MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem1 Structured version   Visualization version   GIF version

Theorem bposlem1 25860
Description: An upper bound on the prime powers dividing a central binomial coefficient. (Contributed by Mario Carneiro, 9-Mar-2014.)
Assertion
Ref Expression
bposlem1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))

Proof of Theorem bposlem1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fzfid 13342 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (1...(2 · 𝑁)) ∈ Fin)
2 2nn 11711 . . . . . . . . . . 11 2 ∈ ℕ
3 nnmulcl 11662 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
42, 3mpan 688 . . . . . . . . . 10 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℕ)
54ad2antrr 724 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℕ)
6 prmnn 16018 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
76ad2antlr 725 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑃 ∈ ℕ)
8 elfznn 12937 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℕ)
98adantl 484 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℕ)
109nnnn0d 11956 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℕ0)
117, 10nnexpcld 13607 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℕ)
12 nnrp 12401 . . . . . . . . . 10 ((2 · 𝑁) ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
13 nnrp 12401 . . . . . . . . . 10 ((𝑃𝑘) ∈ ℕ → (𝑃𝑘) ∈ ℝ+)
14 rpdivcl 12415 . . . . . . . . . 10 (((2 · 𝑁) ∈ ℝ+ ∧ (𝑃𝑘) ∈ ℝ+) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
1512, 13, 14syl2an 597 . . . . . . . . 9 (((2 · 𝑁) ∈ ℕ ∧ (𝑃𝑘) ∈ ℕ) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
165, 11, 15syl2anc 586 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ+)
1716rpred 12432 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
1817flcld 13169 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ∈ ℤ)
19 2z 12015 . . . . . . 7 2 ∈ ℤ
20 simpll 765 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℕ)
21 nnrp 12401 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
22 rpdivcl 12415 . . . . . . . . . . 11 ((𝑁 ∈ ℝ+ ∧ (𝑃𝑘) ∈ ℝ+) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2321, 13, 22syl2an 597 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃𝑘) ∈ ℕ) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2420, 11, 23syl2anc 586 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ+)
2524rpred 12432 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
2625flcld 13169 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ)
27 zmulcl 12032 . . . . . . 7 ((2 ∈ ℤ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℤ) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℤ)
2819, 26, 27sylancr 589 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℤ)
2918, 28zsubcld 12093 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℤ)
3029zred 12088 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℝ)
31 1re 10641 . . . . . 6 1 ∈ ℝ
32 0re 10643 . . . . . 6 0 ∈ ℝ
3331, 32ifcli 4513 . . . . 5 if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ∈ ℝ
3433a1i 11 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ∈ ℝ)
3528zred 12088 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) ∈ ℝ)
3617, 35resubcld 11068 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℝ)
37 2re 11712 . . . . . . . . . 10 2 ∈ ℝ
3837a1i 11 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 2 ∈ ℝ)
3918zred 12088 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ∈ ℝ)
40 flle 13170 . . . . . . . . . . 11 (((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ≤ ((2 · 𝑁) / (𝑃𝑘)))
4117, 40syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) ≤ ((2 · 𝑁) / (𝑃𝑘)))
4239, 17, 35, 41lesub1dd 11256 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
43 resubcl 10950 . . . . . . . . . . . . 13 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 1 ∈ ℝ) → ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ)
4425, 31, 43sylancl 588 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ)
45 remulcl 10622 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ ((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) ∈ ℝ)
