![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cvg1n | GIF version |
Description: Convergence of real
sequences.
This is a version of caucvgre 11128 with a constant multiplier 𝐶 on the rate of convergence. That is, all terms after the nth term must be within 𝐶 / 𝑛 of the nth term. (Contributed by Jim Kingdon, 1-Aug-2021.) |
Ref | Expression |
---|---|
cvg1n.f | ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
cvg1n.c | ⊢ (𝜑 → 𝐶 ∈ ℝ+) |
cvg1n.cau | ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
Ref | Expression |
---|---|
cvg1n | ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvg1n.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ+) | |
2 | 1 | rpred 9765 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) |
3 | arch 9240 | . . 3 ⊢ (𝐶 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐶 < 𝑧) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝜑 → ∃𝑧 ∈ ℕ 𝐶 < 𝑧) |
5 | cvg1n.f | . . . 4 ⊢ (𝜑 → 𝐹:ℕ⟶ℝ) | |
6 | 5 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐹:ℕ⟶ℝ) |
7 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐶 ∈ ℝ+) |
8 | cvg1n.cau | . . . 4 ⊢ (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) | |
9 | 8 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ≥‘𝑛)((𝐹‘𝑛) < ((𝐹‘𝑘) + (𝐶 / 𝑛)) ∧ (𝐹‘𝑘) < ((𝐹‘𝑛) + (𝐶 / 𝑛)))) |
10 | eqid 2193 | . . 3 ⊢ (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑧))) = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑧))) | |
11 | simprl 529 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝑧 ∈ ℕ) | |
12 | simprr 531 | . . 3 ⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐶 < 𝑧) | |
13 | 6, 7, 9, 10, 11, 12 | cvg1nlemres 11132 | . 2 ⊢ ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) |
14 | 4, 13 | rexlimddv 2616 | 1 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ≥‘𝑗)((𝐹‘𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹‘𝑖) + 𝑥))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 class class class wbr 4030 ↦ cmpt 4091 ⟶wf 5251 ‘cfv 5255 (class class class)co 5919 ℝcr 7873 + caddc 7877 · cmul 7879 < clt 8056 / cdiv 8693 ℕcn 8984 ℤ≥cuz 9595 ℝ+crp 9722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 ax-arch 7993 ax-caucvg 7994 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-2 9043 df-n0 9244 df-z 9321 df-uz 9596 df-rp 9723 |
This theorem is referenced by: resqrexlemcvg 11166 climrecvg1n 11494 |
Copyright terms: Public domain | W3C validator |