ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divadddivap Unicode version

Theorem divadddivap 8800
Description: Addition of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
divadddivap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  +  ( B  /  D
) )  =  ( ( ( A  x.  D )  +  ( B  x.  C ) )  /  ( C  x.  D ) ) )

Proof of Theorem divadddivap
StepHypRef Expression
1 mulcl 8052 . . . . 5  |-  ( ( A  e.  CC  /\  D  e.  CC )  ->  ( A  x.  D
)  e.  CC )
21ad2ant2r 509 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( A  x.  D )  e.  CC )
32adantrl 478 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( A  x.  D )  e.  CC )
4 mulcl 8052 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  e.  CC )
54adantrr 479 . . . 4  |-  ( ( B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( B  x.  C )  e.  CC )
65ad2ant2lr 510 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  x.  C )  e.  CC )
7 mulcl 8052 . . . . . 6  |-  ( ( C  e.  CC  /\  D  e.  CC )  ->  ( C  x.  D
)  e.  CC )
87ad2ant2r 509 . . . . 5  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D )  e.  CC )
9 mulap0 8727 . . . . 5  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( C  x.  D ) #  0 )
108, 9jca 306 . . . 4  |-  ( ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D ) #  0 ) )
1110adantl 277 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D ) #  0 ) )
12 divdirap 8770 . . 3  |-  ( ( ( A  x.  D
)  e.  CC  /\  ( B  x.  C
)  e.  CC  /\  ( ( C  x.  D )  e.  CC  /\  ( C  x.  D
) #  0 ) )  ->  ( ( ( A  x.  D )  +  ( B  x.  C ) )  / 
( C  x.  D
) )  =  ( ( ( A  x.  D )  /  ( C  x.  D )
)  +  ( ( B  x.  C )  /  ( C  x.  D ) ) ) )
133, 6, 11, 12syl3anc 1250 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  x.  D )  +  ( B  x.  C ) )  / 
( C  x.  D
) )  =  ( ( ( A  x.  D )  /  ( C  x.  D )
)  +  ( ( B  x.  C )  /  ( C  x.  D ) ) ) )
14 simpll 527 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  A  e.  CC )
15 simprr 531 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( D  e.  CC  /\  D #  0 ) )
1615simpld 112 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  D  e.  CC )
1714, 16mulcomd 8094 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( A  x.  D )  =  ( D  x.  A ) )
18 simprll 537 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  C  e.  CC )
1918, 16mulcomd 8094 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  x.  D )  =  ( D  x.  C ) )
2017, 19oveq12d 5962 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  x.  D )  / 
( C  x.  D
) )  =  ( ( D  x.  A
)  /  ( D  x.  C ) ) )
21 simprl 529 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( C  e.  CC  /\  C #  0 ) )
22 divcanap5 8787 . . . . 5  |-  ( ( A  e.  CC  /\  ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) )  ->  ( ( D  x.  A )  / 
( D  x.  C
) )  =  ( A  /  C ) )
2314, 21, 15, 22syl3anc 1250 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( D  x.  A )  / 
( D  x.  C
) )  =  ( A  /  C ) )
2420, 23eqtrd 2238 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  x.  D )  / 
( C  x.  D
) )  =  ( A  /  C ) )
25 simplr 528 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  B  e.  CC )
2625, 18mulcomd 8094 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  x.  C )  =  ( C  x.  B ) )
2726oveq1d 5959 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( B  x.  C )  / 
( C  x.  D
) )  =  ( ( C  x.  B
)  /  ( C  x.  D ) ) )
28 divcanap5 8787 . . . . 5  |-  ( ( B  e.  CC  /\  ( D  e.  CC  /\  D #  0 )  /\  ( C  e.  CC  /\  C #  0 ) )  ->  ( ( C  x.  B )  / 
( C  x.  D
) )  =  ( B  /  D ) )
2925, 15, 21, 28syl3anc 1250 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( C  x.  B )  / 
( C  x.  D
) )  =  ( B  /  D ) )
3027, 29eqtrd 2238 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( B  x.  C )  / 
( C  x.  D
) )  =  ( B  /  D ) )
3124, 30oveq12d 5962 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  x.  D )  /  ( C  x.  D ) )  +  ( ( B  x.  C )  /  ( C  x.  D )
) )  =  ( ( A  /  C
)  +  ( B  /  D ) ) )
3213, 31eqtr2d 2239 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  +  ( B  /  D
) )  =  ( ( ( A  x.  D )  +  ( B  x.  C ) )  /  ( C  x.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   CCcc 7923   0cc0 7925    + caddc 7928    x. cmul 7930   # cap 8654    / cdiv 8745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746
This theorem is referenced by:  divsubdivap  8801  divadddivapi  8847  qaddcl  9756  pcaddlem  12662
  Copyright terms: Public domain W3C validator