ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1n GIF version

Theorem cvg1n 10751
Description: Convergence of real sequences.

This is a version of caucvgre 10746 with a constant multiplier 𝐶 on the rate of convergence. That is, all terms after the nth term must be within 𝐶 / 𝑛 of the nth term.

(Contributed by Jim Kingdon, 1-Aug-2021.)

Hypotheses
Ref Expression
cvg1n.f (𝜑𝐹:ℕ⟶ℝ)
cvg1n.c (𝜑𝐶 ∈ ℝ+)
cvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
Assertion
Ref Expression
cvg1n (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Distinct variable groups:   𝐶,𝑘,𝑛   𝐶,𝑖,𝑗,𝑥,𝑦   𝑥,𝐹,𝑦   𝑘,𝐹,𝑛   𝑖,𝐹,𝑗   𝜑,𝑘,𝑛,𝑗   𝜑,𝑖,𝑥,𝑦,𝑗   𝑗,𝑛   𝑦,𝑘,𝑗,𝑖

Proof of Theorem cvg1n
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cvg1n.c . . . 4 (𝜑𝐶 ∈ ℝ+)
21rpred 9476 . . 3 (𝜑𝐶 ∈ ℝ)
3 arch 8967 . . 3 (𝐶 ∈ ℝ → ∃𝑧 ∈ ℕ 𝐶 < 𝑧)
42, 3syl 14 . 2 (𝜑 → ∃𝑧 ∈ ℕ 𝐶 < 𝑧)
5 cvg1n.f . . . 4 (𝜑𝐹:ℕ⟶ℝ)
65adantr 274 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐹:ℕ⟶ℝ)
71adantr 274 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐶 ∈ ℝ+)
8 cvg1n.cau . . . 4 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
98adantr 274 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
10 eqid 2137 . . 3 (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑧))) = (𝑗 ∈ ℕ ↦ (𝐹‘(𝑗 · 𝑧)))
11 simprl 520 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝑧 ∈ ℕ)
12 simprr 521 . . 3 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → 𝐶 < 𝑧)
136, 7, 9, 10, 11, 12cvg1nlemres 10750 . 2 ((𝜑 ∧ (𝑧 ∈ ℕ ∧ 𝐶 < 𝑧)) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
144, 13rexlimddv 2552 1 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝑦 + 𝑥) ∧ 𝑦 < ((𝐹𝑖) + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 1480  wral 2414  wrex 2415   class class class wbr 3924  cmpt 3984  wf 5114  cfv 5118  (class class class)co 5767  cr 7612   + caddc 7616   · cmul 7618   < clt 7793   / cdiv 8425  cn 8713  cuz 9319  +crp 9434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-rp 9435
This theorem is referenced by:  resqrexlemcvg  10784  climrecvg1n  11110
  Copyright terms: Public domain W3C validator