| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > archrecpr | GIF version | ||
| Description: Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.) | 
| Ref | Expression | 
|---|---|
| archrecpr | ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prop 7542 | . . . 4 ⊢ (𝐴 ∈ P → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | |
| 2 | prml 7544 | . . . 4 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘𝐴)) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝐴 ∈ P → ∃𝑥 ∈ Q 𝑥 ∈ (1st ‘𝐴)) | 
| 4 | archrecnq 7730 | . . . . 5 ⊢ (𝑥 ∈ Q → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥) | |
| 5 | 4 | ad2antrl 490 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥) | 
| 6 | 1 | ad2antrr 488 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P) | 
| 7 | simplrr 536 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → 𝑥 ∈ (1st ‘𝐴)) | |
| 8 | prcdnql 7551 | . . . . . 6 ⊢ ((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑥 ∈ (1st ‘𝐴)) → ((*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥 → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴))) | |
| 9 | 6, 7, 8 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) ∧ 𝑗 ∈ N) → ((*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥 → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴))) | 
| 10 | 9 | reximdva 2599 | . . . 4 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → (∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑥 → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴))) | 
| 11 | 5, 10 | mpd 13 | . . 3 ⊢ ((𝐴 ∈ P ∧ (𝑥 ∈ Q ∧ 𝑥 ∈ (1st ‘𝐴))) → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴)) | 
| 12 | 3, 11 | rexlimddv 2619 | . 2 ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴)) | 
| 13 | nnnq 7489 | . . . . . 6 ⊢ (𝑗 ∈ N → [〈𝑗, 1o〉] ~Q ∈ Q) | |
| 14 | recclnq 7459 | . . . . . 6 ⊢ ([〈𝑗, 1o〉] ~Q ∈ Q → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q) | |
| 15 | 13, 14 | syl 14 | . . . . 5 ⊢ (𝑗 ∈ N → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q) | 
| 16 | 15 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q) | 
| 17 | simpl 109 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → 𝐴 ∈ P) | |
| 18 | nqprl 7618 | . . . 4 ⊢ (((*Q‘[〈𝑗, 1o〉] ~Q ) ∈ Q ∧ 𝐴 ∈ P) → ((*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴) ↔ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴)) | |
| 19 | 16, 17, 18 | syl2anc 411 | . . 3 ⊢ ((𝐴 ∈ P ∧ 𝑗 ∈ N) → ((*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴) ↔ 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴)) | 
| 20 | 19 | rexbidva 2494 | . 2 ⊢ (𝐴 ∈ P → (∃𝑗 ∈ N (*Q‘[〈𝑗, 1o〉] ~Q ) ∈ (1st ‘𝐴) ↔ ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴)) | 
| 21 | 12, 20 | mpbid 147 | 1 ⊢ (𝐴 ∈ P → ∃𝑗 ∈ N 〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑗, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑗, 1o〉] ~Q ) <Q 𝑢}〉<P 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2167 {cab 2182 ∃wrex 2476 〈cop 3625 class class class wbr 4033 ‘cfv 5258 1st c1st 6196 2nd c2nd 6197 1oc1o 6467 [cec 6590 Ncnpi 7339 ~Q ceq 7346 Qcnq 7347 *Qcrq 7351 <Q cltq 7352 Pcnp 7358 <P cltp 7362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-pli 7372 df-mi 7373 df-lti 7374 df-plpq 7411 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-plqqs 7416 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-inp 7533 df-iltp 7537 | 
| This theorem is referenced by: caucvgprprlemlim 7778 | 
| Copyright terms: Public domain | W3C validator |