![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > caucvgsrlembnd | GIF version |
Description: Lemma for caucvgsr 7819. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.) |
Ref | Expression |
---|---|
caucvgsr.f | ⊢ (𝜑 → 𝐹:N⟶R) |
caucvgsr.cau | ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) |
caucvgsrlembnd.bnd | ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) |
Ref | Expression |
---|---|
caucvgsrlembnd | ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caucvgsr.f | . 2 ⊢ (𝜑 → 𝐹:N⟶R) | |
2 | caucvgsr.cau | . 2 ⊢ (𝜑 → ∀𝑛 ∈ N ∀𝑘 ∈ N (𝑛 <N 𝑘 → ((𝐹‘𝑛) <R ((𝐹‘𝑘) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R ) ∧ (𝐹‘𝑘) <R ((𝐹‘𝑛) +R [〈(〈{𝑙 ∣ 𝑙 <Q (*Q‘[〈𝑛, 1o〉] ~Q )}, {𝑢 ∣ (*Q‘[〈𝑛, 1o〉] ~Q ) <Q 𝑢}〉 +P 1P), 1P〉] ~R )))) | |
3 | caucvgsrlembnd.bnd | . 2 ⊢ (𝜑 → ∀𝑚 ∈ N 𝐴 <R (𝐹‘𝑚)) | |
4 | fveq2 5530 | . . . . 5 ⊢ (𝑎 = 𝑏 → (𝐹‘𝑎) = (𝐹‘𝑏)) | |
5 | 4 | oveq1d 5906 | . . . 4 ⊢ (𝑎 = 𝑏 → ((𝐹‘𝑎) +R 1R) = ((𝐹‘𝑏) +R 1R)) |
6 | 5 | oveq1d 5906 | . . 3 ⊢ (𝑎 = 𝑏 → (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹‘𝑏) +R 1R) +R (𝐴 ·R -1R))) |
7 | 6 | cbvmptv 4114 | . 2 ⊢ (𝑎 ∈ N ↦ (((𝐹‘𝑎) +R 1R) +R (𝐴 ·R -1R))) = (𝑏 ∈ N ↦ (((𝐹‘𝑏) +R 1R) +R (𝐴 ·R -1R))) |
8 | 1, 2, 3, 7 | caucvgsrlemoffres 7817 | 1 ⊢ (𝜑 → ∃𝑦 ∈ R ∀𝑥 ∈ R (0R <R 𝑥 → ∃𝑗 ∈ N ∀𝑘 ∈ N (𝑗 <N 𝑘 → ((𝐹‘𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹‘𝑘) +R 𝑥))))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 {cab 2175 ∀wral 2468 ∃wrex 2469 〈cop 3610 class class class wbr 4018 ↦ cmpt 4079 ⟶wf 5227 ‘cfv 5231 (class class class)co 5891 1oc1o 6428 [cec 6551 Ncnpi 7289 <N clti 7292 ~Q ceq 7296 *Qcrq 7301 <Q cltq 7302 1Pc1p 7309 +P cpp 7310 ~R cer 7313 Rcnr 7314 0Rc0r 7315 1Rc1r 7316 -1Rcm1r 7317 +R cplr 7318 ·R cmr 7319 <R cltr 7320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-eprel 4304 df-id 4308 df-po 4311 df-iso 4312 df-iord 4381 df-on 4383 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-riota 5847 df-ov 5894 df-oprab 5895 df-mpo 5896 df-1st 6159 df-2nd 6160 df-recs 6324 df-irdg 6389 df-1o 6435 df-2o 6436 df-oadd 6439 df-omul 6440 df-er 6553 df-ec 6555 df-qs 6559 df-ni 7321 df-pli 7322 df-mi 7323 df-lti 7324 df-plpq 7361 df-mpq 7362 df-enq 7364 df-nqqs 7365 df-plqqs 7366 df-mqqs 7367 df-1nqqs 7368 df-rq 7369 df-ltnqqs 7370 df-enq0 7441 df-nq0 7442 df-0nq0 7443 df-plq0 7444 df-mq0 7445 df-inp 7483 df-i1p 7484 df-iplp 7485 df-imp 7486 df-iltp 7487 df-enr 7743 df-nr 7744 df-plr 7745 df-mr 7746 df-ltr 7747 df-0r 7748 df-1r 7749 df-m1r 7750 |
This theorem is referenced by: caucvgsr 7819 |
Copyright terms: Public domain | W3C validator |