Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > divadddivap | Unicode version |
Description: Addition of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.) |
Ref | Expression |
---|---|
divadddivap | # # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcl 7880 | . . . . 5 | |
2 | 1 | ad2ant2r 501 | . . . 4 # |
3 | 2 | adantrl 470 | . . 3 # # |
4 | mulcl 7880 | . . . . 5 | |
5 | 4 | adantrr 471 | . . . 4 # |
6 | 5 | ad2ant2lr 502 | . . 3 # # |
7 | mulcl 7880 | . . . . . 6 | |
8 | 7 | ad2ant2r 501 | . . . . 5 # # |
9 | mulap0 8551 | . . . . 5 # # # | |
10 | 8, 9 | jca 304 | . . . 4 # # # |
11 | 10 | adantl 275 | . . 3 # # # |
12 | divdirap 8593 | . . 3 # | |
13 | 3, 6, 11, 12 | syl3anc 1228 | . 2 # # |
14 | simpll 519 | . . . . . 6 # # | |
15 | simprr 522 | . . . . . . 7 # # # | |
16 | 15 | simpld 111 | . . . . . 6 # # |
17 | 14, 16 | mulcomd 7920 | . . . . 5 # # |
18 | simprll 527 | . . . . . 6 # # | |
19 | 18, 16 | mulcomd 7920 | . . . . 5 # # |
20 | 17, 19 | oveq12d 5860 | . . . 4 # # |
21 | simprl 521 | . . . . 5 # # # | |
22 | divcanap5 8610 | . . . . 5 # # | |
23 | 14, 21, 15, 22 | syl3anc 1228 | . . . 4 # # |
24 | 20, 23 | eqtrd 2198 | . . 3 # # |
25 | simplr 520 | . . . . . 6 # # | |
26 | 25, 18 | mulcomd 7920 | . . . . 5 # # |
27 | 26 | oveq1d 5857 | . . . 4 # # |
28 | divcanap5 8610 | . . . . 5 # # | |
29 | 25, 15, 21, 28 | syl3anc 1228 | . . . 4 # # |
30 | 27, 29 | eqtrd 2198 | . . 3 # # |
31 | 24, 30 | oveq12d 5860 | . 2 # # |
32 | 13, 31 | eqtr2d 2199 | 1 # # |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cc 7751 cc0 7753 caddc 7756 cmul 7758 # cap 8479 cdiv 8568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 |
This theorem is referenced by: divsubdivap 8624 divadddivapi 8670 qaddcl 9573 pcaddlem 12270 |
Copyright terms: Public domain | W3C validator |