Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1n GIF version

Theorem cvg1n 10765
 Description: Convergence of real sequences. This is a version of caucvgre 10760 with a constant multiplier 𝐶 on the rate of convergence. That is, all terms after the nth term must be within 𝐶 / 𝑛 of the nth term. (Contributed by Jim Kingdon, 1-Aug-2021.)
Hypotheses
Ref Expression
cvg1n.f (𝜑𝐹:ℕ⟶ℝ)
cvg1n.c (𝜑𝐶 ∈ ℝ+)
cvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
Assertion
Ref Expression
cvg1n (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Distinct variable groups:   𝐶,𝑘,𝑛   𝐶,𝑖,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑘,𝐹,𝑛   𝑖,𝐹,𝑗   𝜑,𝑘,𝑛,𝑗   𝜑,𝑖,𝑥,𝑦,𝑗   𝑗,𝑛   𝑦,𝑘,𝑗,𝑖

Proof of Theorem cvg1n
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cvg1n.c . . . 4 (𝜑𝐶 ∈ ℝ+)
21rpred 9490 . . 3 (𝜑𝐶 ∈ ℝ)
3 arch 8981 . . 3 (𝐶 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐶 < 𝑧)
42, 3syl 14 . 2 (𝜑 → ∃𝑧 ∈ ℕ 𝐶 < 𝑧)
5 cvg1n.f . . . 4 (𝜑𝐹:ℕ⟶ℝ)
65adantr 274 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐹:ℕ⟶ℝ)
71adantr 274 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐶 ∈ ℝ+)
8 cvg1n.cau . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
98adantr 274 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
10 eqid 2139 . . 3 (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑧))) = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑧)))
11 simprl 520 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝑧 ∈ ℕ)
12 simprr 521 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐶 < 𝑧)
136, 7, 9, 10, 11, 12cvg1nlemres 10764 . 2 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
144, 13rexlimddv 2554 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103   ∈ wcel 1480  ∀wral 2416  ∃wrex 2417   class class class wbr 3929   ↦ cmpt 3989  ⟶wf 5119  ‘cfv 5123  (class class class)co 5774  ℝcr 7626   + caddc 7630   · cmul 7632   < clt 7807   / cdiv 8439  ℕcn 8727  ℤ≥cuz 9333  ℝ+crp 9448 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-mulrcl 7726  ax-addcom 7727  ax-mulcom 7728  ax-addass 7729  ax-mulass 7730  ax-distr 7731  ax-i2m1 7732  ax-0lt1 7733  ax-1rid 7734  ax-0id 7735  ax-rnegex 7736  ax-precex 7737  ax-cnre 7738  ax-pre-ltirr 7739  ax-pre-ltwlin 7740  ax-pre-lttrn 7741  ax-pre-apti 7742  ax-pre-ltadd 7743  ax-pre-mulgt0 7744  ax-pre-mulext 7745  ax-arch 7746  ax-caucvg 7747 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-xr 7811  df-ltxr 7812  df-le 7813  df-sub 7942  df-neg 7943  df-reap 8344  df-ap 8351  df-div 8440  df-inn 8728  df-2 8786  df-n0 8985  df-z 9062  df-uz 9334  df-rp 9449 This theorem is referenced by:  resqrexlemcvg  10798  climrecvg1n  11124
 Copyright terms: Public domain W3C validator