ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjreim Unicode version

Theorem cjreim 11085
Description: The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.)
Assertion
Ref Expression
cjreim  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  +  ( _i  x.  B ) ) )  =  ( A  -  ( _i  x.  B
) ) )

Proof of Theorem cjreim
StepHypRef Expression
1 recn 8029 . . 3  |-  ( A  e.  RR  ->  A  e.  CC )
2 ax-icn 7991 . . . 4  |-  _i  e.  CC
3 recn 8029 . . . 4  |-  ( B  e.  RR  ->  B  e.  CC )
4 mulcl 8023 . . . 4  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( _i  x.  B
)  e.  CC )
52, 3, 4sylancr 414 . . 3  |-  ( B  e.  RR  ->  (
_i  x.  B )  e.  CC )
6 cjadd 11066 . . 3  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( * `  ( A  +  (
_i  x.  B )
) )  =  ( ( * `  A
)  +  ( * `
 ( _i  x.  B ) ) ) )
71, 5, 6syl2an 289 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  +  ( _i  x.  B ) ) )  =  ( ( * `
 A )  +  ( * `  (
_i  x.  B )
) ) )
8 cjre 11064 . . 3  |-  ( A  e.  RR  ->  (
* `  A )  =  A )
9 cjmul 11067 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( * `  (
_i  x.  B )
)  =  ( ( * `  _i )  x.  ( * `  B ) ) )
102, 3, 9sylancr 414 . . . 4  |-  ( B  e.  RR  ->  (
* `  ( _i  x.  B ) )  =  ( ( * `  _i )  x.  (
* `  B )
) )
11 cji 11084 . . . . . 6  |-  ( * `
 _i )  = 
-u _i
1211a1i 9 . . . . 5  |-  ( B  e.  RR  ->  (
* `  _i )  =  -u _i )
13 cjre 11064 . . . . 5  |-  ( B  e.  RR  ->  (
* `  B )  =  B )
1412, 13oveq12d 5943 . . . 4  |-  ( B  e.  RR  ->  (
( * `  _i )  x.  ( * `  B ) )  =  ( -u _i  x.  B ) )
15 mulneg1 8438 . . . . 5  |-  ( ( _i  e.  CC  /\  B  e.  CC )  ->  ( -u _i  x.  B )  =  -u ( _i  x.  B
) )
162, 3, 15sylancr 414 . . . 4  |-  ( B  e.  RR  ->  ( -u _i  x.  B )  =  -u ( _i  x.  B ) )
1710, 14, 163eqtrd 2233 . . 3  |-  ( B  e.  RR  ->  (
* `  ( _i  x.  B ) )  = 
-u ( _i  x.  B ) )
188, 17oveqan12d 5944 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( * `  A )  +  ( * `  ( _i  x.  B ) ) )  =  ( A  +  -u ( _i  x.  B ) ) )
19 negsub 8291 . . 3  |-  ( ( A  e.  CC  /\  ( _i  x.  B
)  e.  CC )  ->  ( A  +  -u ( _i  x.  B
) )  =  ( A  -  ( _i  x.  B ) ) )
201, 5, 19syl2an 289 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  -u ( _i  x.  B
) )  =  ( A  -  ( _i  x.  B ) ) )
217, 18, 203eqtrd 2233 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( * `  ( A  +  ( _i  x.  B ) ) )  =  ( A  -  ( _i  x.  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   _ici 7898    + caddc 7899    x. cmul 7901    - cmin 8214   -ucneg 8215   *ccj 11021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-2 9066  df-cj 11024  df-re 11025  df-im 11026
This theorem is referenced by:  cjreim2  11086  cjap  11088
  Copyright terms: Public domain W3C validator