| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cvg1n | GIF version | ||
| Description: Convergence of real
sequences.
This is a version of caucvgre 11234 with a constant multiplier 𝐶 on the rate of convergence. That is, all terms after the nth term must be within 𝐶 / 𝑛 of the nth term. (Contributed by Jim Kingdon, 1-Aug-2021.) |
| Ref | Expression |
|---|---|
| cvg1n.f | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
| cvg1n.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
| cvg1n.cau | ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
| Ref | Expression |
|---|---|
| cvg1n | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvg1n.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
| 2 | 1 | rpred 9817 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 3 | arch 9291 | . . 3 ⊢ (𝐶 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐶 < 𝑧) | |
| 4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ ℕ 𝐶 < 𝑧) |
| 5 | cvg1n.f | . . . 4 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
| 6 | 5 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐹:ℕ⟶ℝ) |
| 7 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐶 ∈ ℝ+) |
| 8 | cvg1n.cau | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) | |
| 9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
| 10 | eqid 2204 | . . 3 ⊢ (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑧))) = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑧))) | |
| 11 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝑧 ∈ ℕ) | |
| 12 | simprr 531 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐶 < 𝑧) | |
| 13 | 6, 7, 9, 10, 11, 12 | cvg1nlemres 11238 | . 2 ⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) |
| 14 | 4, 13 | rexlimddv 2627 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2175 ∀wral 2483 ∃wrex 2484 class class class wbr 4043 ↦ cmpt 4104 ⟶wf 5266 ‘cfv 5270 (class class class)co 5943 ℝcr 7923 + caddc 7927 · cmul 7929 < clt 8106 / cdiv 8744 ℕcn 9035 ℤ≥cuz 9647 ℝ+crp 9774 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 ax-arch 8043 ax-caucvg 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-2 9094 df-n0 9295 df-z 9372 df-uz 9648 df-rp 9775 |
| This theorem is referenced by: resqrexlemcvg 11272 climrecvg1n 11601 |
| Copyright terms: Public domain | W3C validator |