ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitmulcl Unicode version

Theorem unitmulcl 14062
Description: The product of units is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitmulcl.1  |-  U  =  (Unit `  R )
unitmulcl.2  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
unitmulcl  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  U )

Proof of Theorem unitmulcl
StepHypRef Expression
1 simp1 1021 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  R  e.  Ring )
2 eqidd 2230 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Base `  R )  =  ( Base `  R
) )
3 unitmulcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
43a1i 9 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  U  =  (Unit `  R )
)
5 ringsrg 13996 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. SRing
)
61, 5syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  R  e. SRing )
7 simp3 1023 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y  e.  U )
82, 4, 6, 7unitcld 14057 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y  e.  ( Base `  R
) )
9 simp2 1022 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  U )
10 eqidd 2230 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( 1r `  R )  =  ( 1r `  R
) )
11 eqidd 2230 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( ||r `  R )  =  (
||r `  R ) )
12 eqidd 2230 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (oppr `  R
)  =  (oppr `  R
) )
13 eqidd 2230 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( ||r `  (oppr
`  R ) )  =  ( ||r `
 (oppr
`  R ) ) )
144, 10, 11, 12, 13, 6isunitd 14055 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  e.  U  <->  ( X
( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
159, 14mpbid 147 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X ( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
1615simpld 112 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X
( ||r `
 R ) ( 1r `  R ) )
17 eqid 2229 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
18 eqid 2229 . . . . . 6  |-  ( ||r `  R
)  =  ( ||r `  R
)
19 unitmulcl.2 . . . . . 6  |-  .x.  =  ( .r `  R )
2017, 18, 19dvdsrmul1 14051 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
)  /\  X ( ||r `  R ) ( 1r
`  R ) )  ->  ( X  .x.  Y ) ( ||r `  R
) ( ( 1r
`  R )  .x.  Y ) )
211, 8, 16, 20syl3anc 1271 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) ( ( 1r `  R ) 
.x.  Y ) )
22 eqid 2229 . . . . . 6  |-  ( 1r
`  R )  =  ( 1r `  R
)
2317, 19, 22ringlidm 13972 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  ( Base `  R
) )  ->  (
( 1r `  R
)  .x.  Y )  =  Y )
241, 8, 23syl2anc 411 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
)  .x.  Y )  =  Y )
2521, 24breqtrd 4108 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) Y )
264, 10, 11, 12, 13, 6isunitd 14055 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y  e.  U  <->  ( Y
( ||r `
 R ) ( 1r `  R )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
277, 26mpbid 147 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( ||r `
 R ) ( 1r `  R )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2827simpld 112 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y
( ||r `
 R ) ( 1r `  R ) )
2917, 18dvdsrtr 14050 . . 3  |-  ( ( R  e.  Ring  /\  ( X  .x.  Y ) (
||r `  R ) Y  /\  Y ( ||r `
 R ) ( 1r `  R ) )  ->  ( X  .x.  Y ) ( ||r `  R
) ( 1r `  R ) )
301, 25, 28, 29syl3anc 1271 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  R ) ( 1r
`  R ) )
31 eqid 2229 . . . . 5  |-  (oppr `  R
)  =  (oppr `  R
)
3231opprring 14028 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
331, 32syl 14 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (oppr `  R
)  e.  Ring )
342, 4, 6, 9unitcld 14057 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  ( Base `  R
) )
3531, 17opprbasg 14024 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
361, 35syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Base `  R )  =  ( Base `  (oppr `  R
) ) )
3734, 36eleqtrd 2308 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X  e.  ( Base `  (oppr `  R
) ) )
3827simprd 114 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  Y
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
39 eqid 2229 . . . . . 6  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
40 eqid 2229 . . . . . 6  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
41 eqid 2229 . . . . . 6  |-  ( .r
`  (oppr
`  R ) )  =  ( .r `  (oppr `  R ) )
4239, 40, 41dvdsrmul1 14051 . . . . 5  |-  ( ( (oppr
`  R )  e. 
Ring  /\  X  e.  (
Base `  (oppr
`  R ) )  /\  Y ( ||r `  (oppr `  R
) ) ( 1r
`  R ) )  ->  ( Y ( .r `  (oppr `  R
) ) X ) ( ||r `
 (oppr
`  R ) ) ( ( 1r `  R ) ( .r
`  (oppr
`  R ) ) X ) )
4333, 37, 38, 42syl3anc 1271 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X ) ( ||r `
 (oppr
`  R ) ) ( ( 1r `  R ) ( .r
`  (oppr
`  R ) ) X ) )
4417, 19, 31, 41opprmulg 14020 . . . . 5  |-  ( ( R  e.  Ring  /\  Y  e.  U  /\  X  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  Y ) )
45443com23 1233 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( Y ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  Y ) )
4617, 22srgidcl 13925 . . . . . . 7  |-  ( R  e. SRing  ->  ( 1r `  R )  e.  (
Base `  R )
)
476, 46syl 14 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( 1r `  R )  e.  ( Base `  R
) )
4817, 19, 31, 41opprmulg 14020 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( 1r `  R )  e.  ( Base `  R
)  /\  X  e.  U )  ->  (
( 1r `  R
) ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  ( 1r `  R ) ) )
491, 47, 9, 48syl3anc 1271 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
) ( .r `  (oppr `  R ) ) X )  =  ( X 
.x.  ( 1r `  R ) ) )
5017, 19, 22ringridm 13973 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  R
) )  ->  ( X  .x.  ( 1r `  R ) )  =  X )
511, 34, 50syl2anc 411 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  ( 1r `  R ) )  =  X )
5249, 51eqtrd 2262 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( 1r `  R
) ( .r `  (oppr `  R ) ) X )  =  X )
5343, 45, 523brtr3d 4113 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) X )
5415simprd 114 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  X
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
5539, 40dvdsrtr 14050 . . 3  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( X  .x.  Y ) ( ||r `  (oppr `  R
) ) X  /\  X ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) ( 1r `  R
) )
5633, 53, 54, 55syl3anc 1271 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y ) (
||r `  (oppr
`  R ) ) ( 1r `  R
) )
574, 10, 11, 12, 13, 6isunitd 14055 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  e.  U  <->  ( ( X  .x.  Y ) (
||r `  R ) ( 1r
`  R )  /\  ( X  .x.  Y ) ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) ) ) )
5830, 56, 57mpbir2and 950 1  |-  ( ( R  e.  Ring  /\  X  e.  U  /\  Y  e.  U )  ->  ( X  .x.  Y )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5314  (class class class)co 5994   Basecbs 13018   .rcmulr 13097   1rcur 13908  SRingcsrg 13912   Ringcrg 13945  opprcoppr 14016   ||rcdsr 14035  Unitcui 14036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-tpos 6381  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-plusg 13109  df-mulr 13110  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523  df-cmn 13809  df-abl 13810  df-mgp 13870  df-ur 13909  df-srg 13913  df-ring 13947  df-oppr 14017  df-dvdsr 14038  df-unit 14039
This theorem is referenced by:  unitmulclb  14063  unitgrp  14065  unitdvcl  14085  rdivmuldivd  14093  lringuplu  14145  subrgugrp  14189
  Copyright terms: Public domain W3C validator