1st ‘𝑏) + ((√‘((𝑎↑2) − 1)) · (2nd
‘𝑏))))‘((𝑎 + (√‘((𝑎↑2) − 1)))↑𝑛)))) |
clfig 43024 | class LFinGen |
df-lfig 43025 | ⊢ LFinGen = {𝑤 ∈ LMod ∣ (Base‘𝑤) ∈ ((LSpan‘𝑤) “ (𝒫
(Base‘𝑤) ∩
Fin))} |
clnm 43032 | class LNoeM |
df-lnm 43033 | ⊢ LNoeM = {𝑤 ∈ LMod ∣ ∀𝑖 ∈ (LSubSp‘𝑤)(𝑤 ↾s 𝑖) ∈ LFinGen} |
clnr 43066 | class LNoeR |
df-lnr 43067 | ⊢ LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} |
cldgis 43078 | class ldgIdlSeq |
df-ldgis 43079 | ⊢ ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈
(LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) |
cmnc 43088 | class Monic |
cplylt 43089 | class
Poly< |
df-mnc 43090 | ⊢ Monic = (𝑠 ∈ 𝒫 ℂ ↦ {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}) |
df-plylt 43091 | ⊢ Poly< = (𝑠 ∈ 𝒫 ℂ, 𝑥 ∈ ℕ0 ↦ {𝑝 ∈ (Poly‘𝑠) ∣ (𝑝 = 0𝑝 ∨
(deg‘𝑝) < 𝑥)}) |
cdgraa 43097 | class
degAA |
cmpaa 43098 | class minPolyAA |
df-dgraa 43099 | ⊢ degAA = (𝑥 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣
∃𝑝 ∈
((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < )) |
df-mpaa 43100 | ⊢ minPolyAA = (𝑥 ∈ 𝔸 ↦
(℩𝑝 ∈
(Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑥) ∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1))) |
citgo 43114 | class IntgOver |
cza 43115 | class ℤ |
df-itgo 43116 | ⊢ IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣
∃𝑝 ∈
(Poly‘𝑠)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) |
df-za 43117 | ⊢ ℤ = (IntgOver‘ℤ) |
cmend 43132 | class MEndo |
df-mend 43133 | ⊢ MEndo = (𝑚 ∈ V ↦ ⦋(𝑚 LMHom 𝑚) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f
(+g‘𝑚)𝑦))〉, 〈(.r‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx),
(Scalar‘𝑚)〉,
〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f (
·𝑠 ‘𝑚)𝑦))〉})) |
ccytp 43158 | class CytP |
df-cytp 43159 | ⊢ CytP = (𝑛 ∈ ℕ ↦
((mulGrp‘(Poly1‘ℂfld))
Σg (𝑟 ∈ (◡(od‘((mulGrp‘ℂfld)
↾s (ℂ ∖ {0}))) “ {𝑛}) ↦
((var1‘ℂfld)(-g‘(Poly1‘ℂfld))((algSc‘(Poly1‘ℂfld))‘𝑟))))) |
ctopsep 43167 | class TopSep |
ctoplnd 43168 | class TopLnd |
df-topsep 43169 | ⊢ TopSep = {𝑗 ∈ Top ∣ ∃𝑥 ∈ 𝒫 ∪ 𝑗(𝑥 ≼ ω ∧ ((cls‘𝑗)‘𝑥) = ∪ 𝑗)} |
df-toplnd 43170 | ⊢ TopLnd = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(∪
𝑥 = ∪ 𝑦
→ ∃𝑧 ∈
𝒫 𝑥(𝑧 ≼ ω ∧ ∪ 𝑥 =
∪ 𝑧))} |
crcl 43634 | class r* |
df-rcl 43635 | ⊢ r* = (𝑥 ∈ V ↦ ∩ {𝑧
∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) |
whe 43734 | wff 𝑅 hereditary 𝐴 |
df-he 43735 | ⊢ (𝑅 hereditary 𝐴 ↔ (𝑅 “ 𝐴) ⊆ 𝐴) |
ax-frege1 43752 | ⊢ (𝜑 → (𝜓 → 𝜑)) |
ax-frege2 43753 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜑 → 𝜓) → (𝜑 → 𝜒))) |
ax-frege8 43771 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) |
ax-frege28 43792 | ⊢ ((𝜑 → 𝜓) → (¬ 𝜓 → ¬ 𝜑)) |
ax-frege31 43796 | ⊢ (¬ ¬ 𝜑 → 𝜑) |
ax-frege41 43807 | ⊢ (𝜑 → ¬ ¬ 𝜑) |
ax-frege52a 43819 | ⊢ ((𝜑 ↔ 𝜓) → (if-(𝜑, 𝜃, 𝜒) → if-(𝜓, 𝜃, 𝜒))) |
ax-frege54a 43824 | ⊢ (𝜑 ↔ 𝜑) |
ax-frege58a 43837 | ⊢ ((𝜓 ∧ 𝜒) → if-(𝜑, 𝜓, 𝜒)) |
ax-frege52c 43850 | ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) |
ax-frege54c 43854 | ⊢ 𝐴 = 𝐴 |
ax-frege58b 43863 | ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) |
cmnring 44175 | class MndRing |
df-mnring 44176 | ⊢ MndRing = (𝑟 ∈ V, 𝑚 ∈ V ↦ ⦋(𝑟 freeLMod (Base‘𝑚)) / 𝑣⦌(𝑣 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉)) |
cscott 44204 | class Scott 𝐴 |
df-scott 44205 | ⊢ Scott 𝐴 = {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} |
ccoll 44219 | class (𝐹 Coll 𝐴) |
df-coll 44220 | ⊢ (𝐹 Coll 𝐴) = ∪
𝑥 ∈ 𝐴 Scott (𝐹 “ {𝑥}) |
cbcc 44305 | class
C𝑐 |
df-bcc 44306 | ⊢ C𝑐 = (𝑐 ∈ ℂ, 𝑘 ∈ ℕ0 ↦ ((𝑐 FallFac 𝑘) / (!‘𝑘))) |
cplusr 44426 | class
+𝑟 |
cminusr 44427 | class
-𝑟 |
ctimesr 44428 | class
.𝑣 |
cptdfc 44429 | class PtDf(𝐴, 𝐵) |
crr3c 44430 | class RR3 |
cline3 44431 | class line3 |
df-addr 44432 | ⊢ +𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) + (𝑦‘𝑣)))) |
df-subr 44433 | ⊢ -𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) − (𝑦‘𝑣)))) |
df-mulv 44434 | ⊢ .𝑣 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦‘𝑣)))) |
df-ptdf 44445 | ⊢ PtDf(𝐴, 𝐵) = (𝑥 ∈ ℝ ↦ (((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) “ {1, 2, 3})) |
df-rr3 44446 | ⊢ RR3 = (ℝ ↑m {1, 2,
3}) |
df-line3 44447 | ⊢ line3 = {𝑥 ∈ 𝒫 RR3 ∣ (2o
≼ 𝑥 ∧
∀𝑦 ∈ 𝑥 ∀𝑧 ∈ 𝑥 (𝑧 ≠ 𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥))} |
wvd1 44540 | wff ( 𝜑 ▶ 𝜓 ) |
df-vd1 44541 | ⊢ (( 𝜑 ▶ 𝜓 ) ↔ (𝜑 → 𝜓)) |
wvd2 44548 | wff ( 𝜑 , 𝜓 ▶ 𝜒 ) |
df-vd2 44549 | ⊢ (( 𝜑 , 𝜓 ▶ 𝜒 ) ↔ ((𝜑 ∧ 𝜓) → 𝜒)) |
wvhc2 44551 | wff ( 𝜑 , 𝜓 ) |
df-vhc2 44552 | ⊢ (( 𝜑 , 𝜓 ) ↔ (𝜑 ∧ 𝜓)) |
wvd3 44558 | wff ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
wvhc3 44559 | wff ( 𝜑 , 𝜓 , 𝜒 ) |
df-vhc3 44560 | ⊢ (( 𝜑 , 𝜓 , 𝜒 ) ↔ (𝜑 ∧ 𝜓 ∧ 𝜒)) |
df-vd3 44561 | ⊢ (( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)) |
clsi 45672 | class lim inf |
df-liminf 45673 | ⊢ lim inf = (𝑥 ∈ V ↦ sup(ran (𝑘 ∈ ℝ ↦ inf(((𝑥 “ (𝑘[,)+∞)) ∩ ℝ*),
ℝ*, < )), ℝ*, < )) |
clsxlim 45739 | class ~~>* |
df-xlim 45740 | ⊢ ~~>* =
(⇝𝑡‘(ordTop‘ ≤ )) |
csalg 46229 | class SAlg |
df-salg 46230 | ⊢ SAlg = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (∪ 𝑥 ∖ 𝑦) ∈ 𝑥 ∧ ∀𝑦 ∈ 𝒫 𝑥(𝑦 ≼ ω → ∪ 𝑦
∈ 𝑥))} |
csalon 46231 | class SalOn |
df-salon 46232 | ⊢ SalOn = (𝑥 ∈ V ↦ {𝑠 ∈ SAlg ∣ ∪ 𝑠 =
𝑥}) |
csalgen 46233 | class SalGen |
df-salgen 46234 | ⊢ SalGen = (𝑥 ∈ V ↦ ∩ {𝑠
∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑥 ∧ 𝑥 ⊆ 𝑠)}) |
csumge0 46283 | class
Σ^ |
df-sumge0 46284 | ⊢ Σ^ = (𝑥 ∈ V ↦ if(+∞
∈ ran 𝑥, +∞,
sup(ran (𝑦 ∈
(𝒫 dom 𝑥 ∩ Fin)
↦ Σ𝑤 ∈
𝑦 (𝑥‘𝑤)), ℝ*, <
))) |
cmea 46370 | class Meas |
df-mea 46371 | ⊢ Meas = {𝑥 ∣ (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 ∈ SAlg) ∧ (𝑥‘∅) = 0) ∧
∀𝑦 ∈ 𝒫
dom 𝑥((𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑥‘∪ 𝑦) =
(Σ^‘(𝑥 ↾ 𝑦))))} |
come 46410 | class OutMeas |
df-ome 46411 | ⊢ OutMeas = {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑥∀𝑧 ∈ 𝒫 𝑦(𝑥‘𝑧) ≤ (𝑥‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥‘∪ 𝑦) ≤
(Σ^‘(𝑥 ↾ 𝑦))))} |
ccaragen 46412 | class CaraGen |
df-caragen 46413 | ⊢ CaraGen = (𝑜 ∈ OutMeas ↦ {𝑒 ∈ 𝒫 ∪ dom 𝑜 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑜((𝑜‘(𝑎 ∩ 𝑒)) +𝑒 (𝑜‘(𝑎 ∖ 𝑒))) = (𝑜‘𝑎)}) |
covoln 46457 | class voln* |
df-ovoln 46458 | ⊢ voln* = (𝑥 ∈ Fin ↦ (𝑦 ∈ 𝒫 (ℝ ↑m
𝑥) ↦ if(𝑥 = ∅, 0, inf({𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑m 𝑥) ↑m ℕ)(𝑦 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑥 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑥 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
)))) |
cvoln 46459 | class voln |
df-voln 46460 | ⊢ voln = (𝑥 ∈ Fin ↦ ((voln*‘𝑥) ↾
(CaraGen‘(voln*‘𝑥)))) |
csmblfn 46616 | class SMblFn |
df-smblfn 46617 | ⊢ SMblFn = (𝑠 ∈ SAlg ↦ {𝑓 ∈ (ℝ ↑pm ∪ 𝑠)
∣ ∀𝑎 ∈
ℝ (◡𝑓 “ (-∞(,)𝑎)) ∈ (𝑠 ↾t dom 𝑓)}) |
cupword 46797 | class UpWord 𝑆 |
df-upword 46798 | ⊢ UpWord 𝑆 = {𝑤 ∣ (𝑤 ∈ Word 𝑆 ∧ ∀𝑘 ∈ (0..^((♯‘𝑤) − 1))(𝑤‘𝑘) < (𝑤‘(𝑘 + 1)))} |
caiota 46998 | class (℩'𝑥𝜑) |
df-aiota 47000 | ⊢ (℩'𝑥𝜑) = ∩ {𝑦 ∣ {𝑥 ∣ 𝜑} = {𝑦}} |
wdfat 47031 | wff 𝐹 defAt 𝐴 |
cafv 47032 | class (𝐹'''𝐴) |
caov 47033 | class ((𝐴𝐹𝐵)) |
df-dfat 47034 | ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
df-afv 47035 | ⊢ (𝐹'''𝐴) = (℩'𝑥𝐴𝐹𝑥) |
df-aov 47036 | ⊢ ((𝐴𝐹𝐵)) = (𝐹'''〈𝐴, 𝐵〉) |
cafv2 47123 | class (𝐹''''𝐴) |
df-afv2 47124 | ⊢ (𝐹''''𝐴) = if(𝐹 defAt 𝐴, (℩𝑥𝐴𝐹𝑥), 𝒫 ∪ ran
𝐹) |
cnelbr 47186 | class _∉ |
df-nelbr 47187 | ⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} |
ciccp 47287 | class RePart |
df-iccp 47288 | ⊢ RePart = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ*
↑m (0...𝑚))
∣ ∀𝑖 ∈
(0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1))}) |
wich 47319 | wff [𝑥⇄𝑦]𝜑 |
df-ich 47320 | ⊢ ([𝑥⇄𝑦]𝜑 ↔ ∀𝑥∀𝑦([𝑥 / 𝑎][𝑦 / 𝑥][𝑎 / 𝑦]𝜑 ↔ 𝜑)) |
cspr 47351 | class Pairs |
df-spr 47352 | ⊢ Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}}) |
cprpr 47386 | class
Pairsproper |
df-prpr 47387 | ⊢ Pairsproper = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 (𝑎 ≠ 𝑏 ∧ 𝑝 = {𝑎, 𝑏})}) |
cfmtno 47401 | class FermatNo |
df-fmtno 47402 | ⊢ FermatNo = (𝑛 ∈ ℕ0 ↦
((2↑(2↑𝑛)) +
1)) |
ceven 47498 | class Even |
codd 47499 | class Odd |
df-even 47500 | ⊢ Even = {𝑧 ∈ ℤ ∣ (𝑧 / 2) ∈ ℤ} |
df-odd 47501 | ⊢ Odd = {𝑧 ∈ ℤ ∣ ((𝑧 + 1) / 2) ∈ ℤ} |
cfppr 47598 | class FPPr |
df-fppr 47599 | ⊢ FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ≥‘4)
∣ (𝑥 ∉ ℙ
∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) |
cgbe 47619 | class GoldbachEven |
cgbow 47620 | class GoldbachOddW |
cgbo 47621 | class GoldbachOdd |
df-gbe 47622 | ⊢ GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))} |
df-gbow 47623 | ⊢ GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)} |
df-gbo 47624 | ⊢ GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} |
ax-bgbltosilva 47684 | ⊢ ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 ≤ (4 · (;10↑;18))) → 𝑁 ∈ GoldbachEven ) |
ax-tgoldbachgt 47685 | ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐺 = {𝑧 ∈ 𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ⇒ ⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ 𝑂 (𝑚 < 𝑛 → 𝑛 ∈ 𝐺)) |
ax-hgprmladder 47688 | ⊢ ∃𝑑 ∈
(ℤ≥‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = ;13 ∧ (𝑓‘𝑑) = (;89 · (;10↑;29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓‘𝑖)) < ((4 · (;10↑;18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓‘𝑖)))) |
cclnbgr 47692 | class ClNeighbVtx |
df-clnbgr 47693 | ⊢ ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})) |
cisubgr 47732 | class ISubGr |
df-isubgr 47733 | ⊢ ISubGr = (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ 〈𝑣,
⦋(iEdg‘𝑔) / 𝑒⦌(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣})〉) |
cgrisom 47744 | class GraphIsom |
cgrim 47745 | class GraphIso |
cgric 47746 | class
≃𝑔𝑟 |
