ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjsubg GIF version

Theorem conjsubg 13350
Description: A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
Assertion
Ref Expression
conjsubg ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,   𝑥, +   𝑥,𝐴   𝑥,𝐺   𝑥,𝑆   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem conjsubg
StepHypRef Expression
1 conjghm.x . . . . 5 𝑋 = (Base‘𝐺)
21subgss 13247 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
32adantr 276 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆𝑋)
4 df-ima 4673 . . . 4 ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) “ 𝑆) = ran ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆)
5 resmpt 4991 . . . . . 6 (𝑆𝑋 → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴)))
6 conjsubg.f . . . . . 6 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
75, 6eqtr4di 2244 . . . . 5 (𝑆𝑋 → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = 𝐹)
87rneqd 4892 . . . 4 (𝑆𝑋 → ran ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = ran 𝐹)
94, 8eqtrid 2238 . . 3 (𝑆𝑋 → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) “ 𝑆) = ran 𝐹)
103, 9syl 14 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) “ 𝑆) = ran 𝐹)
11 subgrcl 13252 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
12 conjghm.p . . . . . 6 + = (+g𝐺)
13 conjghm.m . . . . . 6 = (-g𝐺)
14 eqid 2193 . . . . . 6 (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) = (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴))
151, 12, 13, 14conjghm 13349 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋))
1611, 15sylan 283 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋))
1716simpld 112 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺))
18 simpl 109 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 ∈ (SubGrp‘𝐺))
19 ghmima 13338 . . 3 (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) “ 𝑆) ∈ (SubGrp‘𝐺))
2017, 18, 19syl2anc 411 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) “ 𝑆) ∈ (SubGrp‘𝐺))
2110, 20eqeltrrd 2271 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wss 3154  cmpt 4091  ran crn 4661  cres 4662  cima 4663  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  Grpcgrp 13075  -gcsg 13077  SubGrpcsubg 13240   GrpHom cghm 13313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-sbg 13080  df-subg 13243  df-ghm 13314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator