MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  basellem5 Structured version   Visualization version   GIF version

Theorem basellem5 25662
Description: Lemma for basel 25667. Using vieta1 24901, we can calculate the sum of the roots of 𝑃 as the quotient of the top two coefficients, and since the function 𝑇 enumerates the roots, we are left with an equation that sums the cot↑2 function at the 𝑀 different roots. (Contributed by Mario Carneiro, 29-Jul-2014.)
Hypotheses
Ref Expression
basel.n 𝑁 = ((2 · 𝑀) + 1)
basel.p 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
basel.t 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
Assertion
Ref Expression
basellem5 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
Distinct variable groups:   𝑗,𝑘,𝑡,𝑛,𝑀   𝑗,𝑁,𝑘,𝑛,𝑡   𝑃,𝑘,𝑛   𝑇,𝑘
Allowed substitution hints:   𝑃(𝑡,𝑗)   𝑇(𝑡,𝑗,𝑛)

Proof of Theorem basellem5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (coeff‘𝑃) = (coeff‘𝑃)
2 eqid 2821 . . 3 (deg‘𝑃) = (deg‘𝑃)
3 eqid 2821 . . 3 (𝑃 “ {0}) = (𝑃 “ {0})
4 basel.n . . . . 5 𝑁 = ((2 · 𝑀) + 1)
5 basel.p . . . . 5 𝑃 = (𝑡 ∈ ℂ ↦ Σ𝑗 ∈ (0...𝑀)(((𝑁C(2 · 𝑗)) · (-1↑(𝑀𝑗))) · (𝑡𝑗)))
64, 5basellem2 25659 . . . 4 (𝑀 ∈ ℕ → (𝑃 ∈ (Poly‘ℂ) ∧ (deg‘𝑃) = 𝑀 ∧ (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))))
76simp1d 1138 . . 3 (𝑀 ∈ ℕ → 𝑃 ∈ (Poly‘ℂ))
86simp2d 1139 . . . 4 (𝑀 ∈ ℕ → (deg‘𝑃) = 𝑀)
9 nnnn0 11905 . . . . 5 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
10 hashfz1 13707 . . . . 5 (𝑀 ∈ ℕ0 → (♯‘(1...𝑀)) = 𝑀)
119, 10syl 17 . . . 4 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = 𝑀)
12 fzfid 13342 . . . . 5 (𝑀 ∈ ℕ → (1...𝑀) ∈ Fin)
13 basel.t . . . . . 6 𝑇 = (𝑛 ∈ (1...𝑀) ↦ ((tan‘((𝑛 · π) / 𝑁))↑-2))
144, 5, 13basellem4 25661 . . . . 5 (𝑀 ∈ ℕ → 𝑇:(1...𝑀)–1-1-onto→(𝑃 “ {0}))
1512, 14hasheqf1od 13715 . . . 4 (𝑀 ∈ ℕ → (♯‘(1...𝑀)) = (♯‘(𝑃 “ {0})))
168, 11, 153eqtr2rd 2863 . . 3 (𝑀 ∈ ℕ → (♯‘(𝑃 “ {0})) = (deg‘𝑃))
17 id 22 . . . 4 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ)
188, 17eqeltrd 2913 . . 3 (𝑀 ∈ ℕ → (deg‘𝑃) ∈ ℕ)
191, 2, 3, 7, 16, 18vieta1 24901 . 2 (𝑀 ∈ ℕ → Σ𝑥 ∈ (𝑃 “ {0})𝑥 = -(((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))))
20 id 22 . . 3 (𝑥 = ((tan‘((𝑘 · π) / 𝑁))↑-2) → 𝑥 = ((tan‘((𝑘 · π) / 𝑁))↑-2))
21 oveq1 7163 . . . . . . 7 (𝑛 = 𝑘 → (𝑛 · π) = (𝑘 · π))
2221fvoveq1d 7178 . . . . . 6 (𝑛 = 𝑘 → (tan‘((𝑛 · π) / 𝑁)) = (tan‘((𝑘 · π) / 𝑁)))
2322oveq1d 7171 . . . . 5 (𝑛 = 𝑘 → ((tan‘((𝑛 · π) / 𝑁))↑-2) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
24 ovex 7189 . . . . 5 ((tan‘((𝑘 · π) / 𝑁))↑-2) ∈ V
2523, 13, 24fvmpt 6768 . . . 4 (𝑘 ∈ (1...𝑀) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
2625adantl 484 . . 3 ((𝑀 ∈ ℕ ∧ 𝑘 ∈ (1...𝑀)) → (𝑇𝑘) = ((tan‘((𝑘 · π) / 𝑁))↑-2))
27 cnvimass 5949 . . . . 5 (𝑃 “ {0}) ⊆ dom 𝑃
28 plyf 24788 . . . . . 6 (𝑃 ∈ (Poly‘ℂ) → 𝑃:ℂ⟶ℂ)
29 fdm 6522 . . . . . 6 (𝑃:ℂ⟶ℂ → dom 𝑃 = ℂ)
307, 28, 293syl 18 . . . . 5 (𝑀 ∈ ℕ → dom 𝑃 = ℂ)
