ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqg0el GIF version

Theorem eqg0el 13609
Description: Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.)
Hypothesis
Ref Expression
eqg0el.1 = (𝐺 ~QG 𝐻)
Assertion
Ref Expression
eqg0el ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻𝑋𝐻))

Proof of Theorem eqg0el
StepHypRef Expression
1 eqid 2206 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
2 eqg0el.1 . . . . . 6 = (𝐺 ~QG 𝐻)
31, 2eqger 13604 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → Er (Base‘𝐺))
43adantl 277 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → Er (Base‘𝐺))
5 eqid 2206 . . . . . 6 (0g𝐺) = (0g𝐺)
61, 5grpidcl 13405 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
76adantr 276 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (0g𝐺) ∈ (Base‘𝐺))
84, 7erth 6673 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ((0g𝐺) 𝑋 ↔ [(0g𝐺)] = [𝑋] ))
91, 2, 5eqgid 13606 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → [(0g𝐺)] = 𝐻)
109adantl 277 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → [(0g𝐺)] = 𝐻)
1110eqeq1d 2215 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([(0g𝐺)] = [𝑋] 𝐻 = [𝑋] ))
12 eqcom 2208 . . . 4 (𝐻 = [𝑋] ↔ [𝑋] = 𝐻)
1312a1i 9 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐻 = [𝑋] ↔ [𝑋] = 𝐻))
148, 11, 133bitrrd 215 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻 ↔ (0g𝐺) 𝑋))
15 errel 6636 . . . 4 ( Er (Base‘𝐺) → Rel )
16 relelec 6669 . . . 4 (Rel → (𝑋 ∈ [(0g𝐺)] ↔ (0g𝐺) 𝑋))
173, 15, 163syl 17 . . 3 (𝐻 ∈ (SubGrp‘𝐺) → (𝑋 ∈ [(0g𝐺)] ↔ (0g𝐺) 𝑋))
1817adantl 277 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ [(0g𝐺)] ↔ (0g𝐺) 𝑋))
1910eleq2d 2276 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ [(0g𝐺)] 𝑋𝐻))
2014, 18, 193bitr2d 216 1 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻𝑋𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177   class class class wbr 4047  Rel wrel 4684  cfv 5276  (class class class)co 5951   Er wer 6624  [cec 6625  Basecbs 12876  0gc0g 13132  Grpcgrp 13376  SubGrpcsubg 13547   ~QG cqg 13549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-er 6627  df-ec 6629  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-subg 13550  df-eqg 13552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator