ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3ge0 Unicode version

Theorem ser3ge0 10607
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
ser3ge0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
ser3ge0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
ser3ge0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( F `  k ) )
Assertion
Ref Expression
ser3ge0  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem ser3ge0
Dummy variables  j  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ser3ge0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10098 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5554 . . . . 5  |-  ( w  =  M  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  M
) )
54breq2d 4041 . . . 4  |-  ( w  =  M  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  M
) ) )
65imbi2d 230 . . 3  |-  ( w  =  M  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  M
) ) ) )
7 fveq2 5554 . . . . 5  |-  ( w  =  j  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  j
) )
87breq2d 4041 . . . 4  |-  ( w  =  j  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  j
) ) )
98imbi2d 230 . . 3  |-  ( w  =  j  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  j
) ) ) )
10 fveq2 5554 . . . . 5  |-  ( w  =  ( j  +  1 )  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) )
1110breq2d 4041 . . . 4  |-  ( w  =  ( j  +  1 )  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) ) )
1211imbi2d 230 . . 3  |-  ( w  =  ( j  +  1 )  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) ) ) )
13 fveq2 5554 . . . . 5  |-  ( w  =  N  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  N
) )
1413breq2d 4041 . . . 4  |-  ( w  =  N  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  N
) ) )
1514imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) ) ) )
16 fveq2 5554 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
1716breq2d 4041 . . . . . 6  |-  ( k  =  M  ->  (
0  <_  ( F `  k )  <->  0  <_  ( F `  M ) ) )
18 ser3ge0.3 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( F `  k ) )
1918ralrimiva 2567 . . . . . 6  |-  ( ph  ->  A. k  e.  ( M ... N ) 0  <_  ( F `  k ) )
20 eluzfz1 10097 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
211, 20syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
2217, 19, 21rspcdva 2869 . . . . 5  |-  ( ph  ->  0  <_  ( F `  M ) )
23 eluzel2 9597 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
241, 23syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
25 ser3ge0.2 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
26 readdcl 7998 . . . . . . 7  |-  ( ( k  e.  RR  /\  v  e.  RR )  ->  ( k  +  v )  e.  RR )
2726adantl 277 . . . . . 6  |-  ( (
ph  /\  ( k  e.  RR  /\  v  e.  RR ) )  -> 
( k  +  v )  e.  RR )
2824, 25, 27seq3-1 10533 . . . . 5  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 M )  =  ( F `  M
) )
2922, 28breqtrrd 4057 . . . 4  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  M
) )
3029a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  M
) ) )
31 eqid 2193 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
3231, 24, 25, 27seqf 10535 . . . . . . . . . 10  |-  ( ph  ->  seq M (  +  ,  F ) : ( ZZ>= `  M ) --> RR )
3332ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  ->  seq M (  +  ,  F ) : (
ZZ>= `  M ) --> RR )
34 elfzouz 10217 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( ZZ>= `  M )
)
3534ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
j  e.  ( ZZ>= `  M ) )
3633, 35ffvelcdmd 5694 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
(  seq M (  +  ,  F ) `  j )  e.  RR )
37 fveq2 5554 . . . . . . . . . . 11  |-  ( k  =  ( j  +  1 )  ->  ( F `  k )  =  ( F `  ( j  +  1 ) ) )
3837eleq1d 2262 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( j  +  1 ) )  e.  RR ) )
3925ralrimiva 2567 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  RR )
4039adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  RR )
41 peano2uz 9648 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
4234, 41syl 14 . . . . . . . . . . 11  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
4342adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  (
ZZ>= `  M ) )
4438, 40, 43rspcdva 2869 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( F `  ( j  +  1 ) )  e.  RR )
4544adantr 276 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
( F `  (
j  +  1 ) )  e.  RR )
46 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  (  seq M (  +  ,  F ) `  j
) )
4737breq2d 4041 . . . . . . . . 9  |-  ( k  =  ( j  +  1 )  ->  (
0  <_  ( F `  k )  <->  0  <_  ( F `  ( j  +  1 ) ) ) )
4819ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  ->  A. k  e.  ( M ... N ) 0  <_  ( F `  k ) )
49 fzofzp1 10294 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
5049ad2antlr 489 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
( j  +  1 )  e.  ( M ... N ) )
5147, 48, 50rspcdva 2869 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  ( F `  ( j  +  1 ) ) )
5236, 45, 46, 51addge0d 8541 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  ( (  seq M (  +  ,  F ) `  j
)  +  ( F `
 ( j  +  1 ) ) ) )
5325adantlr 477 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
5453adantlr 477 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_  (  seq M
(  +  ,  F
) `  j )
)  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
5526adantl 277 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_  (  seq M
(  +  ,  F
) `  j )
)  /\  ( k  e.  RR  /\  v  e.  RR ) )  -> 
( k  +  v )  e.  RR )
5635, 54, 55seq3p1 10536 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
(  seq M (  +  ,  F ) `  ( j  +  1 ) )  =  ( (  seq M (  +  ,  F ) `
 j )  +  ( F `  (
j  +  1 ) ) ) )
5752, 56breqtrrd 4057 . . . . . 6  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) )
5857ex 115 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( 0  <_ 
(  seq M (  +  ,  F ) `  j )  ->  0  <_  (  seq M (  +  ,  F ) `
 ( j  +  1 ) ) ) )
5958expcom 116 . . . 4  |-  ( j  e.  ( M..^ N
)  ->  ( ph  ->  ( 0  <_  (  seq M (  +  ,  F ) `  j
)  ->  0  <_  (  seq M (  +  ,  F ) `  ( j  +  1 ) ) ) ) )
6059a2d 26 . . 3  |-  ( j  e.  ( M..^ N
)  ->  ( ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  j
) )  ->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) ) ) )
616, 9, 12, 15, 30, 60fzind2 10306 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) ) )
623, 61mpcom 36 1  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   class class class wbr 4029   -->wf 5250   ` cfv 5254  (class class class)co 5918   RRcr 7871   0cc0 7872   1c1 7873    + caddc 7875    <_ cle 8055   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074  ..^cfzo 10208    seqcseq 10518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519
This theorem is referenced by:  ser3le  10608
  Copyright terms: Public domain W3C validator