3127, 30sseqtrid 4019 . . . 4 (𝑀 ∈ ℕ → (𝑃 “ {0}) ⊆ ℂ)
3231sselda 3967 . . 3 ((𝑀 ∈ ℕ ∧ 𝑥 ∈ (𝑃 “ {0})) → 𝑥 ∈ ℂ)
3320, 12, 14, 26, 32fsumf1o 15080 . 2 (𝑀 ∈ ℕ → Σ𝑥 ∈ (𝑃 “ {0})𝑥 = Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2))
346simp3d 1140 . . . . . . 7 (𝑀 ∈ ℕ → (coeff‘𝑃) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))))
358oveq1d 7171 . . . . . . 7 (𝑀 ∈ ℕ → ((deg‘𝑃) − 1) = (𝑀 − 1))
3634, 35fveq12d 6677 . . . . . 6 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘((deg‘𝑃) − 1)) = ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘(𝑀 − 1)))
37 nnm1nn0 11939 . . . . . . 7 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℕ0)
38 oveq2 7164 . . . . . . . . . 10 (𝑛 = (𝑀 − 1) → (2 · 𝑛) = (2 · (𝑀 − 1)))
3938oveq2d 7172 . . . . . . . . 9 (𝑛 = (𝑀 − 1) → (𝑁C(2 · 𝑛)) = (𝑁C(2 · (𝑀 − 1))))
40 oveq2 7164 . . . . . . . . . 10 (𝑛 = (𝑀 − 1) → (𝑀𝑛) = (𝑀 − (𝑀 − 1)))
4140oveq2d 7172 . . . . . . . . 9 (𝑛 = (𝑀 − 1) → (-1↑(𝑀𝑛)) = (-1↑(𝑀 − (𝑀 − 1))))
4239, 41oveq12d 7174 . . . . . . . 8 (𝑛 = (𝑀 − 1) → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))))
43 eqid 2821 . . . . . . . 8 (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛)))) = (𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))
44 ovex 7189 . . . . . . . 8 ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))) ∈ V
4542, 43, 44fvmpt 6768 . . . . . . 7 ((𝑀 − 1) ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘(𝑀 − 1)) = ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))))
4637, 45syl 17 . . . . . 6 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘(𝑀 − 1)) = ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))))
47 nncn 11646 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
48 ax-1cn 10595 . . . . . . . . . . 11 1 ∈ ℂ
49 nncan 10915 . . . . . . . . . . 11 ((𝑀 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑀 − (𝑀 − 1)) = 1)
5047, 48, 49sylancl 588 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑀 − (𝑀 − 1)) = 1)
5150oveq2d 7172 . . . . . . . . 9 (𝑀 ∈ ℕ → (-1↑(𝑀 − (𝑀 − 1))) = (-1↑1))
52 neg1cn 11752 . . . . . . . . . 10 -1 ∈ ℂ
53 exp1 13436 . . . . . . . . . 10 (-1 ∈ ℂ → (-1↑1) = -1)
5452, 53ax-mp 5 . . . . . . . . 9 (-1↑1) = -1
5551, 54syl6eq 2872 . . . . . . . 8 (𝑀 ∈ ℕ → (-1↑(𝑀 − (𝑀 − 1))) = -1)
5655oveq2d 7172 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))) = ((𝑁C(2 · (𝑀 − 1))) · -1))
57 2nn 11711 . . . . . . . . . . . . . 14 2 ∈ ℕ
58 nnmulcl 11662 . . . . . . . . . . . . . 14 ((2 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (2 · 𝑀) ∈ ℕ)
5957, 58mpan 688 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℕ)
6059peano2nnd 11655 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) + 1) ∈ ℕ)
614, 60eqeltrid 2917 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ)
6261nnnn0d 11956 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑁 ∈ ℕ0)
63 2z 12015 . . . . . . . . . . 11 2 ∈ ℤ
