ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitmulcl Unicode version

Theorem unitmulcl 13925
Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitmulcl.1  |-  U  =  (Unit `  R )
unitmulcl.2  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
unitmulcl  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  U )

Proof of Theorem unitmulcl
StepHypRef Expression
1 simp1 1000 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  R  e.  Ring )
2 eqidd 2207 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Base `  R )  =  ( Base `  R
) )
3 unitmulcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
43a1i 9 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  U  =  (Unit `  R )
)
5 ringsrg 13859 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
61, 5syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  R  e. SRing )
7 simp3 1002 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y  e.  U )
82, 4, 6, 7unitcld 13920 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y  e.  ( Base `  R
) )
9 simp2 1001 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  U )
10 eqidd 2207 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( 1r `  R )  =  ( 1r `  R
) )
11 eqidd 2207 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( ||r `  R )  =  (
||r `  R ) )
12 eqidd 2207 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (oppr `  R
)  =  (oppr `  R
) )
13 eqidd 2207 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( ||r `  (oppr
`  R ) )  =  ( ||r `
 (oppr
`  R ) ) )
144, 10, 11, 12, 13, 6isunitd 13918 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  e.  U  <->  ( X
( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
159, 14mpbid 147 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X ( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
1615simpld 112 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X
( ||r `
 R ) ( 1r `  R ) )
17 eqid 2206 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
18 eqid 2206 . . . . . 6  |-  ( ||r `  R
)  =  ( ||r `  R
)
19 unitmulcl.2 . . . . . 6  |-  .x.  =  ( .r `  R )
2017, 18, 19dvdsrmul1 13914 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
)  /\  X ( ||r `  R ) ( 1r
`  R ) )  ->  ( X  .x.  Y ) ( ||r `  R
) ( ( 1r
`  R )  .x.  Y ) )
211, 8, 16, 20syl3anc 1250 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) ( ( 1r `  R ) 
.x.  Y ) )
22 eqid 2206 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
2317, 19, 22ringlidm 13835 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
) )  ->  (
( 1r `  R
)  .x.  Y )  =  Y )
241, 8, 23syl2anc 411 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
)  .x.  Y )  =  Y )
2521, 24breqtrd 4074 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) Y )
264, 10, 11, 12, 13, 6isunitd 13918 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y  e.  U  <->  ( Y
( ||r `
 R ) ( 1r `  R )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
277, 26mpbid 147 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( ||r `
 R ) ( 1r `  R )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2827simpld 112 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y
( ||r `
 R ) ( 1r `  R ) )
2917, 18dvdsrtr 13913 . . 3  |-  ( ( R  e.  Ring  /\  ( X  .x.  Y ) (
||r `  R ) Y  /\  Y ( ||r `
 R ) ( 1r `  R ) )  ->  ( X  .x.  Y ) ( ||r `  R
) ( 1r `  R ) )
301, 25, 28, 29syl3anc 1250 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) ( 1r
`  R ) )
31 eqid 2206 . . . . 5  |-  (oppr `  R
)  =  (oppr `  R
)
3231opprring 13891 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
331, 32syl 14 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (oppr `  R
)  e.  Ring )
342, 4, 6, 9unitcld 13920 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  ( Base `  R
) )
3531, 17opprbasg 13887 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
361, 35syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Base `  R )  =  ( Base `  (oppr `  R
) ) )
3734, 36eleqtrd 2285 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  ( Base `  (oppr `  R
) ) )
3827simprd 114 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
39 eqid 2206 . . . . . 6  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
40 eqid 2206 . . . . . 6  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
41 eqid 2206 . . . . . 6  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
4239, 40, 41dvdsrmul1 13914 . . . . 5  |-  ( ( (oppr
`  R )  e. 
Ring  /\  X  e.  (
Base `  (oppr
`  R ) )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) )  ->  ( Y ( .r `  (oppr `  R
) ) X ) ( ||r `
 (oppr
`  R ) ) ( ( 1r `  R ) ( .r
`  (oppr
`  R ) ) X ) )
4333, 37, 38, 42syl3anc 1250 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X ) ( ||r `
 (oppr
`  R ) ) ( ( 1r `  R ) ( .r
`  (oppr
`  R ) ) X ) )
4417, 19, 31, 41opprmulg 13883 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  U  /\  X  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  Y ) )
45443com23 1212 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  Y ) )
4617, 22srgidcl 13788 . . . . . . 7  |-  ( R  e. SRing  ->  ( 1r `  R )  e.  (
Base `  R )
)
476, 46syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( 1r `  R )  e.  ( Base `  R
) )
4817, 19, 31, 41opprmulg 13883 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  e.  ( Base `  R
)  /\  X  e.  U )  ->  (
( 1r `  R
) ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  ( 1r `  R ) ) )
491, 47, 9, 48syl3anc 1250 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
) ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  ( 1r `  R ) ) )
5017, 19, 22ringridm 13836 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
) )  ->  ( X  .x.  ( 1r `  R ) )  =  X )
511, 34, 50syl2anc 411 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  ( 1r `  R ) )  =  X )
5249, 51eqtrd 2239 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
) ( .r `  (oppr `  R ) ) X )  =  X )
5343, 45, 523brtr3d 4079 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) X )
5415simprd 114 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
5539, 40dvdsrtr 13913 . . 3  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( X  .x.  Y ) ( ||r `  (oppr `  R
) ) X  /\  X ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) ( 1r `  R
) )
5633, 53, 54, 55syl3anc 1250 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) ( 1r `  R
) )
574, 10, 11, 12, 13, 6isunitd 13918 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  e.  U  <->  ( ( X  .x.  Y ) (
||r `  R ) ( 1r
`  R )  /\  ( X  .x.  Y ) ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) ) ) )
5830, 56, 57mpbir2and 947 1  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2177   class class class wbr 4048   ` cfv 5277  (class class class)co 5954   Basecbs 12882   .rcmulr 12960   1rcur 13771  SRingcsrg 13775   Ringcrg 13808  opprcoppr 13879   ||rcdsr 13898  Unitcui 13899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-tpos 6341  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-plusg 12972  df-mulr 12973  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-grp 13385  df-minusg 13386  df-cmn 13672  df-abl 13673  df-mgp 13733  df-ur 13772  df-srg 13776  df-ring 13810  df-oppr 13880  df-dvdsr 13901  df-unit 13902
This theorem is referenced by:  unitmulclb  13926  unitgrp  13928  unitdvcl  13948  rdivmuldivd  13956  lringuplu  14008  subrgugrp  14052
  Copyright terms: Public domain W3C validator