ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cjreim GIF version

Theorem cjreim 11047
Description: The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005.)
Assertion
Ref Expression
cjreim ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵)))

Proof of Theorem cjreim
StepHypRef Expression
1 recn 8005 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 ax-icn 7967 . . . 4 i ∈ ℂ
3 recn 8005 . . . 4 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcl 7999 . . . 4 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
52, 3, 4sylancr 414 . . 3 (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ)
6 cjadd 11028 . . 3 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (∗‘(𝐴 + (i · 𝐵))) = ((∗‘𝐴) + (∗‘(i · 𝐵))))
71, 5, 6syl2an 289 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = ((∗‘𝐴) + (∗‘(i · 𝐵))))
8 cjre 11026 . . 3 (𝐴 ∈ ℝ → (∗‘𝐴) = 𝐴)
9 cjmul 11029 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (∗‘(i · 𝐵)) = ((∗‘i) · (∗‘𝐵)))
102, 3, 9sylancr 414 . . . 4 (𝐵 ∈ ℝ → (∗‘(i · 𝐵)) = ((∗‘i) · (∗‘𝐵)))
11 cji 11046 . . . . . 6 (∗‘i) = -i
1211a1i 9 . . . . 5 (𝐵 ∈ ℝ → (∗‘i) = -i)
13 cjre 11026 . . . . 5 (𝐵 ∈ ℝ → (∗‘𝐵) = 𝐵)
1412, 13oveq12d 5936 . . . 4 (𝐵 ∈ ℝ → ((∗‘i) · (∗‘𝐵)) = (-i · 𝐵))
15 mulneg1 8414 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-i · 𝐵) = -(i · 𝐵))
162, 3, 15sylancr 414 . . . 4 (𝐵 ∈ ℝ → (-i · 𝐵) = -(i · 𝐵))
1710, 14, 163eqtrd 2230 . . 3 (𝐵 ∈ ℝ → (∗‘(i · 𝐵)) = -(i · 𝐵))
188, 17oveqan12d 5937 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((∗‘𝐴) + (∗‘(i · 𝐵))) = (𝐴 + -(i · 𝐵)))
19 negsub 8267 . . 3 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + -(i · 𝐵)) = (𝐴 − (i · 𝐵)))
201, 5, 19syl2an 289 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + -(i · 𝐵)) = (𝐴 − (i · 𝐵)))
217, 18, 203eqtrd 2230 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∗‘(𝐴 + (i · 𝐵))) = (𝐴 − (i · 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  ici 7874   + caddc 7875   · cmul 7877  cmin 8190  -cneg 8191  ccj 10983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-2 9041  df-cj 10986  df-re 10987  df-im 10988
This theorem is referenced by:  cjreim2  11048  cjap  11050
  Copyright terms: Public domain W3C validator