df-grisom 47747 | ⊢ GraphIsom = (𝑥 ∈ V, 𝑦 ∈ V ↦ {〈𝑓, 𝑔〉 ∣ (𝑓:(Vtx‘𝑥)–1-1-onto→(Vtx‘𝑦) ∧ 𝑔:dom (iEdg‘𝑥)–1-1-onto→dom
(iEdg‘𝑦) ∧
∀𝑖 ∈ dom
(iEdg‘𝑥)(𝑓 “ ((iEdg‘𝑥)‘𝑖)) = ((iEdg‘𝑦)‘(𝑔‘𝑖)))}) |
df-grim 47748 | ⊢ GraphIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∃𝑗[(iEdg‘𝑔) / 𝑒][(iEdg‘ℎ) / 𝑑](𝑗:dom 𝑒–1-1-onto→dom
𝑑 ∧ ∀𝑖 ∈ dom 𝑒(𝑑‘(𝑗‘𝑖)) = (𝑓 “ (𝑒‘𝑖))))}) |
df-gric 47751 | ⊢ ≃𝑔𝑟 =
(◡ GraphIso “ (V ∖
1o)) |
cgrtri 47788 | class GrTriangles |
df-grtri 47789 | ⊢ GrTriangles = (𝑔 ∈ V ↦
⦋(Vtx‘𝑔) / 𝑣⦌⦋(Edg‘𝑔) / 𝑒⦌{𝑡 ∈ 𝒫 𝑣 ∣ ∃𝑓(𝑓:(0..^3)–1-1-onto→𝑡 ∧ ({(𝑓‘0), (𝑓‘1)} ∈ 𝑒 ∧ {(𝑓‘0), (𝑓‘2)} ∈ 𝑒 ∧ {(𝑓‘1), (𝑓‘2)} ∈ 𝑒))}) |
cgrlim 47800 | class GraphLocIso |
cgrlic 47801 | class
≃𝑙𝑔𝑟 |
df-grlim 47802 | ⊢ GraphLocIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟
(ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) |
df-grlic 47805 | ⊢
≃𝑙𝑔𝑟 = (◡ GraphLocIso “ (V ∖
1o)) |
cupwlks 47856 | class UPWalks |
df-upwlks 47857 | ⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) |
ccllaw 47906 | class clLaw |
casslaw 47907 | class assLaw |
ccomlaw 47908 | class comLaw |
df-cllaw 47909 | ⊢ clLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) ∈ 𝑚} |
df-comlaw 47910 | ⊢ comLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 (𝑥𝑜𝑦) = (𝑦𝑜𝑥)} |
df-asslaw 47911 | ⊢ assLaw = {〈𝑜, 𝑚〉 ∣ ∀𝑥 ∈ 𝑚 ∀𝑦 ∈ 𝑚 ∀𝑧 ∈ 𝑚 ((𝑥𝑜𝑦)𝑜𝑧) = (𝑥𝑜(𝑦𝑜𝑧))} |
cintop 47919 | class intOp |
cclintop 47920 | class clIntOp |
cassintop 47921 | class assIntOp |
df-intop 47922 | ⊢ intOp = (𝑚 ∈ V, 𝑛 ∈ V ↦ (𝑛 ↑m (𝑚 × 𝑚))) |
df-clintop 47923 | ⊢ clIntOp = (𝑚 ∈ V ↦ (𝑚 intOp 𝑚)) |
df-assintop 47924 | ⊢ assIntOp = (𝑚 ∈ V ↦ {𝑜 ∈ ( clIntOp ‘𝑚) ∣ 𝑜 assLaw 𝑚}) |
cmgm2 47938 | class MgmALT |
ccmgm2 47939 | class CMgmALT |
csgrp2 47940 | class SGrpALT |
ccsgrp2 47941 | class CSGrpALT |
df-mgm2 47942 | ⊢ MgmALT = {𝑚 ∣ (+g‘𝑚) clLaw (Base‘𝑚)} |
df-cmgm2 47943 | ⊢ CMgmALT = {𝑚 ∈ MgmALT ∣
(+g‘𝑚)
comLaw (Base‘𝑚)} |
df-sgrp2 47944 | ⊢ SGrpALT = {𝑔 ∈ MgmALT ∣
(+g‘𝑔)
assLaw (Base‘𝑔)} |
df-csgrp2 47945 | ⊢ CSGrpALT = {𝑔 ∈ SGrpALT ∣
(+g‘𝑔)
comLaw (Base‘𝑔)} |
crngcALTV 47986 | class RngCatALTV |
df-rngcALTV 47987 | ⊢ RngCatALTV = (𝑢 ∈ V ↦ ⦋(𝑢 ∩ Rng) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 RngHom 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) RngHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RngHom (2nd
‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
cringcALTV 48010 | class RingCatALTV |
