| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > archrecpr | GIF version | ||
| Description: Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| archrecpr | ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prop 7590 | . . . 4 ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | |
| 2 | prml 7592 | . . . 4 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘𝐴)) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘𝐴)) |
| 4 | archrecnq 7778 | . . . . 5 ⊢ (𝑥 ∈ Q → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥) | |
| 5 | 4 | ad2antrl 490 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥) |
| 6 | 1 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) |
| 7 | simplrr 536 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → 𝑥 ∈ (1st ‘𝐴)) | |
| 8 | prcdnql 7599 | . . . . . 6 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑥 ∈ (1st ‘𝐴)) → ((*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥 → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴))) | |
| 9 | 6, 7, 8 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → ((*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥 → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴))) |
| 10 | 9 | reximdva 2608 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → (∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥 → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴))) |
| 11 | 5, 10 | mpd 13 | . . 3 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴)) |
| 12 | 3, 11 | rexlimddv 2628 | . 2 ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴)) |
| 13 | nnnq 7537 | . . . . . 6 ⊢ (𝑗 ∈ N → [〈𝑗, 1o〉] ~Q ∈ Q) | |
| 14 | recclnq 7507 | . . . . . 6 ⊢ ([〈𝑗, 1o〉] ~Q ∈ Q → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q) | |
| 15 | 13, 14 | syl 14 | . . . . 5 ⊢ (𝑗 ∈ N → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q) |
| 16 | 15 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q) |
| 17 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → 𝐴 ∈ P) | |
| 18 | nqprl 7666 | . . . 4 ⊢ (((*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q ∧ 𝐴 ∈ P) → ((*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴) ↔ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴)) | |
| 19 | 16, 17, 18 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → ((*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴) ↔ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴)) |
| 20 | 19 | rexbidva 2503 | . 2 ⊢ (𝐴 ∈ P → (∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴) ↔ ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴)) |
| 21 | 12, 20 | mpbid 147 | 1 ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 {cab 2191 ∃wrex 2485 〈cop 3636 class class class wbr 4045 ‘cfv 5272 1st c1st 6226 2nd c2nd 6227 1oc1o 6497 [cec 6620 Ncnpi 7387 ~Q ceq 7394 Qcnq 7395 *Qcrq 7399 <Q cltq 7400 Pcnp 7406 <P cltp 7410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-eprel 4337 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-1o 6504 df-oadd 6508 df-omul 6509 df-er 6622 df-ec 6624 df-qs 6628 df-ni 7419 df-pli 7420 df-mi 7421 df-lti 7422 df-plpq 7459 df-mpq 7460 df-enq 7462 df-nqqs 7463 df-plqqs 7464 df-mqqs 7465 df-1nqqs 7466 df-rq 7467 df-ltnqqs 7468 df-inp 7581 df-iltp 7585 |
| This theorem is referenced by: caucvgprprlemlim 7826 |
| Copyright terms: Public domain | W3C validator |