ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgsrlembnd GIF version

Theorem caucvgsrlembnd 7868
Description: Lemma for caucvgsr 7869. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.)
Hypotheses
Ref Expression
caucvgsr.f (𝜑𝐹:NR)
caucvgsr.cau (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
caucvgsrlembnd.bnd (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
Assertion
Ref Expression
caucvgsrlembnd (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Distinct variable groups:   𝐴,𝑘,𝑛   𝐴,𝑗,𝑙,𝑢,𝑘   𝐴,𝑚,𝑘   𝑥,𝐴,𝑗,𝑘,𝑦   𝑘,𝐹,𝑛   𝑗,𝐹,𝑙,𝑢   𝑚,𝐹   𝑥,𝐹,𝑦   𝜑,𝑘,𝑛   𝜑,𝑗,𝑥   𝜑,𝑚   𝑛,𝑙,𝑢   𝑚,𝑛
Allowed substitution hints:   𝜑(𝑦,𝑢,𝑙)

Proof of Theorem caucvgsrlembnd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 caucvgsr.f . 2 (𝜑𝐹:NR)
2 caucvgsr.cau . 2 (𝜑 → ∀𝑛N𝑘N (𝑛 <N 𝑘 → ((𝐹𝑛) <R ((𝐹𝑘) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ) ∧ (𝐹𝑘) <R ((𝐹𝑛) +R [⟨(⟨{𝑙𝑙 <Q (*Q‘[⟨𝑛, 1o⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑛, 1o⟩] ~Q ) <Q 𝑢}⟩ +P 1P), 1P⟩] ~R ))))
3 caucvgsrlembnd.bnd . 2 (𝜑 → ∀𝑚N 𝐴 <R (𝐹𝑚))
4 fveq2 5558 . . . . 5 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
54oveq1d 5937 . . . 4 (𝑎 = 𝑏 → ((𝐹𝑎) +R 1R) = ((𝐹𝑏) +R 1R))
65oveq1d 5937 . . 3 (𝑎 = 𝑏 → (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R)) = (((𝐹𝑏) +R 1R) +R (𝐴 ·R -1R)))
76cbvmptv 4129 . 2 (𝑎N ↦ (((𝐹𝑎) +R 1R) +R (𝐴 ·R -1R))) = (𝑏N ↦ (((𝐹𝑏) +R 1R) +R (𝐴 ·R -1R)))
81, 2, 3, 7caucvgsrlemoffres 7867 1 (𝜑 → ∃𝑦R𝑥R (0R <R 𝑥 → ∃𝑗N𝑘N (𝑗 <N 𝑘 → ((𝐹𝑘) <R (𝑦 +R 𝑥) ∧ 𝑦 <R ((𝐹𝑘) +R 𝑥)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  {cab 2182  wral 2475  wrex 2476  cop 3625   class class class wbr 4033  cmpt 4094  wf 5254  cfv 5258  (class class class)co 5922  1oc1o 6467  [cec 6590  Ncnpi 7339   <N clti 7342   ~Q ceq 7346  *Qcrq 7351   <Q cltq 7352  1Pc1p 7359   +P cpp 7360   ~R cer 7363  Rcnr 7364  0Rc0r 7365  1Rc1r 7366  -1Rcm1r 7367   +R cplr 7368   ·R cmr 7369   <R cltr 7370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-2o 6475  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-enq0 7491  df-nq0 7492  df-0nq0 7493  df-plq0 7494  df-mq0 7495  df-inp 7533  df-i1p 7534  df-iplp 7535  df-imp 7536  df-iltp 7537  df-enr 7793  df-nr 7794  df-plr 7795  df-mr 7796  df-ltr 7797  df-0r 7798  df-1r 7799  df-m1r 7800
This theorem is referenced by:  caucvgsr  7869
  Copyright terms: Public domain W3C validator