df-ringcALTV 48011 | ⊢ RingCatALTV = (𝑢 ∈ V ↦ ⦋(𝑢 ∩ Ring) / 𝑏⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx),
(𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 RingHom 𝑦))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑏 × 𝑏), 𝑧 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑣) RingHom 𝑧), 𝑓 ∈ ((1st ‘𝑣) RingHom (2nd
‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
cdmatalt 48125 | class DMatALT |
cscmatalt 48126 | class ScMatALT |
df-dmatalt 48127 | ⊢ DMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖 ≠ 𝑗 → (𝑖𝑚𝑗) = (0g‘𝑟))})) |
df-scmatalt 48128 | ⊢ ScMatALT = (𝑛 ∈ Fin, 𝑟 ∈ V ↦ ⦋(𝑛 Mat 𝑟) / 𝑎⦌(𝑎 ↾s {𝑚 ∈ (Base‘𝑎) ∣ ∃𝑐 ∈ (Base‘𝑟)∀𝑖 ∈ 𝑛 ∀𝑗 ∈ 𝑛 (𝑖𝑚𝑗) = if(𝑖 = 𝑗, 𝑐, (0g‘𝑟))})) |
clinc 48133 | class linC |
clinco 48134 | class LinCo |
df-linc 48135 | ⊢ linC = (𝑚 ∈ V ↦ (𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣), 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ (𝑚 Σg (𝑥 ∈ 𝑣 ↦ ((𝑠‘𝑥)( ·𝑠
‘𝑚)𝑥))))) |
df-lco 48136 | ⊢ LinCo = (𝑚 ∈ V, 𝑣 ∈ 𝒫 (Base‘𝑚) ↦ {𝑐 ∈ (Base‘𝑚) ∣ ∃𝑠 ∈ ((Base‘(Scalar‘𝑚)) ↑m 𝑣)(𝑠 finSupp
(0g‘(Scalar‘𝑚)) ∧ 𝑐 = (𝑠( linC ‘𝑚)𝑣))}) |
clininds 48169 | class linIndS |
clindeps 48170 | class linDepS |
df-lininds 48171 | ⊢ linIndS = {〈𝑠, 𝑚〉 ∣ (𝑠 ∈ 𝒫 (Base‘𝑚) ∧ ∀𝑓 ∈
((Base‘(Scalar‘𝑚)) ↑m 𝑠)((𝑓 finSupp
(0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)𝑠) = (0g‘𝑚)) → ∀𝑥 ∈ 𝑠 (𝑓‘𝑥) = (0g‘(Scalar‘𝑚))))} |
df-lindeps 48173 | ⊢ linDepS = {〈𝑠, 𝑚〉 ∣ ¬ 𝑠 linIndS 𝑚} |
cfdiv 48271 | class /f |
df-fdiv 48272 | ⊢ /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0))) |
cbigo 48281 | class Ο |
df-bigo 48282 | ⊢ Ο = (𝑔 ∈ (ℝ ↑pm ℝ)
↦ {𝑓 ∈ (ℝ
↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓‘𝑦) ≤ (𝑚 · (𝑔‘𝑦))}) |
cblen 48303 | class #b |
df-blen 48304 | ⊢ #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb
(abs‘𝑛))) +
1))) |
cdig 48329 | class digit |
df-dig 48330 | ⊢ digit = (𝑏 ∈ ℕ ↦ (𝑘 ∈ ℤ, 𝑟 ∈ (0[,)+∞) ↦
((⌊‘((𝑏↑-𝑘) · 𝑟)) mod 𝑏))) |
cnaryf 48360 | class -aryF |
df-naryf 48361 | ⊢ -aryF = (𝑛 ∈ ℕ0, 𝑥 ∈ V ↦ (𝑥 ↑m (𝑥 ↑m (0..^𝑛)))) |
citco 48391 | class IterComp |
cack 48392 | class Ack |
df-itco 48393 | ⊢ IterComp = (𝑓 ∈ V ↦ seq0((𝑔 ∈ V, 𝑗 ∈ V ↦ (𝑓 ∘ 𝑔)), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, ( I ↾ dom 𝑓), 𝑓)))) |
df-ack 48394 | ⊢ Ack = seq0((𝑓 ∈ V, 𝑗 ∈ V ↦ (𝑛 ∈ ℕ0 ↦
(((IterComp‘𝑓)‘(𝑛 + 1))‘1))), (𝑖 ∈ ℕ0 ↦ if(𝑖 = 0, (𝑛 ∈ ℕ0 ↦ (𝑛 + 1)), 𝑖))) |
