ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3ge0 Unicode version

Theorem ser3ge0 10452
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
ser3ge0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
ser3ge0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
ser3ge0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( F `  k ) )
Assertion
Ref Expression
ser3ge0  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem ser3ge0
Dummy variables  j  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ser3ge0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 9967 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5486 . . . . 5  |-  ( w  =  M  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  M
) )
54breq2d 3994 . . . 4  |-  ( w  =  M  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  M
) ) )
65imbi2d 229 . . 3  |-  ( w  =  M  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  M
) ) ) )
7 fveq2 5486 . . . . 5  |-  ( w  =  j  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  j
) )
87breq2d 3994 . . . 4  |-  ( w  =  j  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  j
) ) )
98imbi2d 229 . . 3  |-  ( w  =  j  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  j
) ) ) )
10 fveq2 5486 . . . . 5  |-  ( w  =  ( j  +  1 )  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) )
1110breq2d 3994 . . . 4  |-  ( w  =  ( j  +  1 )  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) ) )
1211imbi2d 229 . . 3  |-  ( w  =  ( j  +  1 )  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) ) ) )
13 fveq2 5486 . . . . 5  |-  ( w  =  N  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  N
) )
1413breq2d 3994 . . . 4  |-  ( w  =  N  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  N
) ) )
1514imbi2d 229 . . 3  |-  ( w  =  N  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) ) ) )
16 fveq2 5486 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
1716breq2d 3994 . . . . . 6  |-  ( k  =  M  ->  (
0  <_  ( F `  k )  <->  0  <_  ( F `  M ) ) )
18 ser3ge0.3 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( F `  k ) )
1918ralrimiva 2539 . . . . . 6  |-  ( ph  ->  A. k  e.  ( M ... N ) 0  <_  ( F `  k ) )
20 eluzfz1 9966 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
211, 20syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
2217, 19, 21rspcdva 2835 . . . . 5  |-  ( ph  ->  0  <_  ( F `  M ) )
23 eluzel2 9471 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
241, 23syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
25 ser3ge0.2 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
26 readdcl 7879 . . . . . . 7  |-  ( ( k  e.  RR  /\  v  e.  RR )  ->  ( k  +  v )  e.  RR )
2726adantl 275 . . . . . 6  |-  ( (
ph  /\  ( k  e.  RR  /\  v  e.  RR ) )  -> 
( k  +  v )  e.  RR )
2824, 25, 27seq3-1 10395 . . . . 5  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 M )  =  ( F `  M
) )
2922, 28breqtrrd 4010 . . . 4  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  M
) )
3029a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  M
) ) )
31 eqid 2165 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
3231, 24, 25, 27seqf 10396 . . . . . . . . . 10  |-  ( ph  ->  seq M (  +  ,  F ) : ( ZZ>= `  M ) --> RR )
3332ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  ->  seq M (  +  ,  F ) : (
ZZ>= `  M ) --> RR )
34 elfzouz 10086 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( ZZ>= `  M )
)
3534ad2antlr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
j  e.  ( ZZ>= `  M ) )
3633, 35ffvelrnd 5621 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
(  seq M (  +  ,  F ) `  j )  e.  RR )
37 fveq2 5486 . . . . . . . . . . 11  |-  ( k  =  ( j  +  1 )  ->  ( F `  k )  =  ( F `  ( j  +  1 ) ) )
3837eleq1d 2235 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( j  +  1 ) )  e.  RR ) )
3925ralrimiva 2539 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  RR )
4039adantr 274 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  RR )
41 peano2uz 9521 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
4234, 41syl 14 . . . . . . . . . . 11  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
4342adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  (
ZZ>= `  M ) )
4438, 40, 43rspcdva 2835 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( F `  ( j  +  1 ) )  e.  RR )
4544adantr 274 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
( F `  (
j  +  1 ) )  e.  RR )
46 simpr 109 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  (  seq M (  +  ,  F ) `  j
) )
4737breq2d 3994 . . . . . . . . 9  |-  ( k  =  ( j  +  1 )  ->  (
0  <_  ( F `  k )  <->  0  <_  ( F `  ( j  +  1 ) ) ) )
4819ad2antrr 480 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  ->  A. k  e.  ( M ... N ) 0  <_  ( F `  k ) )
49 fzofzp1 10162 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
5049ad2antlr 481 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
( j  +  1 )  e.  ( M ... N ) )
5147, 48, 50rspcdva 2835 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  ( F `  ( j  +  1 ) ) )
5236, 45, 46, 51addge0d 8420 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  ( (  seq M (  +  ,  F ) `  j
)  +  ( F `
 ( j  +  1 ) ) ) )
5325adantlr 469 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
5453adantlr 469 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_  (  seq M
(  +  ,  F
) `  j )
)  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
5526adantl 275 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_  (  seq M
(  +  ,  F
) `  j )
)  /\  ( k  e.  RR  /\  v  e.  RR ) )  -> 
( k  +  v )  e.  RR )
5635, 54, 55seq3p1 10397 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
(  seq M (  +  ,  F ) `  ( j  +  1 ) )  =  ( (  seq M (  +  ,  F ) `
 j )  +  ( F `  (
j  +  1 ) ) ) )
5752, 56breqtrrd 4010 . . . . . 6  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) )
5857ex 114 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( 0  <_ 
(  seq M (  +  ,  F ) `  j )  ->  0  <_  (  seq M (  +  ,  F ) `
 ( j  +  1 ) ) ) )
5958expcom 115 . . . 4  |-  ( j  e.  ( M..^ N
)  ->  ( ph  ->  ( 0  <_  (  seq M (  +  ,  F ) `  j
)  ->  0  <_  (  seq M (  +  ,  F ) `  ( j  +  1 ) ) ) ) )
6059a2d 26 . . 3  |-  ( j  e.  ( M..^ N
)  ->  ( ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  j
) )  ->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) ) ) )
616, 9, 12, 15, 30, 60fzind2 10174 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) ) )
623, 61mpcom 36 1  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   class class class wbr 3982   -->wf 5184   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    <_ cle 7934   ZZcz 9191   ZZ>=cuz 9466   ...cfz 9944  ..^cfzo 10077    seqcseq 10380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078  df-seqfrec 10381
This theorem is referenced by:  ser3le  10453
  Copyright terms: Public domain W3C validator