4637, 44, 45sylancr 589 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) ∈ ℝ)
47 flltp1 13171 . . . . . . . . . . . . . 14 ((𝑁 / (𝑃𝑘)) ∈ ℝ → (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1))
4825, 47syl 17 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1))
49 1red 10642 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈ ℝ)
5026zred 12088 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ)
5125, 49, 50ltsubaddd 11236 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (𝑁 / (𝑃𝑘)) < ((⌊‘(𝑁 / (𝑃𝑘))) + 1)))
5248, 51mpbird 259 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))))
53 2pos 11741 . . . . . . . . . . . . . . 15 0 < 2
5437, 53pm3.2i 473 . . . . . . . . . . . . . 14 (2 ∈ ℝ ∧ 0 < 2)
55 ltmul2 11491 . . . . . . . . . . . . . 14 ((((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5654, 55mp3an3 1446 . . . . . . . . . . . . 13 ((((𝑁 / (𝑃𝑘)) − 1) ∈ ℝ ∧ (⌊‘(𝑁 / (𝑃𝑘))) ∈ ℝ) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5744, 50, 56syl2anc 586 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((𝑁 / (𝑃𝑘)) − 1) < (⌊‘(𝑁 / (𝑃𝑘))) ↔ (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
5852, 57mpbid 234 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) < (2 · (⌊‘(𝑁 / (𝑃𝑘)))))
5946, 35, 17, 58ltsub2dd 11253 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))))
60 2cnd 11716 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 2 ∈ ℂ)
61 nncn 11646 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
6261ad2antrr 724 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℂ)
6311nncnd 11654 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℂ)
6411nnne0d 11688 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ≠ 0)
6560, 62, 63, 64divassd 11451 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) / (𝑃𝑘)) = (2 · (𝑁 / (𝑃𝑘))))
6625recnd 10669 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 / (𝑃𝑘)) ∈ ℂ)
6760, 66muls1d 11100 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · ((𝑁 / (𝑃𝑘)) − 1)) = ((2 · (𝑁 / (𝑃𝑘))) − 2))
6865, 67oveq12d 7174 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))) = ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)))
69 remulcl 10622 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝑁 / (𝑃𝑘)) ∈ ℝ) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℝ)
7037, 25, 69sylancr 589 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℝ)
7170recnd 10669 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · (𝑁 / (𝑃𝑘))) ∈ ℂ)
72 2cn 11713 . . . . . . . . . . . 12 2 ∈ ℂ
73 nncan 10915 . . . . . . . . . . . 12 (((2 · (𝑁 / (𝑃𝑘))) ∈ ℂ ∧ 2 ∈ ℂ) → ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)) = 2)
7471, 72, 73sylancl 588 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · (𝑁 / (𝑃𝑘))) − ((2 · (𝑁 / (𝑃𝑘))) − 2)) = 2)
7568, 74eqtrd 2856 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · ((𝑁 / (𝑃𝑘)) − 1))) = 2)
7659, 75breqtrd 5092 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < 2)
7730, 36, 38, 42, 76lelttrd 10798 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < 2)
78 df-2 11701 . . . . . . . 8 2 = (1 + 1)
7977, 78breqtrdi 5107 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1))
80 1z 12013 . . . . . . . 8 1 ∈ ℤ
81 zleltp1 12034 . . . . . . . 8 ((((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ∈ ℤ ∧ 1 ∈ ℤ) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1)))
8229, 80, 81sylancl 588 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) < (1 + 1)))
8379, 82mpbird 259 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1)
84 iftrue 4473 . . . . . . 7 (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = 1)
8584breq2d 5078 . . . . . 6 (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 1))
8683, 85syl5ibrcom 249 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
879nnge1d 11686 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ≤ 𝑘)
8887biantrurd 535 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
896adantl 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ)
9089nnred 11653 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℝ)
91 prmuz2 16040 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
9291adantl 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ (ℤ‘2))
93 eluz2gt1 12321 . . . . . . . . . . . . . 14 (𝑃 ∈ (ℤ‘2) → 1 < 𝑃)
9492, 93syl 17 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < 𝑃)
9590, 94jca 514 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
9695adantr 483 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃 ∈ ℝ ∧ 1 < 𝑃))
97 elfzelz 12909 . . . . . . . . . . . 12 (𝑘 ∈ (1...(2 · 𝑁)) → 𝑘 ∈ ℤ)
9897adantl 484 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℤ)
994adantr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ)
10099nnrpd 12430 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℝ+)
101100adantr 483 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℝ+)
102 efexple 25857 . . . . . . . . . . 11 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ 𝑘 ∈ ℤ ∧ (2 · 𝑁) ∈ ℝ+) → ((𝑃𝑘) ≤ (2 · 𝑁) ↔ 𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
10396, 98, 101, 102syl3anc 1367 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑃𝑘) ≤ (2 · 𝑁) ↔ 𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
1049nnzd 12087 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑘 ∈ ℤ)
10580a1i 11 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 1 ∈ ℤ)
10699nnred 11653 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℝ)
107 1red 10642 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ∈ ℝ)
10837a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 2 ∈ ℝ)
109 1lt2 11809 . . . . . . . . . . . . . . . . . 18 1 < 2
110109a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < 2)
111 2t1e2 11801 . . . . . . . . . . . . . . . . . 18 (2 · 1) = 2
112 nnre 11645 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
113112adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑁 ∈ ℝ)
114 0le2 11740 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 2
11537, 114pm3.2i 473 . . . . . . . . . . . . . . . . . . . 20 (2 ∈ ℝ ∧ 0 ≤ 2)
116115a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 ∈ ℝ ∧ 0 ≤ 2))
117 nnge1 11666 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 1 ≤ 𝑁)
118117adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 ≤ 𝑁)
119 lemul2a 11495 . . . . . . . . . . . . . . . . . . 19 (((1 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) ∧ 1 ≤ 𝑁) → (2 · 1) ≤ (2 · 𝑁))
120107, 113, 116, 118, 119syl31anc 1369 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 1) ≤ (2 · 𝑁))
121111, 120eqbrtrrid 5102 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 2 ≤ (2 · 𝑁))
122107, 108, 106, 110, 121ltletrd 10800 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 1 < (2 · 𝑁))
123106, 122rplogcld 25212 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ∈ ℝ+)
12490, 94rplogcld 25212 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘𝑃) ∈ ℝ+)
125123, 124rpdivcld 12449 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ+)
126125rpred 12432 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ)
127126flcld 13169 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ)
128127adantr 483 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ)
129 elfz 12899 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 1 ∈ ℤ ∧ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
130104, 105, 128, 129syl3anc 1367 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (1 ≤ 𝑘𝑘 ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
13188, 103, 1303bitr4rd 314 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (𝑃𝑘) ≤ (2 · 𝑁)))
132131notbid 320 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ ¬ (𝑃𝑘) ≤ (2 · 𝑁)))
133106adantr 483 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (2 · 𝑁) ∈ ℝ)
13411nnred 11653 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑃𝑘) ∈ ℝ)
135133, 134ltnled 10787 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) ↔ ¬ (𝑃𝑘) ≤ (2 · 𝑁)))
136132, 135bitr4d 284 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (2 · 𝑁) < (𝑃𝑘)))
13716rpge0d 12436 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
138137adantrr 715 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → 0 ≤ ((2 · 𝑁) / (𝑃𝑘)))
13911nngt0d 11687 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 < (𝑃𝑘))