64 nnz 12005 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
65 peano2zm 12026 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
6664, 65syl 17 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑀 − 1) ∈ ℤ)
67 zmulcl 12032 . . . . . . . . . . 11 ((2 ∈ ℤ ∧ (𝑀 − 1) ∈ ℤ) → (2 · (𝑀 − 1)) ∈ ℤ)
6863, 66, 67sylancr 589 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ ℤ)
69 bccl 13683 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (2 · (𝑀 − 1)) ∈ ℤ) → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ0)
7062, 68, 69syl2anc 586 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ0)
7170nn0cnd 11958 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ∈ ℂ)
72 mulcom 10623 . . . . . . . 8 (((𝑁C(2 · (𝑀 − 1))) ∈ ℂ ∧ -1 ∈ ℂ) → ((𝑁C(2 · (𝑀 − 1))) · -1) = (-1 · (𝑁C(2 · (𝑀 − 1)))))
7371, 52, 72sylancl 588 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · -1) = (-1 · (𝑁C(2 · (𝑀 − 1)))))
7471mulm1d 11092 . . . . . . 7 (𝑀 ∈ ℕ → (-1 · (𝑁C(2 · (𝑀 − 1)))) = -(𝑁C(2 · (𝑀 − 1))))
7556, 73, 743eqtrd 2860 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · (-1↑(𝑀 − (𝑀 − 1)))) = -(𝑁C(2 · (𝑀 − 1))))
7636, 46, 753eqtrd 2860 . . . . 5 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘((deg‘𝑃) − 1)) = -(𝑁C(2 · (𝑀 − 1))))
7771negcld 10984 . . . . 5 (𝑀 ∈ ℕ → -(𝑁C(2 · (𝑀 − 1))) ∈ ℂ)
7876, 77eqeltrd 2913 . . . 4 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘((deg‘𝑃) − 1)) ∈ ℂ)
7934, 8fveq12d 6677 . . . . . 6 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) = ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀))
80 oveq2 7164 . . . . . . . . . 10 (𝑛 = 𝑀 → (2 · 𝑛) = (2 · 𝑀))
8180oveq2d 7172 . . . . . . . . 9 (𝑛 = 𝑀 → (𝑁C(2 · 𝑛)) = (𝑁C(2 · 𝑀)))
82 oveq2 7164 . . . . . . . . . 10 (𝑛 = 𝑀 → (𝑀𝑛) = (𝑀𝑀))
8382oveq2d 7172 . . . . . . . . 9 (𝑛 = 𝑀 → (-1↑(𝑀𝑛)) = (-1↑(𝑀𝑀)))
8481, 83oveq12d 7174 . . . . . . . 8 (𝑛 = 𝑀 → ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
85 ovex 7189 . . . . . . . 8 ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) ∈ V
8684, 43, 85fvmpt 6768 . . . . . . 7 (𝑀 ∈ ℕ0 → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
879, 86syl 17 . . . . . 6 (𝑀 ∈ ℕ → ((𝑛 ∈ ℕ0 ↦ ((𝑁C(2 · 𝑛)) · (-1↑(𝑀𝑛))))‘𝑀) = ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))))
8847subidd 10985 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑀𝑀) = 0)
8988oveq2d 7172 . . . . . . . . 9 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = (-1↑0))
90 exp0 13434 . . . . . . . . . 10 (-1 ∈ ℂ → (-1↑0) = 1)
9152, 90ax-mp 5 . . . . . . . . 9 (-1↑0) = 1
9289, 91syl6eq 2872 . . . . . . . 8 (𝑀 ∈ ℕ → (-1↑(𝑀𝑀)) = 1)
9392oveq2d 7172 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) = ((𝑁C(2 · 𝑀)) · 1))
94 fz1ssfz0 13004 . . . . . . . . . . 11 (1...𝑁) ⊆ (0...𝑁)
9559nnred 11653 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℝ)
9695lep1d 11571 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ ((2 · 𝑀) + 1))
