ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divsubdivap Unicode version

Theorem divsubdivap 8456
Description: Subtraction of two ratios. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
divsubdivap  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  -  ( B  /  D
) )  =  ( ( ( A  x.  D )  -  ( B  x.  C )
)  /  ( C  x.  D ) ) )

Proof of Theorem divsubdivap
StepHypRef Expression
1 negcl 7930 . . . 4  |-  ( B  e.  CC  ->  -u B  e.  CC )
2 divadddivap 8455 . . . 4  |-  ( ( ( A  e.  CC  /\  -u B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  +  ( -u B  /  D ) )  =  ( ( ( A  x.  D )  +  ( -u B  x.  C ) )  / 
( C  x.  D
) ) )
31, 2sylanl2 400 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  +  ( -u B  /  D ) )  =  ( ( ( A  x.  D )  +  ( -u B  x.  C ) )  / 
( C  x.  D
) ) )
4 simplr 504 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  B  e.  CC )
5 simprrl 513 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  D  e.  CC )
6 simprrr 514 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  D #  0 )
7 divnegap 8434 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  -u ( B  /  D )  =  ( -u B  /  D ) )
84, 5, 6, 7syl3anc 1201 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  -u ( B  /  D )  =  (
-u B  /  D
) )
98oveq2d 5758 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  + 
-u ( B  /  D ) )  =  ( ( A  /  C )  +  (
-u B  /  D
) ) )
10 simpll 503 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  A  e.  CC )
11 simprll 511 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  C  e.  CC )
12 simprlr 512 . . . . . 6  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  C #  0 )
13 divclap 8406 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( A  /  C )  e.  CC )
1410, 11, 12, 13syl3anc 1201 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( A  /  C )  e.  CC )
15 divclap 8406 . . . . . 6  |-  ( ( B  e.  CC  /\  D  e.  CC  /\  D #  0 )  ->  ( B  /  D )  e.  CC )
164, 5, 6, 15syl3anc 1201 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  /  D )  e.  CC )
1714, 16negsubd 8047 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  + 
-u ( B  /  D ) )  =  ( ( A  /  C )  -  ( B  /  D ) ) )
189, 17eqtr3d 2152 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  +  ( -u B  /  D ) )  =  ( ( A  /  C )  -  ( B  /  D ) ) )
193, 18eqtr3d 2152 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  x.  D )  +  ( -u B  x.  C ) )  / 
( C  x.  D
) )  =  ( ( A  /  C
)  -  ( B  /  D ) ) )
204, 11mulneg1d 8141 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( -u B  x.  C )  =  -u ( B  x.  C
) )
2120oveq2d 5758 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  x.  D )  +  ( -u B  x.  C ) )  =  ( ( A  x.  D )  +  -u ( B  x.  C
) ) )
2210, 5mulcld 7754 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( A  x.  D )  e.  CC )
234, 11mulcld 7754 . . . . 5  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( B  x.  C )  e.  CC )
2422, 23negsubd 8047 . . . 4  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  x.  D )  + 
-u ( B  x.  C ) )  =  ( ( A  x.  D )  -  ( B  x.  C )
) )
2521, 24eqtrd 2150 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  x.  D )  +  ( -u B  x.  C ) )  =  ( ( A  x.  D )  -  ( B  x.  C )
) )
2625oveq1d 5757 . 2  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( ( A  x.  D )  +  ( -u B  x.  C ) )  / 
( C  x.  D
) )  =  ( ( ( A  x.  D )  -  ( B  x.  C )
)  /  ( C  x.  D ) ) )
2719, 26eqtr3d 2152 1  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( ( C  e.  CC  /\  C #  0 )  /\  ( D  e.  CC  /\  D #  0 ) ) )  ->  ( ( A  /  C )  -  ( B  /  D
) )  =  ( ( ( A  x.  D )  -  ( B  x.  C )
)  /  ( C  x.  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316    e. wcel 1465   class class class wbr 3899  (class class class)co 5742   CCcc 7586   0cc0 7588    + caddc 7591    x. cmul 7593    - cmin 7901   -ucneg 7902   # cap 8311    / cdiv 8400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-id 4185  df-po 4188  df-iso 4189  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401
This theorem is referenced by:  subrecap  8566
  Copyright terms: Public domain W3C validator