cline 48461 | class
LineM |
csph 48462 | class Sphere |
df-line 48463 | ⊢ LineM = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑦 ∈ ((Base‘𝑤) ∖ {𝑥}) ↦ {𝑝 ∈ (Base‘𝑤) ∣ ∃𝑡 ∈ (Base‘(Scalar‘𝑤))𝑝 =
((((1r‘(Scalar‘𝑤))(-g‘(Scalar‘𝑤))𝑡)( ·𝑠
‘𝑤)𝑥)(+g‘𝑤)(𝑡( ·𝑠
‘𝑤)𝑦))})) |
df-sph 48464 | ⊢ Sphere = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘𝑤), 𝑟 ∈ (0[,]+∞) ↦ {𝑝 ∈ (Base‘𝑤) ∣ (𝑝(dist‘𝑤)𝑥) = 𝑟})) |
cthinc 48686 | class ThinCat |
df-thinc 48687 | ⊢ ThinCat = {𝑐 ∈ Cat ∣ [(Base‘𝑐) / 𝑏][(Hom ‘𝑐) / ℎ]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ∃*𝑓 𝑓 ∈ (𝑥ℎ𝑦)} |
cprstc 48729 | class ProsetToCat |
df-prstc 48730 | ⊢ ProsetToCat = (𝑘 ∈ Proset ↦ ((𝑘 sSet 〈(Hom ‘ndx),
((le‘𝑘) ×
{1o})〉) sSet 〈(comp‘ndx),
∅〉)) |
cmndtc 48750 | class MndToCat |
df-mndtc 48751 | ⊢ MndToCat = (𝑚 ∈ Mnd ↦ {〈(Base‘ndx),
{𝑚}〉, 〈(Hom
‘ndx), {〈𝑚,
𝑚, (Base‘𝑚)〉}〉,
〈(comp‘ndx), {〈〈𝑚, 𝑚, 𝑚〉, (+g‘𝑚)〉}〉}) |
csetrecs 48775 | class setrecs(𝐹) |
df-setrecs 48776 | ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
cpg 48801 | class Pg |
df-pg 48802 | ⊢ Pg = setrecs((𝑥 ∈ V ↦ (𝒫 𝑥 × 𝒫 𝑥))) |
cge-real 48812 | class ≥ |
cgt 48813 | class > |
df-gte 48814 | ⊢ ≥ = ◡ ≤ |
df-gt 48815 | ⊢ > = ◡ < |
csinh 48822 | class sinh |
ccosh 48823 | class cosh |
ctanh 48824 | class tanh |
df-sinh 48825 | ⊢ sinh = (𝑥 ∈ ℂ ↦ ((sin‘(i
· 𝑥)) /
i)) |
df-cosh 48826 | ⊢ cosh = (𝑥 ∈ ℂ ↦ (cos‘(i
· 𝑥))) |
df-tanh 48827 | ⊢ tanh = (𝑥 ∈ (◡cosh “ (ℂ ∖ {0})) ↦
((tan‘(i · 𝑥))
/ i)) |
csec 48833 | class sec |
ccsc 48834 | class csc |
ccot 48835 | class cot |
df-sec 48836 | ⊢ sec = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (cos‘𝑦) ≠ 0} ↦ (1 /
(cos‘𝑥))) |
df-csc 48837 | ⊢ csc = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦ (1 /
(sin‘𝑥))) |
df-cot 48838 | ⊢ cot = (𝑥 ∈ {𝑦 ∈ ℂ ∣ (sin‘𝑦) ≠ 0} ↦
((cos‘𝑥) /
(sin‘𝑥))) |
clog- 48857 | class log_ |
df-logbALT 48858 | ⊢ log_ = (𝑏 ∈ (ℂ ∖ {0, 1}) ↦
(𝑥 ∈ (ℂ ∖
{0}) ↦ ((log‘𝑥)
/ (log‘𝑏)))) |
wreflexive 48859 | wff 𝑅Reflexive𝐴 |
df-reflexive 48860 | ⊢ (𝑅Reflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 𝑥𝑅𝑥)) |
wirreflexive 48861 | wff 𝑅Irreflexive𝐴 |
df-irreflexive 48862 | ⊢ (𝑅Irreflexive𝐴 ↔ (𝑅 ⊆ (𝐴 × 𝐴) ∧ ∀𝑥 ∈ 𝐴 ¬ 𝑥𝑅𝑥)) |
walsi 48880 | wff ∀!𝑥(𝜑 → 𝜓) |
walsc 48881 | wff ∀!𝑥 ∈ 𝐴𝜑 |
df-alsi 48882 | ⊢ (∀!𝑥(𝜑 → 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∃𝑥𝜑)) |
df-alsc 48883 | ⊢ (∀!𝑥 ∈ 𝐴𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴)) |