9796, 4breqtrrdi 5108 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (2 · 𝑀) ≤ 𝑁)
98 nnuz 12282 . . . . . . . . . . . . . 14 ℕ = (ℤ‘1)
9959, 98eleqtrdi 2923 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (ℤ‘1))
10061nnzd 12087 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → 𝑁 ∈ ℤ)
101 elfz5 12901 . . . . . . . . . . . . 13 (((2 · 𝑀) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → ((2 · 𝑀) ∈ (1...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
10299, 100, 101syl2anc 586 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) ∈ (1...𝑁) ↔ (2 · 𝑀) ≤ 𝑁))
10397, 102mpbird 259 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (1...𝑁))
10494, 103sseldi 3965 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ (0...𝑁))
105 bccl2 13684 . . . . . . . . . 10 ((2 · 𝑀) ∈ (0...𝑁) → (𝑁C(2 · 𝑀)) ∈ ℕ)
106104, 105syl 17 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℕ)
107106nncnd 11654 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ∈ ℂ)
108107mulid1d 10658 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · 1) = (𝑁C(2 · 𝑀)))
10993, 108eqtrd 2856 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) · (-1↑(𝑀𝑀))) = (𝑁C(2 · 𝑀)))
11079, 87, 1093eqtrd 2860 . . . . 5 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) = (𝑁C(2 · 𝑀)))
111110, 107eqeltrd 2913 . . . 4 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) ∈ ℂ)
112106nnne0d 11688 . . . . 5 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) ≠ 0)
113110, 112eqnetrd 3083 . . . 4 (𝑀 ∈ ℕ → ((coeff‘𝑃)‘(deg‘𝑃)) ≠ 0)
11478, 111, 113divnegd 11429 . . 3 (𝑀 ∈ ℕ → -(((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))) = (-((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))))
11576negeqd 10880 . . . . 5 (𝑀 ∈ ℕ → -((coeff‘𝑃)‘((deg‘𝑃) − 1)) = --(𝑁C(2 · (𝑀 − 1))))
11671negnegd 10988 . . . . 5 (𝑀 ∈ ℕ → --(𝑁C(2 · (𝑀 − 1))) = (𝑁C(2 · (𝑀 − 1))))
117115, 116eqtrd 2856 . . . 4 (𝑀 ∈ ℕ → -((coeff‘𝑃)‘((deg‘𝑃) − 1)) = (𝑁C(2 · (𝑀 − 1))))
118117, 110oveq12d 7174 . . 3 (𝑀 ∈ ℕ → (-((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))) = ((𝑁C(2 · (𝑀 − 1))) / (𝑁C(2 · 𝑀))))
119 bcm1k 13676 . . . . . . . . . 10 ((2 · 𝑀) ∈ (1...𝑁) → (𝑁C(2 · 𝑀)) = ((𝑁C((2 · 𝑀) − 1)) · ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀))))
120103, 119syl 17 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) = ((𝑁C((2 · 𝑀) − 1)) · ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀))))
12159nncnd 11654 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → (2 · 𝑀) ∈ ℂ)
122 1cnd 10636 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → 1 ∈ ℂ)
123121, 122, 122pnncand 11036 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → (((2 · 𝑀) + 1) − ((2 · 𝑀) − 1)) = (1 + 1))
1244oveq1i 7166 . . . . . . . . . . . . . . . 16 (𝑁 − ((2 · 𝑀) − 1)) = (((2 · 𝑀) + 1) − ((2 · 𝑀) − 1))
125 df-2 11701 . . . . . . . . . . . . . . . 16 2 = (1 + 1)
126123, 124, 1253eqtr4g 2881 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → (𝑁 − ((2 · 𝑀) − 1)) = 2)
