ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archrecpr GIF version

Theorem archrecpr 7682
Description: Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.)
Assertion
Ref Expression
archrecpr (𝐴P → ∃𝑗N ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝐴)
Distinct variable groups:   𝐴,𝑗   𝑗,𝑙,𝑢
Allowed substitution hints:   𝐴(𝑢,𝑙)

Proof of Theorem archrecpr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prop 7493 . . . 4 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
2 prml 7495 . . . 4 (⟨(1st𝐴), (2nd𝐴)⟩ ∈ P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
31, 2syl 14 . . 3 (𝐴P → ∃𝑥Q 𝑥 ∈ (1st𝐴))
4 archrecnq 7681 . . . . 5 (𝑥Q → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥)
54ad2antrl 490 . . . 4 ((𝐴P ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥)
61ad2antrr 488 . . . . . 6 (((𝐴P ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑗N) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
7 simplrr 536 . . . . . 6 (((𝐴P ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑗N) → 𝑥 ∈ (1st𝐴))
8 prcdnql 7502 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑥 ∈ (1st𝐴)) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st𝐴)))
96, 7, 8syl2anc 411 . . . . 5 (((𝐴P ∧ (𝑥Q𝑥 ∈ (1st𝐴))) ∧ 𝑗N) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st𝐴)))
109reximdva 2592 . . . 4 ((𝐴P ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → (∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥 → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st𝐴)))
115, 10mpd 13 . . 3 ((𝐴P ∧ (𝑥Q𝑥 ∈ (1st𝐴))) → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st𝐴))
123, 11rexlimddv 2612 . 2 (𝐴P → ∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st𝐴))
13 nnnq 7440 . . . . . 6 (𝑗N → [⟨𝑗, 1o⟩] ~QQ)
14 recclnq 7410 . . . . . 6 ([⟨𝑗, 1o⟩] ~QQ → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
1513, 14syl 14 . . . . 5 (𝑗N → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
1615adantl 277 . . . 4 ((𝐴P𝑗N) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q)
17 simpl 109 . . . 4 ((𝐴P𝑗N) → 𝐴P)
18 nqprl 7569 . . . 4 (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q𝐴P) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st𝐴) ↔ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝐴))
1916, 17, 18syl2anc 411 . . 3 ((𝐴P𝑗N) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st𝐴) ↔ ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝐴))
2019rexbidva 2487 . 2 (𝐴P → (∃𝑗N (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st𝐴) ↔ ∃𝑗N ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝐴))
2112, 20mpbid 147 1 (𝐴P → ∃𝑗N ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2160  {cab 2175  wrex 2469  cop 3610   class class class wbr 4018  cfv 5231  1st c1st 6157  2nd c2nd 6158  1oc1o 6428  [cec 6551  Ncnpi 7290   ~Q ceq 7297  Qcnq 7298  *Qcrq 7302   <Q cltq 7303  Pcnp 7309  <P cltp 7313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4304  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-1o 6435  df-oadd 6439  df-omul 6440  df-er 6553  df-ec 6555  df-qs 6559  df-ni 7322  df-pli 7323  df-mi 7324  df-lti 7325  df-plpq 7362  df-mpq 7363  df-enq 7365  df-nqqs 7366  df-plqqs 7367  df-mqqs 7368  df-1nqqs 7369  df-rq 7370  df-ltnqqs 7371  df-inp 7484  df-iltp 7488
This theorem is referenced by:  caucvgprprlemlim  7729
  Copyright terms: Public domain W3C validator