ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitmulcl Unicode version

Theorem unitmulcl 13669
Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitmulcl.1  |-  U  =  (Unit `  R )
unitmulcl.2  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
unitmulcl  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  U )

Proof of Theorem unitmulcl
StepHypRef Expression
1 simp1 999 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  R  e.  Ring )
2 eqidd 2197 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Base `  R )  =  ( Base `  R
) )
3 unitmulcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
43a1i 9 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  U  =  (Unit `  R )
)
5 ringsrg 13603 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
61, 5syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  R  e. SRing )
7 simp3 1001 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y  e.  U )
82, 4, 6, 7unitcld 13664 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y  e.  ( Base `  R
) )
9 simp2 1000 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  U )
10 eqidd 2197 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( 1r `  R )  =  ( 1r `  R
) )
11 eqidd 2197 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( ||r `  R )  =  (
||r `  R ) )
12 eqidd 2197 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (oppr `  R
)  =  (oppr `  R
) )
13 eqidd 2197 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( ||r `  (oppr
`  R ) )  =  ( ||r `
 (oppr
`  R ) ) )
144, 10, 11, 12, 13, 6isunitd 13662 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  e.  U  <->  ( X
( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
159, 14mpbid 147 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X ( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
1615simpld 112 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X
( ||r `
 R ) ( 1r `  R ) )
17 eqid 2196 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
18 eqid 2196 . . . . . 6  |-  ( ||r `  R
)  =  ( ||r `  R
)
19 unitmulcl.2 . . . . . 6  |-  .x.  =  ( .r `  R )
2017, 18, 19dvdsrmul1 13658 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
)  /\  X ( ||r `  R ) ( 1r
`  R ) )  ->  ( X  .x.  Y ) ( ||r `  R
) ( ( 1r
`  R )  .x.  Y ) )
211, 8, 16, 20syl3anc 1249 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) ( ( 1r `  R ) 
.x.  Y ) )
22 eqid 2196 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
2317, 19, 22ringlidm 13579 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
) )  ->  (
( 1r `  R
)  .x.  Y )  =  Y )
241, 8, 23syl2anc 411 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
)  .x.  Y )  =  Y )
2521, 24breqtrd 4059 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) Y )
264, 10, 11, 12, 13, 6isunitd 13662 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y  e.  U  <->  ( Y
( ||r `
 R ) ( 1r `  R )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
277, 26mpbid 147 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( ||r `
 R ) ( 1r `  R )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2827simpld 112 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y
( ||r `
 R ) ( 1r `  R ) )
2917, 18dvdsrtr 13657 . . 3  |-  ( ( R  e.  Ring  /\  ( X  .x.  Y ) (
||r `  R ) Y  /\  Y ( ||r `
 R ) ( 1r `  R ) )  ->  ( X  .x.  Y ) ( ||r `  R
) ( 1r `  R ) )
301, 25, 28, 29syl3anc 1249 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) ( 1r
`  R ) )
31 eqid 2196 . . . . 5  |-  (oppr `  R
)  =  (oppr `  R
)
3231opprring 13635 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
331, 32syl 14 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (oppr `  R
)  e.  Ring )
342, 4, 6, 9unitcld 13664 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  ( Base `  R
) )
3531, 17opprbasg 13631 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
361, 35syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Base `  R )  =  ( Base `  (oppr `  R
) ) )
3734, 36eleqtrd 2275 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  ( Base `  (oppr `  R
) ) )
3827simprd 114 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
39 eqid 2196 . . . . . 6  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
40 eqid 2196 . . . . . 6  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
41 eqid 2196 . . . . . 6  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
4239, 40, 41dvdsrmul1 13658 . . . . 5  |-  ( ( (oppr
`  R )  e. 
Ring  /\  X  e.  (
Base `  (oppr
`  R ) )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) )  ->  ( Y ( .r `  (oppr `  R
) ) X ) ( ||r `
 (oppr
`  R ) ) ( ( 1r `  R ) ( .r
`  (oppr
`  R ) ) X ) )
4333, 37, 38, 42syl3anc 1249 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X ) ( ||r `
 (oppr
`  R ) ) ( ( 1r `  R ) ( .r
`  (oppr
`  R ) ) X ) )
4417, 19, 31, 41opprmulg 13627 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  U  /\  X  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  Y ) )
45443com23 1211 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  Y ) )
4617, 22srgidcl 13532 . . . . . . 7  |-  ( R  e. SRing  ->  ( 1r `  R )  e.  (
Base `  R )
)
476, 46syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( 1r `  R )  e.  ( Base `  R
) )
4817, 19, 31, 41opprmulg 13627 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  e.  ( Base `  R
)  /\  X  e.  U )  ->  (
( 1r `  R
) ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  ( 1r `  R ) ) )
491, 47, 9, 48syl3anc 1249 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
) ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  ( 1r `  R ) ) )
5017, 19, 22ringridm 13580 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
) )  ->  ( X  .x.  ( 1r `  R ) )  =  X )
511, 34, 50syl2anc 411 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  ( 1r `  R ) )  =  X )
5249, 51eqtrd 2229 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
) ( .r `  (oppr `  R ) ) X )  =  X )
5343, 45, 523brtr3d 4064 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) X )
5415simprd 114 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
5539, 40dvdsrtr 13657 . . 3  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( X  .x.  Y ) ( ||r `  (oppr `  R
) ) X  /\  X ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) ( 1r `  R
) )
5633, 53, 54, 55syl3anc 1249 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) ( 1r `  R
) )
574, 10, 11, 12, 13, 6isunitd 13662 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  e.  U  <->  ( ( X  .x.  Y ) (
||r `  R ) ( 1r
`  R )  /\  ( X  .x.  Y ) ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) ) ) )
5830, 56, 57mpbir2and 946 1  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   Basecbs 12678   .rcmulr 12756   1rcur 13515  SRingcsrg 13519   Ringcrg 13552  opprcoppr 13623   ||rcdsr 13642  Unitcui 13643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-cmn 13416  df-abl 13417  df-mgp 13477  df-ur 13516  df-srg 13520  df-ring 13554  df-oppr 13624  df-dvdsr 13645  df-unit 13646
This theorem is referenced by:  unitmulclb  13670  unitgrp  13672  unitdvcl  13692  rdivmuldivd  13700  lringuplu  13752  subrgugrp  13796
  Copyright terms: Public domain W3C validator