Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caucvgsrlembnd | Unicode version |
Description: Lemma for caucvgsr 7739. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.) |
Ref | Expression |
---|---|
caucvgsr.f | |
caucvgsr.cau | |
caucvgsrlembnd.bnd |
Ref | Expression |
---|---|
caucvgsrlembnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsr.f | . 2 | |
2 | caucvgsr.cau | . 2 | |
3 | caucvgsrlembnd.bnd | . 2 | |
4 | fveq2 5485 | . . . . 5 | |
5 | 4 | oveq1d 5856 | . . . 4 |
6 | 5 | oveq1d 5856 | . . 3 |
7 | 6 | cbvmptv 4077 | . 2 |
8 | 1, 2, 3, 7 | caucvgsrlemoffres 7737 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 cab 2151 wral 2443 wrex 2444 cop 3578 class class class wbr 3981 cmpt 4042 wf 5183 cfv 5187 (class class class)co 5841 c1o 6373 cec 6495 cnpi 7209 clti 7212 ceq 7216 crq 7221 cltq 7222 c1p 7229 cpp 7230 cer 7233 cnr 7234 c0r 7235 c1r 7236 cm1r 7237 cplr 7238 cmr 7239 cltr 7240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-nul 4107 ax-pow 4152 ax-pr 4186 ax-un 4410 ax-setind 4513 ax-iinf 4564 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-reu 2450 df-rmo 2451 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-nul 3409 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-int 3824 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-tr 4080 df-eprel 4266 df-id 4270 df-po 4273 df-iso 4274 df-iord 4343 df-on 4345 df-suc 4348 df-iom 4567 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 df-riota 5797 df-ov 5844 df-oprab 5845 df-mpo 5846 df-1st 6105 df-2nd 6106 df-recs 6269 df-irdg 6334 df-1o 6380 df-2o 6381 df-oadd 6384 df-omul 6385 df-er 6497 df-ec 6499 df-qs 6503 df-ni 7241 df-pli 7242 df-mi 7243 df-lti 7244 df-plpq 7281 df-mpq 7282 df-enq 7284 df-nqqs 7285 df-plqqs 7286 df-mqqs 7287 df-1nqqs 7288 df-rq 7289 df-ltnqqs 7290 df-enq0 7361 df-nq0 7362 df-0nq0 7363 df-plq0 7364 df-mq0 7365 df-inp 7403 df-i1p 7404 df-iplp 7405 df-imp 7406 df-iltp 7407 df-enr 7663 df-nr 7664 df-plr 7665 df-mr 7666 df-ltr 7667 df-0r 7668 df-1r 7669 df-m1r 7670 |
This theorem is referenced by: caucvgsr 7739 |
Copyright terms: Public domain | W3C validator |