127 2nn0 11915 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
128126, 127eqeltrdi 2921 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑁 − ((2 · 𝑀) − 1)) ∈ ℕ0)
129 nnm1nn0 11939 . . . . . . . . . . . . . . . 16 ((2 · 𝑀) ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℕ0)
13059, 129syl 17 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℕ0)
131 nn0sub 11948 . . . . . . . . . . . . . . 15 ((((2 · 𝑀) − 1) ∈ ℕ0𝑁 ∈ ℕ0) → (((2 · 𝑀) − 1) ≤ 𝑁 ↔ (𝑁 − ((2 · 𝑀) − 1)) ∈ ℕ0))
132130, 62, 131syl2anc 586 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) ≤ 𝑁 ↔ (𝑁 − ((2 · 𝑀) − 1)) ∈ ℕ0))
133128, 132mpbird 259 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ≤ 𝑁)
134472timesd 11881 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ → (2 · 𝑀) = (𝑀 + 𝑀))
135134oveq1d 7171 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) = ((𝑀 + 𝑀) − 1))
13647, 47, 122addsubd 11018 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ → ((𝑀 + 𝑀) − 1) = ((𝑀 − 1) + 𝑀))
137135, 136eqtrd 2856 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) = ((𝑀 − 1) + 𝑀))
138 nn0nnaddcl 11929 . . . . . . . . . . . . . . . . 17 (((𝑀 − 1) ∈ ℕ0𝑀 ∈ ℕ) → ((𝑀 − 1) + 𝑀) ∈ ℕ)
13937, 138mpancom 686 . . . . . . . . . . . . . . . 16 (𝑀 ∈ ℕ → ((𝑀 − 1) + 𝑀) ∈ ℕ)
140137, 139eqeltrd 2913 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℕ)
141140, 98eleqtrdi 2923 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ (ℤ‘1))
142 elfz5 12901 . . . . . . . . . . . . . 14 ((((2 · 𝑀) − 1) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → (((2 · 𝑀) − 1) ∈ (1...𝑁) ↔ ((2 · 𝑀) − 1) ≤ 𝑁))
143141, 100, 142syl2anc 586 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) ∈ (1...𝑁) ↔ ((2 · 𝑀) − 1) ≤ 𝑁))
144133, 143mpbird 259 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ (1...𝑁))
145 bcm1k 13676 . . . . . . . . . . . 12 (((2 · 𝑀) − 1) ∈ (1...𝑁) → (𝑁C((2 · 𝑀) − 1)) = ((𝑁C(((2 · 𝑀) − 1) − 1)) · ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1))))
146144, 145syl 17 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (𝑁C((2 · 𝑀) − 1)) = ((𝑁C(((2 · 𝑀) − 1) − 1)) · ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1))))
147482timesi 11776 . . . . . . . . . . . . . . . 16 (2 · 1) = (1 + 1)
148147eqcomi 2830 . . . . . . . . . . . . . . 15 (1 + 1) = (2 · 1)
149148oveq2i 7167 . . . . . . . . . . . . . 14 ((2 · 𝑀) − (1 + 1)) = ((2 · 𝑀) − (2 · 1))
150121, 122, 122subsub4d 11028 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) = ((2 · 𝑀) − (1 + 1)))
151 2cnd 11716 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 2 ∈ ℂ)
152151, 47, 122subdid 11096 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) = ((2 · 𝑀) − (2 · 1)))
153149, 150, 1523eqtr4a 2882 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) = (2 · (𝑀 − 1)))
154153oveq2d 7172 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (𝑁C(((2 · 𝑀) − 1) − 1)) = (𝑁C(2 · (𝑀 − 1))))
