| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > archrecpr | GIF version | ||
| Description: Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| archrecpr | ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 7559 | . . . 4 ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | |
| 2 | prml 7561 | . . . 4 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘𝐴)) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘𝐴)) |
| 4 | archrecnq 7747 | . . . . 5 ⊢ (𝑥 ∈ Q → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥) | |
| 5 | 4 | ad2antrl 490 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥) |
| 6 | 1 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) |
| 7 | simplrr 536 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → 𝑥 ∈ (1st ‘𝐴)) | |
| 8 | prcdnql 7568 | . . . . . 6 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑥 ∈ (1st ‘𝐴)) → ((*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥 → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴))) | |
| 9 | 6, 7, 8 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → ((*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥 → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴))) |
| 10 | 9 | reximdva 2599 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → (∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥 → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴))) |
| 11 | 5, 10 | mpd 13 | . . 3 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴)) |
| 12 | 3, 11 | rexlimddv 2619 | . 2 ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴)) |
| 13 | nnnq 7506 | . . . . . 6 ⊢ (𝑗 ∈ N → [〈𝑗, 1o〉] ~Q ∈ Q) | |
| 14 | recclnq 7476 | . . . . . 6 ⊢ ([〈𝑗, 1o〉] ~Q ∈ Q → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q) | |
| 15 | 13, 14 | syl 14 | . . . . 5 ⊢ (𝑗 ∈ N → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q) |
| 16 | 15 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q) |
| 17 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → 𝐴 ∈ P) | |
| 18 | nqprl 7635 | . . . 4 ⊢ (((*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q ∧ 𝐴 ∈ P) → ((*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴) ↔ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴)) | |
| 19 | 16, 17, 18 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → ((*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴) ↔ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴)) |
| 20 | 19 | rexbidva 2494 | . 2 ⊢ (𝐴 ∈ P → (∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴) ↔ ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴)) |
| 21 | 12, 20 | mpbid 147 | 1 ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 {cab 2182 ∃wrex 2476 〈cop 3626 class class class wbr 4034 ‘cfv 5259 1st c1st 6205 2nd c2nd 6206 1oc1o 6476 [cec 6599 Ncnpi 7356 ~Q ceq 7363 Qcnq 7364 *Qcrq 7368 <Q cltq 7369 Pcnp 7375 <P cltp 7379 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-inp 7550 df-iltp 7554 |
| This theorem is referenced by: caucvgprprlemlim 7795 |
| Copyright terms: Public domain | W3C validator |