| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitmulcl | Unicode version | ||
| Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitmulcl.1 |
|
| unitmulcl.2 |
|
| Ref | Expression |
|---|---|
| unitmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . 3
| |
| 2 | eqidd 2207 |
. . . . . 6
| |
| 3 | unitmulcl.1 |
. . . . . . 7
| |
| 4 | 3 | a1i 9 |
. . . . . 6
|
| 5 | ringsrg 13859 |
. . . . . . 7
| |
| 6 | 1, 5 | syl 14 |
. . . . . 6
|
| 7 | simp3 1002 |
. . . . . 6
| |
| 8 | 2, 4, 6, 7 | unitcld 13920 |
. . . . 5
|
| 9 | simp2 1001 |
. . . . . . 7
| |
| 10 | eqidd 2207 |
. . . . . . . 8
| |
| 11 | eqidd 2207 |
. . . . . . . 8
| |
| 12 | eqidd 2207 |
. . . . . . . 8
| |
| 13 | eqidd 2207 |
. . . . . . . 8
| |
| 14 | 4, 10, 11, 12, 13, 6 | isunitd 13918 |
. . . . . . 7
|
| 15 | 9, 14 | mpbid 147 |
. . . . . 6
|
| 16 | 15 | simpld 112 |
. . . . 5
|
| 17 | eqid 2206 |
. . . . . 6
| |
| 18 | eqid 2206 |
. . . . . 6
| |
| 19 | unitmulcl.2 |
. . . . . 6
| |
| 20 | 17, 18, 19 | dvdsrmul1 13914 |
. . . . 5
|
| 21 | 1, 8, 16, 20 | syl3anc 1250 |
. . . 4
|
| 22 | eqid 2206 |
. . . . . 6
| |
| 23 | 17, 19, 22 | ringlidm 13835 |
. . . . 5
|
| 24 | 1, 8, 23 | syl2anc 411 |
. . . 4
|
| 25 | 21, 24 | breqtrd 4074 |
. . 3
|
| 26 | 4, 10, 11, 12, 13, 6 | isunitd 13918 |
. . . . 5
|
| 27 | 7, 26 | mpbid 147 |
. . . 4
|
| 28 | 27 | simpld 112 |
. . 3
|
| 29 | 17, 18 | dvdsrtr 13913 |
. . 3
|
| 30 | 1, 25, 28, 29 | syl3anc 1250 |
. 2
|
| 31 | eqid 2206 |
. . . . 5
| |
| 32 | 31 | opprring 13891 |
. . . 4
|
| 33 | 1, 32 | syl 14 |
. . 3
|
| 34 | 2, 4, 6, 9 | unitcld 13920 |
. . . . . 6
|
| 35 | 31, 17 | opprbasg 13887 |
. . . . . . 7
|
| 36 | 1, 35 | syl 14 |
. . . . . 6
|
| 37 | 34, 36 | eleqtrd 2285 |
. . . . 5
|
| 38 | 27 | simprd 114 |
. . . . 5
|
| 39 | eqid 2206 |
. . . . . 6
| |
| 40 | eqid 2206 |
. . . . . 6
| |
| 41 | eqid 2206 |
. . . . . 6
| |
| 42 | 39, 40, 41 | dvdsrmul1 13914 |
. . . . 5
|
| 43 | 33, 37, 38, 42 | syl3anc 1250 |
. . . 4
|
| 44 | 17, 19, 31, 41 | opprmulg 13883 |
. . . . 5
|
| 45 | 44 | 3com23 1212 |
. . . 4
|
| 46 | 17, 22 | srgidcl 13788 |
. . . . . . 7
|
| 47 | 6, 46 | syl 14 |
. . . . . 6
|
| 48 | 17, 19, 31, 41 | opprmulg 13883 |
. . . . . 6
|
| 49 | 1, 47, 9, 48 | syl3anc 1250 |
. . . . 5
|
| 50 | 17, 19, 22 | ringridm 13836 |
. . . . . 6
|
| 51 | 1, 34, 50 | syl2anc 411 |
. . . . 5
|
| 52 | 49, 51 | eqtrd 2239 |
. . . 4
|
| 53 | 43, 45, 52 | 3brtr3d 4079 |
. . 3
|
| 54 | 15 | simprd 114 |
. . 3
|
| 55 | 39, 40 | dvdsrtr 13913 |
. . 3
|
| 56 | 33, 53, 54, 55 | syl3anc 1250 |
. 2
|
| 57 | 4, 10, 11, 12, 13, 6 | isunitd 13918 |
. 2
|
| 58 | 30, 56, 57 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltirr 8050 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-tpos 6341 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-inn 9050 df-2 9108 df-3 9109 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-plusg 12972 df-mulr 12973 df-0g 13140 df-mgm 13238 df-sgrp 13284 df-mnd 13299 df-grp 13385 df-minusg 13386 df-cmn 13672 df-abl 13673 df-mgp 13733 df-ur 13772 df-srg 13776 df-ring 13810 df-oppr 13880 df-dvdsr 13901 df-unit 13902 |
| This theorem is referenced by: unitmulclb 13926 unitgrp 13928 unitdvcl 13948 rdivmuldivd 13956 lringuplu 14008 subrgugrp 14052 |
| Copyright terms: Public domain | W3C validator |