140 ltdivmul 11515 . . . . . . . . . . . . . . . . 17 (((2 · 𝑁) ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑘) ∈ ℝ ∧ 0 < (𝑃𝑘))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
141133, 49, 134, 139, 140syl112anc 1370 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < ((𝑃𝑘) · 1)))
14263mulid1d 10658 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑃𝑘) · 1) = (𝑃𝑘))
143142breq2d 5078 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < ((𝑃𝑘) · 1) ↔ (2 · 𝑁) < (𝑃𝑘)))
144141, 143bitrd 281 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (((2 · 𝑁) / (𝑃𝑘)) < 1 ↔ (2 · 𝑁) < (𝑃𝑘)))
145144biimprd 250 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → ((2 · 𝑁) / (𝑃𝑘)) < 1))
146145impr 457 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) < 1)
147 0p1e1 11760 . . . . . . . . . . . . 13 (0 + 1) = 1
148146, 147breqtrrdi 5108 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))
14917adantrr 715 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ)
150 0z 11993 . . . . . . . . . . . . 13 0 ∈ ℤ
151 flbi 13187 . . . . . . . . . . . . 13 ((((2 · 𝑁) / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
152149, 150, 151sylancl 588 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0 ↔ (0 ≤ ((2 · 𝑁) / (𝑃𝑘)) ∧ ((2 · 𝑁) / (𝑃𝑘)) < (0 + 1))))
153138, 148, 152mpbir2and 711 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (⌊‘((2 · 𝑁) / (𝑃𝑘))) = 0)
15424rpge0d 12436 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 0 ≤ (𝑁 / (𝑃𝑘)))
155154adantrr 715 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → 0 ≤ (𝑁 / (𝑃𝑘)))
156112, 21ltaddrp2d 12466 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 < (𝑁 + 𝑁))
157612timesd 11881 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
158156, 157breqtrrd 5094 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 < (2 · 𝑁))
159158ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 < (2 · 𝑁))
160112ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → 𝑁 ∈ ℝ)
161 lttr 10717 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (𝑃𝑘) ∈ ℝ) → ((𝑁 < (2 · 𝑁) ∧ (2 · 𝑁) < (𝑃𝑘)) → 𝑁 < (𝑃𝑘)))
162160, 133, 134, 161syl3anc 1367 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 < (2 · 𝑁) ∧ (2 · 𝑁) < (𝑃𝑘)) → 𝑁 < (𝑃𝑘)))
163159, 162mpand 693 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → 𝑁 < (𝑃𝑘)))
164 ltdivmul 11515 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ((𝑃𝑘) ∈ ℝ ∧ 0 < (𝑃𝑘))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
165160, 49, 134, 139, 164syl112anc 1370 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < ((𝑃𝑘) · 1)))
166142breq2d 5078 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (𝑁 < ((𝑃𝑘) · 1) ↔ 𝑁 < (𝑃𝑘)))
167165, 166bitrd 281 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((𝑁 / (𝑃𝑘)) < 1 ↔ 𝑁 < (𝑃𝑘)))
168163, 167sylibrd 261 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → (𝑁 / (𝑃𝑘)) < 1))
169168impr 457 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) < 1)
170169, 147breqtrrdi 5108 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) < (0 + 1))
17125adantrr 715 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (𝑁 / (𝑃𝑘)) ∈ ℝ)
172 flbi 13187 . . . . . . . . . . . . . . 15 (((𝑁 / (𝑃𝑘)) ∈ ℝ ∧ 0 ∈ ℤ) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
173171, 150, 172sylancl 588 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘(𝑁 / (𝑃𝑘))) = 0 ↔ (0 ≤ (𝑁 / (𝑃𝑘)) ∧ (𝑁 / (𝑃𝑘)) < (0 + 1))))
174155, 170, 173mpbir2and 711 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (⌊‘(𝑁 / (𝑃𝑘))) = 0)
175174oveq2d 7172 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = (2 · 0))
176 2t0e0 11807 . . . . . . . . . . . 12 (2 · 0) = 0
177175, 176syl6eq 2872 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → (2 · (⌊‘(𝑁 / (𝑃𝑘)))) = 0)
178153, 177oveq12d 7174 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = (0 − 0))
179 0m0e0 11758 . . . . . . . . . 10 (0 − 0) = 0
180178, 179syl6eq 2872 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) = 0)
181 0le0 11739 . . . . . . . . 9 0 ≤ 0
182180, 181eqbrtrdi 5105 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ (𝑘 ∈ (1...(2 · 𝑁)) ∧ (2 · 𝑁) < (𝑃𝑘))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0)
