ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlembnd GIF version

Theorem caucvgsrlembnd 7818
Description: Lemma for caucvgsr 7819. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
Assertion
Ref Expression
caucvgsrlembnd (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐴,𝑗,𝑙,𝑢,𝑘   𝐴,𝑚,𝑘   𝑥,𝐴,𝑗,𝑘,𝑦   𝑘,𝐹,𝑛   𝑗,𝐹,𝑙,𝑢   𝑚,𝐹   𝑥,𝐹,𝑦   𝜑,𝑘,𝑛   𝜑,𝑗,𝑥   𝜑,𝑚   𝑛,𝑙,𝑢   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑙)

Proof of Theorem caucvgsrlembnd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.f . 2 (𝜑𝐹:NR)
2 caucvgsr.cau . 2 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3 caucvgsrlembnd.bnd . 2 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
4 fveq2 5530 . . . . 5 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
54oveq1d 5906 . . . 4 (𝑎 = 𝑏 → ((𝐹𝑎) +R 1R) = ((𝐹𝑏) +R 1R))
65oveq1d 5906 . . 3 (𝑎 = 𝑏 → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹𝑏) +R 1R) +R (𝐴 ·R -1R)))
76cbvmptv 4114 . 2 (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R))) = (𝑏N ↦ (((𝐹𝑏) +R 1R) +R (𝐴 ·R -1R)))
81, 2, 3, 7caucvgsrlemoffres 7817 1 (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  {cab 2175  wral 2468  wrex 2469  cop 3610   class class class wbr 4018  cmpt 4079  wf 5227  cfv 5231  (class class class)co 5891  1oc1o 6428  [cec 6551  Ncnpi 7289   <N clti 7292   ~Q ceq 7296  *Qcrq 7301   <Q cltq 7302  1Pc1p 7309   +P cpp 7310   ~R cer 7313  Rcnr 7314  0Rc0r 7315  1Rc1r 7316  -1Rcm1r 7317   +R cplr 7318   ·R cmr 7319   <R cltr 7320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4304  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-1o 6435  df-2o 6436  df-oadd 6439  df-omul 6440  df-er 6553  df-ec 6555  df-qs 6559  df-ni 7321  df-pli 7322  df-mi 7323  df-lti 7324  df-plpq 7361  df-mpq 7362  df-enq 7364  df-nqqs 7365  df-plqqs 7366  df-mqqs 7367  df-1nqqs 7368  df-rq 7369  df-ltnqqs 7370  df-enq0 7441  df-nq0 7442  df-0nq0 7443  df-plq0 7444  df-mq0 7445  df-inp 7483  df-i1p 7484  df-iplp 7485  df-imp 7486  df-iltp 7487  df-enr 7743  df-nr 7744  df-plr 7745  df-mr 7746  df-ltr 7747  df-0r 7748  df-1r 7749  df-m1r 7750
This theorem is referenced by:  caucvgsr  7819
  Copyright terms: Public domain W3C validator