![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > archrecpr | GIF version |
Description: Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.) |
Ref | Expression |
---|---|
archrecpr | ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N ⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prop 7493 | . . . 4 ⊢ (𝐴 ∈ P → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ P) | |
2 | prml 7495 | . . . 4 ⊢ (⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘𝐴)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘𝐴)) |
4 | archrecnq 7681 | . . . . 5 ⊢ (𝑥 ∈ Q → ∃𝑗 ∈ N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) | |
5 | 4 | ad2antrl 490 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → ∃𝑗 ∈ N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥) |
6 | 1 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ P) |
7 | simplrr 536 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → 𝑥 ∈ (1st ‘𝐴)) | |
8 | prcdnql 7502 | . . . . . 6 ⊢ ((⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ P ∧ 𝑥 ∈ (1st ‘𝐴)) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st ‘𝐴))) | |
9 | 6, 7, 8 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥 → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st ‘𝐴))) |
10 | 9 | reximdva 2592 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → (∃𝑗 ∈ N (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑥 → ∃𝑗 ∈ N (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st ‘𝐴))) |
11 | 5, 10 | mpd 13 | . . 3 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → ∃𝑗 ∈ N (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st ‘𝐴)) |
12 | 3, 11 | rexlimddv 2612 | . 2 ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st ‘𝐴)) |
13 | nnnq 7440 | . . . . . 6 ⊢ (𝑗 ∈ N → [⟨𝑗, 1o⟩] ~Q ∈ Q) | |
14 | recclnq 7410 | . . . . . 6 ⊢ ([⟨𝑗, 1o⟩] ~Q ∈ Q → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q) | |
15 | 13, 14 | syl 14 | . . . . 5 ⊢ (𝑗 ∈ N → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q) |
16 | 15 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q) |
17 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → 𝐴 ∈ P) | |
18 | nqprl 7569 | . . . 4 ⊢ (((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ Q ∧ 𝐴 ∈ P) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st ‘𝐴) ↔ ⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝐴)) | |
19 | 16, 17, 18 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → ((*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st ‘𝐴) ↔ ⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝐴)) |
20 | 19 | rexbidva 2487 | . 2 ⊢ (𝐴 ∈ P → (∃𝑗 ∈ N (*Q‘[⟨𝑗, 1o⟩] ~Q ) ∈ (1st ‘𝐴) ↔ ∃𝑗 ∈ N ⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝐴)) |
21 | 12, 20 | mpbid 147 | 1 ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N ⟨{𝑙 ∣ 𝑙 <Q (*Q‘[⟨𝑗, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑗, 1o⟩] ~Q ) <Q 𝑢}⟩<P 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2160 {cab 2175 ∃wrex 2469 ⟨cop 3610 class class class wbr 4018 ‘cfv 5231 1st c1st 6157 2nd c2nd 6158 1oc1o 6428 [cec 6551 Ncnpi 7290 ~Q ceq 7297 Qcnq 7298 *Qcrq 7302 <Q cltq 7303 Pcnp 7309 <P cltp 7313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-eprel 4304 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-recs 6324 df-irdg 6389 df-1o 6435 df-oadd 6439 df-omul 6440 df-er 6553 df-ec 6555 df-qs 6559 df-ni 7322 df-pli 7323 df-mi 7324 df-lti 7325 df-plpq 7362 df-mpq 7363 df-enq 7365 df-nqqs 7366 df-plqqs 7367 df-mqqs 7368 df-1nqqs 7369 df-rq 7370 df-ltnqqs 7371 df-inp 7484 df-iltp 7488 |
This theorem is referenced by: caucvgprprlemlim 7729 |
Copyright terms: Public domain | W3C validator |