183182expr 459 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((2 · 𝑁) < (𝑃𝑘) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0))
184136, 183sylbid 242 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0))
185 iffalse 4476 . . . . . . . 8 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = 0)
186185eqcomd 2827 . . . . . . 7 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → 0 = if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
187186breq2d 5078 . . . . . 6 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ 0 ↔ ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
188184, 187mpbidi 243 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → (¬ 𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0)))
18986, 188pm2.61d 181 . . . 4 (((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) ∧ 𝑘 ∈ (1...(2 · 𝑁))) → ((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
1901, 30, 34, 189fsumle 15154 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))) ≤ Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
191 pcbcctr 25852 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) = Σ𝑘 ∈ (1...(2 · 𝑁))((⌊‘((2 · 𝑁) / (𝑃𝑘))) − (2 · (⌊‘(𝑁 / (𝑃𝑘))))))
192127zred 12088 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℝ)
193 flle 13170 . . . . . . . . 9 (((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ ((log‘(2 · 𝑁)) / (log‘𝑃)))
194126, 193syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ ((log‘(2 · 𝑁)) / (log‘𝑃)))
19599nnnn0d 11956 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℕ0)
19689, 195nnexpcld 13607 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) ∈ ℕ)
197196nnred 11653 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) ∈ ℝ)
198 bernneq3 13593 . . . . . . . . . . . . 13 ((𝑃 ∈ (ℤ‘2) ∧ (2 · 𝑁) ∈ ℕ0) → (2 · 𝑁) < (𝑃↑(2 · 𝑁)))
19992, 195, 198syl2anc 586 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) < (𝑃↑(2 · 𝑁)))
200106, 197, 199ltled 10788 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ≤ (𝑃↑(2 · 𝑁)))
201100reeflogd 25207 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘(log‘(2 · 𝑁))) = (2 · 𝑁))
20289nnrpd 12430 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℝ+)
20399nnzd 12087 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ ℤ)
204 reexplog 25178 . . . . . . . . . . . . 13 ((𝑃 ∈ ℝ+ ∧ (2 · 𝑁) ∈ ℤ) → (𝑃↑(2 · 𝑁)) = (exp‘((2 · 𝑁) · (log‘𝑃))))
205202, 203, 204syl2anc 586 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(2 · 𝑁)) = (exp‘((2 · 𝑁) · (log‘𝑃))))
206205eqcomd 2827 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘((2 · 𝑁) · (log‘𝑃))) = (𝑃↑(2 · 𝑁)))
207200, 201, 2063brtr4d 5098 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃))))
208100relogcld 25206 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ∈ ℝ)
209124rpred 12432 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘𝑃) ∈ ℝ)
210106, 209remulcld 10671 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁) · (log‘𝑃)) ∈ ℝ)
211 efle 15471 . . . . . . . . . . 11 (((log‘(2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁) · (log‘𝑃)) ∈ ℝ) → ((log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)) ↔ (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃)))))
212208, 210, 211syl2anc 586 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)) ↔ (exp‘(log‘(2 · 𝑁))) ≤ (exp‘((2 · 𝑁) · (log‘𝑃)))))
213207, 212mpbird 259 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃)))
214208, 106, 124ledivmul2d 12486 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (((log‘(2 · 𝑁)) / (log‘𝑃)) ≤ (2 · 𝑁) ↔ (log‘(2 · 𝑁)) ≤ ((2 · 𝑁) · (log‘𝑃))))
215213, 214mpbird 259 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((log‘(2 · 𝑁)) / (log‘𝑃)) ≤ (2 · 𝑁))
216192, 126, 106, 194, 215letrd 10797 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁))
217 eluz 12258 . . . . . . . 8 (((⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁)))
218127, 203, 217syl2anc 586 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ↔ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ≤ (2 · 𝑁)))
219216, 218mpbird 259 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