15561nncnd 11654 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → 𝑁 ∈ ℂ)
156140nncnd 11654 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℂ)
157155, 156, 122subsubd 11025 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → (𝑁 − (((2 · 𝑀) − 1) − 1)) = ((𝑁 − ((2 · 𝑀) − 1)) + 1))
158126oveq1d 7171 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℕ → ((𝑁 − ((2 · 𝑀) − 1)) + 1) = (2 + 1))
159 df-3 11702 . . . . . . . . . . . . . . 15 3 = (2 + 1)
160158, 159syl6eqr 2874 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ → ((𝑁 − ((2 · 𝑀) − 1)) + 1) = 3)
161157, 160eqtrd 2856 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (𝑁 − (((2 · 𝑀) − 1) − 1)) = 3)
162161oveq1d 7171 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1)) = (3 / ((2 · 𝑀) − 1)))
163154, 162oveq12d 7174 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((𝑁C(((2 · 𝑀) − 1) − 1)) · ((𝑁 − (((2 · 𝑀) − 1) − 1)) / ((2 · 𝑀) − 1))) = ((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))))
164146, 163eqtrd 2856 . . . . . . . . . 10 (𝑀 ∈ ℕ → (𝑁C((2 · 𝑀) − 1)) = ((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))))
165126oveq1d 7171 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀)) = (2 / (2 · 𝑀)))
166164, 165oveq12d 7174 . . . . . . . . 9 (𝑀 ∈ ℕ → ((𝑁C((2 · 𝑀) − 1)) · ((𝑁 − ((2 · 𝑀) − 1)) / (2 · 𝑀))) = (((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))) · (2 / (2 · 𝑀))))
167 3re 11718 . . . . . . . . . . . 12 3 ∈ ℝ
168 nndivre 11679 . . . . . . . . . . . 12 ((3 ∈ ℝ ∧ ((2 · 𝑀) − 1) ∈ ℕ) → (3 / ((2 · 𝑀) − 1)) ∈ ℝ)
169167, 140, 168sylancr 589 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (3 / ((2 · 𝑀) − 1)) ∈ ℝ)
170169recnd 10669 . . . . . . . . . 10 (𝑀 ∈ ℕ → (3 / ((2 · 𝑀) − 1)) ∈ ℂ)
171 2re 11712 . . . . . . . . . . . 12 2 ∈ ℝ
172 nndivre 11679 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (2 · 𝑀) ∈ ℕ) → (2 / (2 · 𝑀)) ∈ ℝ)
173171, 59, 172sylancr 589 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 / (2 · 𝑀)) ∈ ℝ)
174173recnd 10669 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 / (2 · 𝑀)) ∈ ℂ)
17571, 170, 174mulassd 10664 . . . . . . . . 9 (𝑀 ∈ ℕ → (((𝑁C(2 · (𝑀 − 1))) · (3 / ((2 · 𝑀) − 1))) · (2 / (2 · 𝑀))) = ((𝑁C(2 · (𝑀 − 1))) · ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀)))))
176120, 166, 1753eqtrd 2860 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) = ((𝑁C(2 · (𝑀 − 1))) · ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀)))))
177 3cn 11719 . . . . . . . . . . . 12 3 ∈ ℂ
178177a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 3 ∈ ℂ)
179140nnne0d 11688 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ≠ 0)
18059nnne0d 11688 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · 𝑀) ≠ 0)
181178, 156, 151, 121, 179, 180divmuldivd 11457 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀))) = ((3 · 2) / (((2 · 𝑀) − 1) · (2 · 𝑀))))
