![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > archrecpr | GIF version |
Description: Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.) |
Ref | Expression |
---|---|
archrecpr | ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prop 7535 | . . . 4 ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | |
2 | prml 7537 | . . . 4 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘𝐴)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘𝐴)) |
4 | archrecnq 7723 | . . . . 5 ⊢ (𝑥 ∈ Q → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥) | |
5 | 4 | ad2antrl 490 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥) |
6 | 1 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) |
7 | simplrr 536 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → 𝑥 ∈ (1st ‘𝐴)) | |
8 | prcdnql 7544 | . . . . . 6 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑥 ∈ (1st ‘𝐴)) → ((*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥 → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴))) | |
9 | 6, 7, 8 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → ((*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥 → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴))) |
10 | 9 | reximdva 2596 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → (∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥 → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴))) |
11 | 5, 10 | mpd 13 | . . 3 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴)) |
12 | 3, 11 | rexlimddv 2616 | . 2 ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴)) |
13 | nnnq 7482 | . . . . . 6 ⊢ (𝑗 ∈ N → [〈𝑗, 1o〉] ~Q ∈ Q) | |
14 | recclnq 7452 | . . . . . 6 ⊢ ([〈𝑗, 1o〉] ~Q ∈ Q → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q) | |
15 | 13, 14 | syl 14 | . . . . 5 ⊢ (𝑗 ∈ N → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q) |
16 | 15 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q) |
17 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → 𝐴 ∈ P) | |
18 | nqprl 7611 | . . . 4 ⊢ (((*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q ∧ 𝐴 ∈ P) → ((*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴) ↔ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴)) | |
19 | 16, 17, 18 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → ((*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴) ↔ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴)) |
20 | 19 | rexbidva 2491 | . 2 ⊢ (𝐴 ∈ P → (∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴) ↔ ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴)) |
21 | 12, 20 | mpbid 147 | 1 ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 {cab 2179 ∃wrex 2473 〈cop 3621 class class class wbr 4029 ‘cfv 5254 1st c1st 6191 2nd c2nd 6192 1oc1o 6462 [cec 6585 Ncnpi 7332 ~Q ceq 7339 Qcnq 7340 *Qcrq 7344 <Q cltq 7345 Pcnp 7351 <P cltp 7355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-pli 7365 df-mi 7366 df-lti 7367 df-plpq 7404 df-mpq 7405 df-enq 7407 df-nqqs 7408 df-plqqs 7409 df-mqqs 7410 df-1nqqs 7411 df-rq 7412 df-ltnqqs 7413 df-inp 7526 df-iltp 7530 |
This theorem is referenced by: caucvgprprlemlim 7771 |
Copyright terms: Public domain | W3C validator |