| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitmulcl | Unicode version | ||
| Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitmulcl.1 |
|
| unitmulcl.2 |
|
| Ref | Expression |
|---|---|
| unitmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 |
. . 3
| |
| 2 | eqidd 2230 |
. . . . . 6
| |
| 3 | unitmulcl.1 |
. . . . . . 7
| |
| 4 | 3 | a1i 9 |
. . . . . 6
|
| 5 | ringsrg 13996 |
. . . . . . 7
| |
| 6 | 1, 5 | syl 14 |
. . . . . 6
|
| 7 | simp3 1023 |
. . . . . 6
| |
| 8 | 2, 4, 6, 7 | unitcld 14057 |
. . . . 5
|
| 9 | simp2 1022 |
. . . . . . 7
| |
| 10 | eqidd 2230 |
. . . . . . . 8
| |
| 11 | eqidd 2230 |
. . . . . . . 8
| |
| 12 | eqidd 2230 |
. . . . . . . 8
| |
| 13 | eqidd 2230 |
. . . . . . . 8
| |
| 14 | 4, 10, 11, 12, 13, 6 | isunitd 14055 |
. . . . . . 7
|
| 15 | 9, 14 | mpbid 147 |
. . . . . 6
|
| 16 | 15 | simpld 112 |
. . . . 5
|
| 17 | eqid 2229 |
. . . . . 6
| |
| 18 | eqid 2229 |
. . . . . 6
| |
| 19 | unitmulcl.2 |
. . . . . 6
| |
| 20 | 17, 18, 19 | dvdsrmul1 14051 |
. . . . 5
|
| 21 | 1, 8, 16, 20 | syl3anc 1271 |
. . . 4
|
| 22 | eqid 2229 |
. . . . . 6
| |
| 23 | 17, 19, 22 | ringlidm 13972 |
. . . . 5
|
| 24 | 1, 8, 23 | syl2anc 411 |
. . . 4
|
| 25 | 21, 24 | breqtrd 4108 |
. . 3
|
| 26 | 4, 10, 11, 12, 13, 6 | isunitd 14055 |
. . . . 5
|
| 27 | 7, 26 | mpbid 147 |
. . . 4
|
| 28 | 27 | simpld 112 |
. . 3
|
| 29 | 17, 18 | dvdsrtr 14050 |
. . 3
|
| 30 | 1, 25, 28, 29 | syl3anc 1271 |
. 2
|
| 31 | eqid 2229 |
. . . . 5
| |
| 32 | 31 | opprring 14028 |
. . . 4
|
| 33 | 1, 32 | syl 14 |
. . 3
|
| 34 | 2, 4, 6, 9 | unitcld 14057 |
. . . . . 6
|
| 35 | 31, 17 | opprbasg 14024 |
. . . . . . 7
|
| 36 | 1, 35 | syl 14 |
. . . . . 6
|
| 37 | 34, 36 | eleqtrd 2308 |
. . . . 5
|
| 38 | 27 | simprd 114 |
. . . . 5
|
| 39 | eqid 2229 |
. . . . . 6
| |
| 40 | eqid 2229 |
. . . . . 6
| |
| 41 | eqid 2229 |
. . . . . 6
| |
| 42 | 39, 40, 41 | dvdsrmul1 14051 |
. . . . 5
|
| 43 | 33, 37, 38, 42 | syl3anc 1271 |
. . . 4
|
| 44 | 17, 19, 31, 41 | opprmulg 14020 |
. . . . 5
|
| 45 | 44 | 3com23 1233 |
. . . 4
|
| 46 | 17, 22 | srgidcl 13925 |
. . . . . . 7
|
| 47 | 6, 46 | syl 14 |
. . . . . 6
|
| 48 | 17, 19, 31, 41 | opprmulg 14020 |
. . . . . 6
|
| 49 | 1, 47, 9, 48 | syl3anc 1271 |
. . . . 5
|
| 50 | 17, 19, 22 | ringridm 13973 |
. . . . . 6
|
| 51 | 1, 34, 50 | syl2anc 411 |
. . . . 5
|
| 52 | 49, 51 | eqtrd 2262 |
. . . 4
|
| 53 | 43, 45, 52 | 3brtr3d 4113 |
. . 3
|
| 54 | 15 | simprd 114 |
. . 3
|
| 55 | 39, 40 | dvdsrtr 14050 |
. . 3
|
| 56 | 33, 53, 54, 55 | syl3anc 1271 |
. 2
|
| 57 | 4, 10, 11, 12, 13, 6 | isunitd 14055 |
. 2
|
| 58 | 30, 56, 57 | mpbir2and 950 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-tpos 6381 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-plusg 13109 df-mulr 13110 df-0g 13277 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 df-cmn 13809 df-abl 13810 df-mgp 13870 df-ur 13909 df-srg 13913 df-ring 13947 df-oppr 14017 df-dvdsr 14038 df-unit 14039 |
| This theorem is referenced by: unitmulclb 14063 unitgrp 14065 unitdvcl 14085 rdivmuldivd 14093 lringuplu 14145 subrgugrp 14189 |
| Copyright terms: Public domain | W3C validator |