182 3t2e6 11804 . . . . . . . . . . . 12 (3 · 2) = 6
183182a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (3 · 2) = 6)
184156, 121mulcomd 10662 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) · (2 · 𝑀)) = ((2 · 𝑀) · ((2 · 𝑀) − 1)))
185183, 184oveq12d 7174 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((3 · 2) / (((2 · 𝑀) − 1) · (2 · 𝑀))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
186181, 185eqtrd 2856 . . . . . . . . 9 (𝑀 ∈ ℕ → ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
187186oveq2d 7172 . . . . . . . 8 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) · ((3 / ((2 · 𝑀) − 1)) · (2 / (2 · 𝑀)))) = ((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))))
188176, 187eqtrd 2856 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁C(2 · 𝑀)) = ((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))))
189188oveq1d 7171 . . . . . 6 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1)))) = (((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) / (𝑁C(2 · (𝑀 − 1)))))
190 6re 11728 . . . . . . . . 9 6 ∈ ℝ
19159, 140nnmulcld 11691 . . . . . . . . 9 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℕ)
192 nndivre 11679 . . . . . . . . 9 ((6 ∈ ℝ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℕ) → (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))) ∈ ℝ)
193190, 191, 192sylancr 589 . . . . . . . 8 (𝑀 ∈ ℕ → (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))) ∈ ℝ)
194193recnd 10669 . . . . . . 7 (𝑀 ∈ ℕ → (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))) ∈ ℂ)
195 nnm1nn0 11939 . . . . . . . . . . . . . 14 (((2 · 𝑀) − 1) ∈ ℕ → (((2 · 𝑀) − 1) − 1) ∈ ℕ0)
196140, 195syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) ∈ ℕ0)
197153, 196eqeltrrd 2914 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ ℕ0)
198197nn0red 11957 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ ℝ)
199140nnred 11653 . . . . . . . . . . 11 (𝑀 ∈ ℕ → ((2 · 𝑀) − 1) ∈ ℝ)
20061nnred 11653 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑁 ∈ ℝ)
201199ltm1d 11572 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ → (((2 · 𝑀) − 1) − 1) < ((2 · 𝑀) − 1))
202153, 201eqbrtrrd 5090 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) < ((2 · 𝑀) − 1))
203198, 199, 202ltled 10788 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ≤ ((2 · 𝑀) − 1))
204198, 199, 200, 203, 133letrd 10797 . . . . . . . . . 10 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ≤ 𝑁)
205 nn0uz 12281 . . . . . . . . . . . 12 0 = (ℤ‘0)
206197, 205eleqtrdi 2923 . . . . . . . . . . 11 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ (ℤ‘0))
207 elfz5 12901 . . . . . . . . . . 11 (((2 · (𝑀 − 1)) ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → ((2 · (𝑀 − 1)) ∈ (0...𝑁) ↔ (2 · (𝑀 − 1)) ≤ 𝑁))
208206, 100, 207syl2anc 586 . . . . . . . . . 10 (𝑀 ∈ ℕ → ((2 · (𝑀 − 1)) ∈ (0...𝑁) ↔ (2 · (𝑀 − 1)) ≤ 𝑁))
209204, 208mpbird 259 . . . . . . . . 9 (𝑀 ∈ ℕ → (2 · (𝑀 − 1)) ∈ (0...𝑁))
210 bccl2 13684 . . . . . . . . 9 ((2 · (𝑀 − 1)) ∈ (0...𝑁) → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ)
211209, 210syl 17 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ∈ ℕ)
212211nnne0d 11688 . . . . . . 7 (𝑀 ∈ ℕ → (𝑁C(2 · (𝑀 − 1))) ≠ 0)
213194, 71, 212divcan3d 11421 . . . . . 6 (𝑀 ∈ ℕ → (((𝑁C(2 · (𝑀 − 1))) · (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) / (𝑁C(2 · (𝑀 − 1)))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
214189, 213eqtrd 2856 . . . . 5 (𝑀 ∈ ℕ → ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1)))) = (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1))))
215214oveq2d 7172 . . . 4 (𝑀 ∈ ℕ → (1 / ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1))))) = (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))))
216107, 71, 112, 212recdivd 11433 . . . 4 (𝑀 ∈ ℕ → (1 / ((𝑁C(2 · 𝑀)) / (𝑁C(2 · (𝑀 − 1))))) = ((𝑁C(2 · (𝑀 − 1))) / (𝑁C(2 · 𝑀))))
217191nncnd 11654 . . . . 5 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ)
218191nnne0d 11688 . . . . 5 (𝑀 ∈ ℕ → ((2 · 𝑀) · ((2 · 𝑀) − 1)) ≠ 0)
219 6cn 11729 . . . . . 6 6 ∈ ℂ
220 6nn 11727 . . . . . . 7 6 ∈ ℕ
221220nnne0i 11678 . . . . . 6 6 ≠ 0
222 recdiv 11346 . . . . . 6 (((6 ∈ ℂ ∧ 6 ≠ 0) ∧ (((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ≠ 0)) → (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
223219, 221, 222mpanl12 700 . . . . 5 ((((2 · 𝑀) · ((2 · 𝑀) − 1)) ∈ ℂ ∧ ((2 · 𝑀) · ((2 · 𝑀) − 1)) ≠ 0) → (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
224217, 218, 223syl2anc 586 . . . 4 (𝑀 ∈ ℕ → (1 / (6 / ((2 · 𝑀) · ((2 · 𝑀) − 1)))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
225215, 216, 2243eqtr3d 2864 . . 3 (𝑀 ∈ ℕ → ((𝑁C(2 · (𝑀 − 1))) / (𝑁C(2 · 𝑀))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
226114, 118, 2253eqtrd 2860 . 2 (𝑀 ∈ ℕ → -(((coeff‘𝑃)‘((deg‘𝑃) − 1)) / ((coeff‘𝑃)‘(deg‘𝑃))) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
22719, 33, 2263eqtr3d 2864 1 (𝑀 ∈ ℕ → Σ𝑘 ∈ (1...𝑀)((tan‘((𝑘 · π) / 𝑁))↑-2) = (((2 · 𝑀) · ((2 · 𝑀) − 1)) / 6))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  {csn 4567   class class class wbr 5066  cmpt 5146  ccnv 5554  dom cdm 5555  cima 5558  wf 6351  cfv 6355  (class class class)co 7156  Fincfn 8509  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870  -cneg 10871   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  6c6 11697  0cn0 11898  cz 11982  cuz 12244  ...cfz 12893  cexp 13430  Ccbc 13663  chash 13691  Σcsu 15042  tanctan 15419  πcpi 15420  Polycply 24774  coeffccoe 24776  degcdgr 24777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-tan 15425  df-pi 15426  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-0p 24271  df-limc 24464  df-dv 24465  df-ply 24778  df-idp 24779  df-coe 24780  df-dgr 24781  df-quot 24880
This theorem is referenced by:  basellem8  25665
  Copyright terms: Public domain W3C validator