ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumdvds Unicode version

Theorem fsumdvds 12339
Description: If every term in a sum is divisible by  N, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
fsumdvds.1  |-  ( ph  ->  A  e.  Fin )
fsumdvds.2  |-  ( ph  ->  N  e.  ZZ )
fsumdvds.3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ZZ )
fsumdvds.4  |-  ( (
ph  /\  k  e.  A )  ->  N  ||  B )
Assertion
Ref Expression
fsumdvds  |-  ( ph  ->  N  ||  sum_ k  e.  A  B )
Distinct variable groups:    A, k    k, N    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsumdvds
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 0z 9445 . . . 4  |-  0  e.  ZZ
2 dvds0 12303 . . . 4  |-  ( 0  e.  ZZ  ->  0  ||  0 )
31, 2mp1i 10 . . 3  |-  ( (
ph  /\  N  = 
0 )  ->  0  ||  0 )
4 simpr 110 . . 3  |-  ( (
ph  /\  N  = 
0 )  ->  N  =  0 )
5 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  N  =  0 )  /\  k  e.  A )  ->  N  =  0 )
6 fsumdvds.4 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  N  ||  B )
76adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  N  =  0 )  /\  k  e.  A )  ->  N  ||  B )
85, 7eqbrtrrd 4106 . . . . . 6  |-  ( ( ( ph  /\  N  =  0 )  /\  k  e.  A )  ->  0  ||  B )
9 fsumdvds.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ZZ )
109adantlr 477 . . . . . . 7  |-  ( ( ( ph  /\  N  =  0 )  /\  k  e.  A )  ->  B  e.  ZZ )
11 0dvds 12308 . . . . . . 7  |-  ( B  e.  ZZ  ->  (
0  ||  B  <->  B  = 
0 ) )
1210, 11syl 14 . . . . . 6  |-  ( ( ( ph  /\  N  =  0 )  /\  k  e.  A )  ->  ( 0  ||  B  <->  B  =  0 ) )
138, 12mpbid 147 . . . . 5  |-  ( ( ( ph  /\  N  =  0 )  /\  k  e.  A )  ->  B  =  0 )
1413sumeq2dv 11865 . . . 4  |-  ( (
ph  /\  N  = 
0 )  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  0 )
15 fsumdvds.1 . . . . . . 7  |-  ( ph  ->  A  e.  Fin )
1615adantr 276 . . . . . 6  |-  ( (
ph  /\  N  = 
0 )  ->  A  e.  Fin )
1716olcd 739 . . . . 5  |-  ( (
ph  /\  N  = 
0 )  ->  (
( 0  e.  ZZ  /\  A  C_  ( ZZ>= ` 
0 )  /\  A. j  e.  ( ZZ>= ` 
0 )DECID  j  e.  A )  \/  A  e.  Fin ) )
18 isumz 11886 . . . . 5  |-  ( ( ( 0  e.  ZZ  /\  A  C_  ( ZZ>= ` 
0 )  /\  A. j  e.  ( ZZ>= ` 
0 )DECID  j  e.  A )  \/  A  e.  Fin )  ->  sum_ k  e.  A 
0  =  0 )
1917, 18syl 14 . . . 4  |-  ( (
ph  /\  N  = 
0 )  ->  sum_ k  e.  A  0  = 
0 )
2014, 19eqtrd 2262 . . 3  |-  ( (
ph  /\  N  = 
0 )  ->  sum_ k  e.  A  B  = 
0 )
213, 4, 203brtr4d 4114 . 2  |-  ( (
ph  /\  N  = 
0 )  ->  N  || 
sum_ k  e.  A  B )
2215adantr 276 . . . . 5  |-  ( (
ph  /\  N  =/=  0 )  ->  A  e.  Fin )
23 fsumdvds.2 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
2423adantr 276 . . . . . 6  |-  ( (
ph  /\  N  =/=  0 )  ->  N  e.  ZZ )
2524zcnd 9558 . . . . 5  |-  ( (
ph  /\  N  =/=  0 )  ->  N  e.  CC )
269adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  B  e.  ZZ )
