ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cntop1 GIF version

Theorem cntop1 12995
Description: Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cntop1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)

Proof of Theorem cntop1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2170 . . . 4 𝐽 = 𝐽
2 eqid 2170 . . . 4 𝐾 = 𝐾
31, 2iscn2 12994 . . 3 (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹: 𝐽 𝐾 ∧ ∀𝑥𝐾 (𝐹𝑥) ∈ 𝐽)))
43simplbi 272 . 2 (𝐹 ∈ (𝐽 Cn 𝐾) → (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
54simpld 111 1 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2141  wral 2448   cuni 3796  ccnv 4610  cima 4614  wf 5194  (class class class)co 5853  Topctop 12789   Cn ccn 12979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-map 6628  df-top 12790  df-topon 12803  df-cn 12982
This theorem is referenced by:  cnco  13015  cnclima  13017  cnntri  13018  cnss2  13021  cncnpi  13022  cncnp2m  13025  cnrest  13029  cnrest2  13030  cnrest2r  13031  lmcn  13045  txcnmpt  13067  uptx  13068  txcn  13069  cnmpt21f  13086  hmeof1o  13103  hmeores  13109  txhmeo  13113
  Copyright terms: Public domain W3C validator