ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divadddivap Unicode version

Theorem divadddivap 8614
Description: Addition of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
divadddivap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  +  ( B  /  D
) )  =  ( ( ( A  x.  D )  +  ( B  x.  C ) )  /  ( C  x.  D ) ) )

Proof of Theorem divadddivap
StepHypRef Expression
1 mulcl 7871 . . . . 5  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  D
)  e.  CC )
21ad2ant2r 501 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( A  x.  D )  e.  CC )
32adantrl 470 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( A  x.  D )  e.  CC )
4 mulcl 7871 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  e.  CC )
54adantrr 471 . . . 4  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( B  x.  C )  e.  CC )
65ad2ant2lr 502 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  x.  C )  e.  CC )
7 mulcl 7871 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  x.  D
)  e.  CC )
87ad2ant2r 501 . . . . 5  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D )  e.  CC )
9 mulap0 8542 . . . . 5  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D ) #  0 )
108, 9jca 304 . . . 4  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D ) #  0 ) )
1110adantl 275 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D ) #  0 ) )
12 divdirap 8584 . . 3  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( B  x.  C
)  e.  CC  /\  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D
) #  0 ) )  ->  ( ( ( A  x.  D )  +  ( B  x.  C ) )  / 
( C  x.  D
) )  =  ( ( ( A  x.  D )  /  ( C  x.  D )
)  +  ( ( B  x.  C )  /  ( C  x.  D ) ) ) )
133, 6, 11, 12syl3anc 1227 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  x.  D )  +  ( B  x.  C ) )  / 
( C  x.  D
) )  =  ( ( ( A  x.  D )  /  ( C  x.  D )
)  +  ( ( B  x.  C )  /  ( C  x.  D ) ) ) )
14 simpll 519 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  A  e.  CC )
15 simprr 522 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( D  e.  CC  /\  D #  0 ) )
1615simpld 111 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  D  e.  CC )
1714, 16mulcomd 7911 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( A  x.  D )  =  ( D  x.  A ) )
18 simprll 527 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  C  e.  CC )
1918, 16mulcomd 7911 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  x.  D )  =  ( D  x.  C ) )
2017, 19oveq12d 5854 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  x.  D )  / 
( C  x.  D
) )  =  ( ( D  x.  A
)  /  ( D  x.  C ) ) )
21 simprl 521 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  e.  CC  /\  C #  0 ) )
22 divcanap5 8601 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( D  x.  A )  / 
( D  x.  C
) )  =  ( A  /  C ) )
2314, 21, 15, 22syl3anc 1227 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( D  x.  A )  / 
( D  x.  C
) )  =  ( A  /  C ) )
2420, 23eqtrd 2197 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  x.  D )  / 
( C  x.  D
) )  =  ( A  /  C ) )
25 simplr 520 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  B  e.  CC )
2625, 18mulcomd 7911 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  x.  C )  =  ( C  x.  B ) )
2726oveq1d 5851 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( B  x.  C )  / 
( C  x.  D
) )  =  ( ( C  x.  B
)  /  ( C  x.  D ) ) )
28 divcanap5 8601 . . . . 5  |-  ( ( B  e.  CC  /\  ( D  e.  CC  /\  D #  0 )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  B )  / 
( C  x.  D
) )  =  ( B  /  D ) )
2925, 15, 21, 28syl3anc 1227 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  x.  B )  / 
( C  x.  D
) )  =  ( B  /  D ) )
3027, 29eqtrd 2197 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( B  x.  C )  / 
( C  x.  D
) )  =  ( B  /  D ) )
3124, 30oveq12d 5854 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  x.  D )  /  ( C  x.  D ) )  +  ( ( B  x.  C )  /  ( C  x.  D )
) )  =  ( ( A  /  C
)  +  ( B  /  D ) ) )
3213, 31eqtr2d 2198 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  +  ( B  /  D
) )  =  ( ( ( A  x.  D )  +  ( B  x.  C ) )  /  ( C  x.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   class class class wbr 3976  (class class class)co 5836   CCcc 7742   0cc0 7744    + caddc 7747    x. cmul 7749   # cap 8470    / cdiv 8559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560
This theorem is referenced by:  divsubdivap  8615  divadddivapi  8661  qaddcl  9564  pcaddlem  12247
  Copyright terms: Public domain W3C validator