2726zcnd 9558 . . . . 5  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  B  e.  CC )
28 zapne 9509 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  ->  ( N #  0  <->  N  =/=  0 ) )
2923, 1, 28sylancl 413 . . . . . 6  |-  ( ph  ->  ( N #  0  <->  N  =/=  0 ) )
3029biimpar 297 . . . . 5  |-  ( (
ph  /\  N  =/=  0 )  ->  N #  0 )
3122, 25, 27, 30fsumdivapc 11947 . . . 4  |-  ( (
ph  /\  N  =/=  0 )  ->  ( sum_ k  e.  A  B  /  N )  =  sum_ k  e.  A  ( B  /  N ) )
326adantlr 477 . . . . . 6  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  N  ||  B )
3324adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  N  e.  ZZ )
34 simplr 528 . . . . . . 7  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  N  =/=  0 )
35 dvdsval2 12287 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  B  e.  ZZ )  ->  ( N  ||  B  <->  ( B  /  N )  e.  ZZ ) )
3633, 34, 26, 35syl3anc 1271 . . . . . 6  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  ( N  ||  B  <->  ( B  /  N )  e.  ZZ ) )
3732, 36mpbid 147 . . . . 5  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  ( B  /  N )  e.  ZZ )
3822, 37fsumzcl 11899 . . . 4  |-  ( (
ph  /\  N  =/=  0 )  ->  sum_ k  e.  A  ( B  /  N )  e.  ZZ )
3931, 38eqeltrd 2306 . . 3  |-  ( (
ph  /\  N  =/=  0 )  ->  ( sum_ k  e.  A  B  /  N )  e.  ZZ )
40 simpr 110 . . . 4  |-  ( (
ph  /\  N  =/=  0 )  ->  N  =/=  0 )
4115, 9fsumzcl 11899 . . . . 5  |-  ( ph  -> 
sum_ k  e.  A  B  e.  ZZ )
4241adantr 276 . . . 4  |-  ( (
ph  /\  N  =/=  0 )  ->  sum_ k  e.  A  B  e.  ZZ )
43 dvdsval2 12287 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  sum_ k  e.  A  B  e.  ZZ )  ->  ( N  ||  sum_ k  e.  A  B 
<->  ( sum_ k  e.  A  B  /  N )  e.  ZZ ) )
4424, 40, 42, 43syl3anc 1271 . . 3  |-  ( (
ph  /\  N  =/=  0 )  ->  ( N  ||  sum_ k  e.  A  B 
<->  ( sum_ k  e.  A  B  /  N )  e.  ZZ ) )
4539, 44mpbird 167 . 2  |-  ( (
ph  /\  N  =/=  0 )  ->  N  || 
sum_ k  e.  A  B )
46 zdceq 9510 . . . 4  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
4723, 1, 46sylancl 413 . . 3  |-  ( ph  -> DECID  N  =  0 )
48 dcne 2411 . . 3  |-  (DECID  N  =  0  <->  ( N  =  0  \/  N  =/=  0 ) )
4947, 48sylib 122 . 2  |-  ( ph  ->  ( N  =  0  \/  N  =/=  0
) )
5021, 45, 49mpjaodan 803 1  |-  ( ph  ->  N  ||  sum_ k  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   A.wral 2508    C_ wss 3197   class class class wbr 4082   ` cfv 5314  (class class class)co 5994   Fincfn 6877   0cc0 7987   # cap 8716    / cdiv 8807   ZZcz 9434   ZZ>=cuz 9710   sum_csu 11850    || cdvds 12284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-seqfrec 10657  df-exp 10748  df-ihash 10985  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-clim 11776  df-sumdc 11851  df-dvds 12285
This theorem is referenced by:  3dvds  12361
  Copyright terms: Public domain W3C validator