| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cjreim | GIF version | ||
| Description: The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.) |
| Ref | Expression |
|---|---|
| cjreim | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn 8040 | . . 3 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 2 | ax-icn 8002 | . . . 4 ⊢ i ∈ ℂ | |
| 3 | recn 8040 | . . . 4 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
| 4 | mulcl 8034 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ) | |
| 5 | 2, 3, 4 | sylancr 414 | . . 3 ⊢ (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ) |
| 6 | cjadd 11114 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (∗‘(𝐴 + (i · 𝐵))) = ((∗‘𝐴) + (∗‘(i · 𝐵)))) | |
| 7 | 1, 5, 6 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = ((∗‘𝐴) + (∗‘(i · 𝐵)))) |
| 8 | cjre 11112 | . . 3 ⊢ (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴) | |
| 9 | cjmul 11115 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(i · 𝐵)) = ((∗‘i) · (∗‘𝐵))) | |
| 10 | 2, 3, 9 | sylancr 414 | . . . 4 ⊢ (𝐵 ∈ ℝ → (∗‘(i · 𝐵)) = ((∗‘i) · (∗‘𝐵))) |
| 11 | cji 11132 | . . . . . 6 ⊢ (∗‘i) = -i | |
| 12 | 11 | a1i 9 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (∗‘i) = -i) |
| 13 | cjre 11112 | . . . . 5 ⊢ (𝐵 ∈ ℝ → (∗‘𝐵) = 𝐵) | |
| 14 | 12, 13 | oveq12d 5952 | . . . 4 ⊢ (𝐵 ∈ ℝ → ((∗‘i) · (∗‘𝐵)) = (-i · 𝐵)) |
| 15 | mulneg1 8449 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) = -(i · 𝐵)) | |
| 16 | 2, 3, 15 | sylancr 414 | . . . 4 ⊢ (𝐵 ∈ ℝ → (-i · 𝐵) = -(i · 𝐵)) |
| 17 | 10, 14, 16 | 3eqtrd 2241 | . . 3 ⊢ (𝐵 ∈ ℝ → (∗‘(i · 𝐵)) = -(i · 𝐵)) |
| 18 | 8, 17 | oveqan12d 5953 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((∗‘𝐴) + (∗‘(i · 𝐵))) = (𝐴 + -(i · 𝐵))) |
| 19 | negsub 8302 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + -(i · 𝐵)) = (𝐴 − (i · 𝐵))) | |
| 20 | 1, 5, 19 | syl2an 289 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -(i · 𝐵)) = (𝐴 − (i · 𝐵))) |
| 21 | 7, 18, 20 | 3eqtrd 2241 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ‘cfv 5268 (class class class)co 5934 ℂcc 7905 ℝcr 7906 ici 7909 + caddc 7910 · cmul 7912 − cmin 8225 -cneg 8226 ∗ccj 11069 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-2 9077 df-cj 11072 df-re 11073 df-im 11074 |
| This theorem is referenced by: cjreim2 11134 cjap 11136 |
| Copyright terms: Public domain | W3C validator |