ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqg0el GIF version

Theorem eqg0el 13299
Description: Equivalence class of a quotient group for a subgroup. (Contributed by Thierry Arnoux, 15-Jan-2024.)
Hypothesis
Ref Expression
eqg0el.1 = (𝐺 ~QG 𝐻)
Assertion
Ref Expression
eqg0el ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻𝑋𝐻))

Proof of Theorem eqg0el
StepHypRef Expression
1 eqid 2193 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
2 eqg0el.1 . . . . . 6 = (𝐺 ~QG 𝐻)
31, 2eqger 13294 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → Er (Base‘𝐺))
43adantl 277 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → Er (Base‘𝐺))
5 eqid 2193 . . . . . 6 (0g𝐺) = (0g𝐺)
61, 5grpidcl 13101 . . . . 5 (𝐺 ∈ Grp → (0g𝐺) ∈ (Base‘𝐺))
76adantr 276 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (0g𝐺) ∈ (Base‘𝐺))
84, 7erth 6633 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ((0g𝐺) 𝑋 ↔ [(0g𝐺)] = [𝑋] ))
91, 2, 5eqgid 13296 . . . . 5 (𝐻 ∈ (SubGrp‘𝐺) → [(0g𝐺)] = 𝐻)
109adantl 277 . . . 4 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → [(0g𝐺)] = 𝐻)
1110eqeq1d 2202 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([(0g𝐺)] = [𝑋] 𝐻 = [𝑋] ))
12 eqcom 2195 . . . 4 (𝐻 = [𝑋] ↔ [𝑋] = 𝐻)
1312a1i 9 . . 3 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝐻 = [𝑋] ↔ [𝑋] = 𝐻))
148, 11, 133bitrrd 215 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻 ↔ (0g𝐺) 𝑋))
15 errel 6596 . . . 4 ( Er (Base‘𝐺) → Rel )
16 relelec 6629 . . . 4 (Rel → (𝑋 ∈ [(0g𝐺)] ↔ (0g𝐺) 𝑋))
173, 15, 163syl 17 . . 3 (𝐻 ∈ (SubGrp‘𝐺) → (𝑋 ∈ [(0g𝐺)] ↔ (0g𝐺) 𝑋))
1817adantl 277 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ [(0g𝐺)] ↔ (0g𝐺) 𝑋))
1910eleq2d 2263 . 2 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → (𝑋 ∈ [(0g𝐺)] 𝑋𝐻))
2014, 18, 193bitr2d 216 1 ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] = 𝐻𝑋𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164   class class class wbr 4029  Rel wrel 4664  cfv 5254  (class class class)co 5918   Er wer 6584  [cec 6585  Basecbs 12618  0gc0g 12867  Grpcgrp 13072  SubGrpcsubg 13237   ~QG cqg 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-er 6587  df-ec 6589  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-eqg 13242
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator