ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divadddivap Unicode version

Theorem divadddivap 8673
Description: Addition of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
divadddivap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  +  ( B  /  D
) )  =  ( ( ( A  x.  D )  +  ( B  x.  C ) )  /  ( C  x.  D ) ) )

Proof of Theorem divadddivap
StepHypRef Expression
1 mulcl 7929 . . . . 5  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  D
)  e.  CC )
21ad2ant2r 509 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( A  x.  D )  e.  CC )
32adantrl 478 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( A  x.  D )  e.  CC )
4 mulcl 7929 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  e.  CC )
54adantrr 479 . . . 4  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( B  x.  C )  e.  CC )
65ad2ant2lr 510 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  x.  C )  e.  CC )
7 mulcl 7929 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  x.  D
)  e.  CC )
87ad2ant2r 509 . . . . 5  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D )  e.  CC )
9 mulap0 8600 . . . . 5  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D ) #  0 )
108, 9jca 306 . . . 4  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D ) #  0 ) )
1110adantl 277 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D ) #  0 ) )
12 divdirap 8643 . . 3  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( B  x.  C
)  e.  CC  /\  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D
) #  0 ) )  ->  ( ( ( A  x.  D )  +  ( B  x.  C ) )  / 
( C  x.  D
) )  =  ( ( ( A  x.  D )  /  ( C  x.  D )
)  +  ( ( B  x.  C )  /  ( C  x.  D ) ) ) )
133, 6, 11, 12syl3anc 1238 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  x.  D )  +  ( B  x.  C ) )  / 
( C  x.  D
) )  =  ( ( ( A  x.  D )  /  ( C  x.  D )
)  +  ( ( B  x.  C )  /  ( C  x.  D ) ) ) )
14 simpll 527 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  A  e.  CC )
15 simprr 531 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( D  e.  CC  /\  D #  0 ) )
1615simpld 112 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  D  e.  CC )
1714, 16mulcomd 7969 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( A  x.  D )  =  ( D  x.  A ) )
18 simprll 537 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  C  e.  CC )
1918, 16mulcomd 7969 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  x.  D )  =  ( D  x.  C ) )
2017, 19oveq12d 5887 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  x.  D )  / 
( C  x.  D
) )  =  ( ( D  x.  A
)  /  ( D  x.  C ) ) )
21 simprl 529 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  e.  CC  /\  C #  0 ) )
22 divcanap5 8660 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( D  x.  A )  / 
( D  x.  C
) )  =  ( A  /  C ) )
2314, 21, 15, 22syl3anc 1238 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( D  x.  A )  / 
( D  x.  C
) )  =  ( A  /  C ) )
2420, 23eqtrd 2210 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  x.  D )  / 
( C  x.  D
) )  =  ( A  /  C ) )
25 simplr 528 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  B  e.  CC )
2625, 18mulcomd 7969 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  x.  C )  =  ( C  x.  B ) )
2726oveq1d 5884 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( B  x.  C )  / 
( C  x.  D
) )  =  ( ( C  x.  B
)  /  ( C  x.  D ) ) )
28 divcanap5 8660 . . . . 5  |-  ( ( B  e.  CC  /\  ( D  e.  CC  /\  D #  0 )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  B )  / 
( C  x.  D
) )  =  ( B  /  D ) )
2925, 15, 21, 28syl3anc 1238 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  x.  B )  / 
( C  x.  D
) )  =  ( B  /  D ) )
3027, 29eqtrd 2210 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( B  x.  C )  / 
( C  x.  D
) )  =  ( B  /  D ) )
3124, 30oveq12d 5887 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  x.  D )  /  ( C  x.  D ) )  +  ( ( B  x.  C )  /  ( C  x.  D )
) )  =  ( ( A  /  C
)  +  ( B  /  D ) ) )
3213, 31eqtr2d 2211 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  +  ( B  /  D
) )  =  ( ( ( A  x.  D )  +  ( B  x.  C ) )  /  ( C  x.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   class class class wbr 4000  (class class class)co 5869   CCcc 7800   0cc0 7802    + caddc 7805    x. cmul 7807   # cap 8528    / cdiv 8618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-br 4001  df-opab 4062  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619
This theorem is referenced by:  divsubdivap  8674  divadddivapi  8720  qaddcl  9624  pcaddlem  12321
  Copyright terms: Public domain W3C validator