220 fzss2 12948 . . . . . 6 ((2 · 𝑁) ∈ (ℤ‘(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) → (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁)))
221219, 220syl 17 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁)))
222 sumhash 16232 . . . . 5 (((1...(2 · 𝑁)) ∈ Fin ∧ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))) ⊆ (1...(2 · 𝑁))) → Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = (♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
2231, 221, 222syl2anc 586 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0) = (♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))))
224125rprege0d 12439 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ ∧ 0 ≤ ((log‘(2 · 𝑁)) / (log‘𝑃))))
225 flge0nn0 13191 . . . . 5 ((((log‘(2 · 𝑁)) / (log‘𝑃)) ∈ ℝ ∧ 0 ≤ ((log‘(2 · 𝑁)) / (log‘𝑃))) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℕ0)
226 hashfz1 13707 . . . . 5 ((⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) ∈ ℕ0 → (♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))) = (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
227224, 225, 2263syl 18 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (♯‘(1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))) = (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
228223, 227eqtr2d 2857 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))) = Σ𝑘 ∈ (1...(2 · 𝑁))if(𝑘 ∈ (1...(⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))), 1, 0))
229190, 191, 2283brtr4d 5098 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃))))
230 simpr 487 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
231 nnnn0 11905 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
232 fzctr 13020 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ (0...(2 · 𝑁)))
233 bccl2 13684 . . . . . . 7 (𝑁 ∈ (0...(2 · 𝑁)) → ((2 · 𝑁)C𝑁) ∈ ℕ)
234231, 232, 2333syl 18 . . . . . 6 (𝑁 ∈ ℕ → ((2 · 𝑁)C𝑁) ∈ ℕ)
235234adantr 483 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((2 · 𝑁)C𝑁) ∈ ℕ)
236230, 235pccld 16187 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℕ0)
237236nn0zd 12086 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ)
238 efexple 25857 . . 3 (((𝑃 ∈ ℝ ∧ 1 < 𝑃) ∧ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ∈ ℤ ∧ (2 · 𝑁) ∈ ℝ+) → ((𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ↔ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
23990, 94, 237, 100, 238syl211anc 1372 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁) ↔ (𝑃 pCnt ((2 · 𝑁)C𝑁)) ≤ (⌊‘((log‘(2 · 𝑁)) / (log‘𝑃)))))
240229, 239mpbird 259 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃↑(𝑃 pCnt ((2 · 𝑁)C𝑁))) ≤ (2 · 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wss 3936  ifcif 4467   class class class wbr 5066  cfv 6355  (class class class)co 7156  Fincfn 8509  cc 10535  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  0cn0 11898  cz 11982  cuz 12244  +crp 12390  ...cfz 12893  cfl 13161  cexp 13430  Ccbc 13663  chash 13691  Σcsu 15042  expce 15415  cprime 16015   pCnt cpc 16173  logclog 25138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ioc 12744  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-seq 13371  df-exp 13431  df-fac 13635  df-bc 13664  df-hash 13692  df-shft 14426  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-limsup 14828  df-clim 14845  df-rlim 14846  df-sum 15043  df-ef 15421  df-sin 15423  df-cos 15424  df-pi 15426  df-dvds 15608  df-gcd 15844  df-prm 16016  df-pc 16174  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-pt 16718  df-prds 16721  df-xrs 16775  df-qtop 16780  df-imas 16781  df-xps 16783  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-submnd 17957  df-mulg 18225  df-cntz 18447  df-cmn 18908  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cld 21627  df-ntr 21628  df-cls 21629  df-nei 21706  df-lp 21744  df-perf 21745  df-cn 21835  df-cnp 21836  df-haus 21923  df-tx 22170  df-hmeo 22363  df-fil 22454  df-fm 22546  df-flim 22547  df-flf 22548  df-xms 22930  df-ms 22931  df-tms 22932  df-cncf 23486  df-limc 24464  df-dv 24465  df-log 25140
This theorem is referenced by:  bposlem5  25864  bposlem6  25865  chebbnd1lem1  26045
  Copyright terms: Public domain W3C validator