ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitmulcl Unicode version

Theorem unitmulcl 13609
Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitmulcl.1  |-  U  =  (Unit `  R )
unitmulcl.2  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
unitmulcl  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  U )

Proof of Theorem unitmulcl
StepHypRef Expression
1 simp1 999 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  R  e.  Ring )
2 eqidd 2194 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Base `  R )  =  ( Base `  R
) )
3 unitmulcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
43a1i 9 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  U  =  (Unit `  R )
)
5 ringsrg 13543 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
61, 5syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  R  e. SRing )
7 simp3 1001 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y  e.  U )
82, 4, 6, 7unitcld 13604 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y  e.  ( Base `  R
) )
9 simp2 1000 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  U )
10 eqidd 2194 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( 1r `  R )  =  ( 1r `  R
) )
11 eqidd 2194 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( ||r `  R )  =  (
||r `  R ) )
12 eqidd 2194 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (oppr `  R
)  =  (oppr `  R
) )
13 eqidd 2194 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( ||r `  (oppr
`  R ) )  =  ( ||r `
 (oppr
`  R ) ) )
144, 10, 11, 12, 13, 6isunitd 13602 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  e.  U  <->  ( X
( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
159, 14mpbid 147 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X ( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
1615simpld 112 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X
( ||r `
 R ) ( 1r `  R ) )
17 eqid 2193 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
18 eqid 2193 . . . . . 6  |-  ( ||r `  R
)  =  ( ||r `  R
)
19 unitmulcl.2 . . . . . 6  |-  .x.  =  ( .r `  R )
2017, 18, 19dvdsrmul1 13598 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
)  /\  X ( ||r `  R ) ( 1r
`  R ) )  ->  ( X  .x.  Y ) ( ||r `  R
) ( ( 1r
`  R )  .x.  Y ) )
211, 8, 16, 20syl3anc 1249 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) ( ( 1r `  R ) 
.x.  Y ) )
22 eqid 2193 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
2317, 19, 22ringlidm 13519 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
) )  ->  (
( 1r `  R
)  .x.  Y )  =  Y )
241, 8, 23syl2anc 411 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
)  .x.  Y )  =  Y )
2521, 24breqtrd 4055 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) Y )
264, 10, 11, 12, 13, 6isunitd 13602 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y  e.  U  <->  ( Y
( ||r `
 R ) ( 1r `  R )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
277, 26mpbid 147 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( ||r `
 R ) ( 1r `  R )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2827simpld 112 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y
( ||r `
 R ) ( 1r `  R ) )
2917, 18dvdsrtr 13597 . . 3  |-  ( ( R  e.  Ring  /\  ( X  .x.  Y ) (
||r `  R ) Y  /\  Y ( ||r `
 R ) ( 1r `  R ) )  ->  ( X  .x.  Y ) ( ||r `  R
) ( 1r `  R ) )
301, 25, 28, 29syl3anc 1249 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) ( 1r
`  R ) )
31 eqid 2193 . . . . 5  |-  (oppr `  R
)  =  (oppr `  R
)
3231opprring 13575 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
331, 32syl 14 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (oppr `  R
)  e.  Ring )
342, 4, 6, 9unitcld 13604 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  ( Base `  R
) )
3531, 17opprbasg 13571 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
361, 35syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Base `  R )  =  ( Base `  (oppr `  R
) ) )
3734, 36eleqtrd 2272 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  ( Base `  (oppr `  R
) ) )
3827simprd 114 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
39 eqid 2193 . . . . . 6  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
40 eqid 2193 . . . . . 6  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
41 eqid 2193 . . . . . 6  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
4239, 40, 41dvdsrmul1 13598 . . . . 5  |-  ( ( (oppr
`  R )  e. 
Ring  /\  X  e.  (
Base `  (oppr
`  R ) )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) )  ->  ( Y ( .r `  (oppr `  R
) ) X ) ( ||r `
 (oppr
`  R ) ) ( ( 1r `  R ) ( .r
`  (oppr
`  R ) ) X ) )
4333, 37, 38, 42syl3anc 1249 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X ) ( ||r `
 (oppr
`  R ) ) ( ( 1r `  R ) ( .r
`  (oppr
`  R ) ) X ) )
4417, 19, 31, 41opprmulg 13567 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  U  /\  X  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  Y ) )
45443com23 1211 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  Y ) )
4617, 22srgidcl 13472 . . . . . . 7  |-  ( R  e. SRing  ->  ( 1r `  R )  e.  (
Base `  R )
)
476, 46syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( 1r `  R )  e.  ( Base `  R
) )
4817, 19, 31, 41opprmulg 13567 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  e.  ( Base `  R
)  /\  X  e.  U )  ->  (
( 1r `  R
) ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  ( 1r `  R ) ) )
491, 47, 9, 48syl3anc 1249 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
) ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  ( 1r `  R ) ) )
5017, 19, 22ringridm 13520 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
) )  ->  ( X  .x.  ( 1r `  R ) )  =  X )
511, 34, 50syl2anc 411 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  ( 1r `  R ) )  =  X )
5249, 51eqtrd 2226 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
) ( .r `  (oppr `  R ) ) X )  =  X )
5343, 45, 523brtr3d 4060 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) X )
5415simprd 114 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
5539, 40dvdsrtr 13597 . . 3  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( X  .x.  Y ) ( ||r `  (oppr `  R
) ) X  /\  X ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) ( 1r `  R
) )
5633, 53, 54, 55syl3anc 1249 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) ( 1r `  R
) )
574, 10, 11, 12, 13, 6isunitd 13602 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  e.  U  <->  ( ( X  .x.  Y ) (
||r `  R ) ( 1r
`  R )  /\  ( X  .x.  Y ) ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) ) ) )
5830, 56, 57mpbir2and 946 1  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   Basecbs 12618   .rcmulr 12696   1rcur 13455  SRingcsrg 13459   Ringcrg 13492  opprcoppr 13563   ||rcdsr 13582  Unitcui 13583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-oppr 13564  df-dvdsr 13585  df-unit 13586
This theorem is referenced by:  unitmulclb  13610  unitgrp  13612  unitdvcl  13632  rdivmuldivd  13640  lringuplu  13692  subrgugrp  13736
  Copyright terms: Public domain W3C validator