ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ser3ge0 Unicode version

Theorem ser3ge0 9952
Description: A finite sum of nonnegative terms is nonnegative. (Contributed by Mario Carneiro, 8-Feb-2014.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
ser3ge0.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
ser3ge0.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
ser3ge0.3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( F `  k ) )
Assertion
Ref Expression
ser3ge0  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) )
Distinct variable groups:    k, F    k, M    k, N    ph, k

Proof of Theorem ser3ge0
Dummy variables  j  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ser3ge0.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 9446 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 fveq2 5305 . . . . 5  |-  ( w  =  M  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  M
) )
54breq2d 3857 . . . 4  |-  ( w  =  M  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  M
) ) )
65imbi2d 228 . . 3  |-  ( w  =  M  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  M
) ) ) )
7 fveq2 5305 . . . . 5  |-  ( w  =  j  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  j
) )
87breq2d 3857 . . . 4  |-  ( w  =  j  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  j
) ) )
98imbi2d 228 . . 3  |-  ( w  =  j  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  j
) ) ) )
10 fveq2 5305 . . . . 5  |-  ( w  =  ( j  +  1 )  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) )
1110breq2d 3857 . . . 4  |-  ( w  =  ( j  +  1 )  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) ) )
1211imbi2d 228 . . 3  |-  ( w  =  ( j  +  1 )  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) ) ) )
13 fveq2 5305 . . . . 5  |-  ( w  =  N  ->  (  seq M (  +  ,  F ) `  w
)  =  (  seq M (  +  ,  F ) `  N
) )
1413breq2d 3857 . . . 4  |-  ( w  =  N  ->  (
0  <_  (  seq M (  +  ,  F ) `  w
)  <->  0  <_  (  seq M (  +  ,  F ) `  N
) ) )
1514imbi2d 228 . . 3  |-  ( w  =  N  ->  (
( ph  ->  0  <_ 
(  seq M (  +  ,  F ) `  w ) )  <->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) ) ) )
16 fveq2 5305 . . . . . . 7  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
1716breq2d 3857 . . . . . 6  |-  ( k  =  M  ->  (
0  <_  ( F `  k )  <->  0  <_  ( F `  M ) ) )
18 ser3ge0.3 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  0  <_  ( F `  k ) )
1918ralrimiva 2446 . . . . . 6  |-  ( ph  ->  A. k  e.  ( M ... N ) 0  <_  ( F `  k ) )
20 eluzfz1 9445 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
211, 20syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ( M ... N ) )
2217, 19, 21rspcdva 2727 . . . . 5  |-  ( ph  ->  0  <_  ( F `  M ) )
23 eluzel2 9024 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
241, 23syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
25 ser3ge0.2 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
26 readdcl 7468 . . . . . . 7  |-  ( ( k  e.  RR  /\  v  e.  RR )  ->  ( k  +  v )  e.  RR )
2726adantl 271 . . . . . 6  |-  ( (
ph  /\  ( k  e.  RR  /\  v  e.  RR ) )  -> 
( k  +  v )  e.  RR )
2824, 25, 27seq3-1 9877 . . . . 5  |-  ( ph  ->  (  seq M (  +  ,  F ) `
 M )  =  ( F `  M
) )
2922, 28breqtrrd 3871 . . . 4  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  M
) )
3029a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  M
) ) )
31 eqid 2088 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
3231, 24, 25, 27seqf 9880 . . . . . . . . . 10  |-  ( ph  ->  seq M (  +  ,  F ) : ( ZZ>= `  M ) --> RR )
3332ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  ->  seq M (  +  ,  F ) : (
ZZ>= `  M ) --> RR )
34 elfzouz 9562 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( ZZ>= `  M )
)
3534ad2antlr 473 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
j  e.  ( ZZ>= `  M ) )
3633, 35ffvelrnd 5435 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
(  seq M (  +  ,  F ) `  j )  e.  RR )
37 fveq2 5305 . . . . . . . . . . 11  |-  ( k  =  ( j  +  1 )  ->  ( F `  k )  =  ( F `  ( j  +  1 ) ) )
3837eleq1d 2156 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  (
( F `  k
)  e.  RR  <->  ( F `  ( j  +  1 ) )  e.  RR ) )
3925ralrimiva 2446 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  RR )
4039adantr 270 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  A. k  e.  (
ZZ>= `  M ) ( F `  k )  e.  RR )
41 peano2uz 9071 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
4234, 41syl 14 . . . . . . . . . . 11  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
4342adantl 271 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  (
ZZ>= `  M ) )
4438, 40, 43rspcdva 2727 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( F `  ( j  +  1 ) )  e.  RR )
4544adantr 270 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
( F `  (
j  +  1 ) )  e.  RR )
46 simpr 108 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  (  seq M (  +  ,  F ) `  j
) )
4737breq2d 3857 . . . . . . . . 9  |-  ( k  =  ( j  +  1 )  ->  (
0  <_  ( F `  k )  <->  0  <_  ( F `  ( j  +  1 ) ) ) )
4819ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  ->  A. k  e.  ( M ... N ) 0  <_  ( F `  k ) )
49 fzofzp1 9638 . . . . . . . . . 10  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
5049ad2antlr 473 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
( j  +  1 )  e.  ( M ... N ) )
5147, 48, 50rspcdva 2727 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  ( F `  ( j  +  1 ) ) )
5236, 45, 46, 51addge0d 7999 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  ( (  seq M (  +  ,  F ) `  j
)  +  ( F `
 ( j  +  1 ) ) ) )
5325adantlr 461 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
5453adantlr 461 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_  (  seq M
(  +  ,  F
) `  j )
)  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  RR )
5526adantl 271 . . . . . . . 8  |-  ( ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_  (  seq M
(  +  ,  F
) `  j )
)  /\  ( k  e.  RR  /\  v  e.  RR ) )  -> 
( k  +  v )  e.  RR )
5635, 54, 55seq3p1 9884 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
(  seq M (  +  ,  F ) `  ( j  +  1 ) )  =  ( (  seq M (  +  ,  F ) `
 j )  +  ( F `  (
j  +  1 ) ) ) )
5752, 56breqtrrd 3871 . . . . . 6  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  0  <_ 
(  seq M (  +  ,  F ) `  j ) )  -> 
0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) )
5857ex 113 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( 0  <_ 
(  seq M (  +  ,  F ) `  j )  ->  0  <_  (  seq M (  +  ,  F ) `
 ( j  +  1 ) ) ) )
5958expcom 114 . . . 4  |-  ( j  e.  ( M..^ N
)  ->  ( ph  ->  ( 0  <_  (  seq M (  +  ,  F ) `  j
)  ->  0  <_  (  seq M (  +  ,  F ) `  ( j  +  1 ) ) ) ) )
6059a2d 26 . . 3  |-  ( j  e.  ( M..^ N
)  ->  ( ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  j
) )  ->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  (
j  +  1 ) ) ) ) )
616, 9, 12, 15, 30, 60fzind2 9650 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) ) )
623, 61mpcom 36 1  |-  ( ph  ->  0  <_  (  seq M (  +  ,  F ) `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   A.wral 2359   class class class wbr 3845   -->wf 5011   ` cfv 5015  (class class class)co 5652   RRcr 7349   0cc0 7350   1c1 7351    + caddc 7353    <_ cle 7523   ZZcz 8750   ZZ>=cuz 9019   ...cfz 9424  ..^cfzo 9553    seqcseq 9852
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-addcom 7445  ax-addass 7447  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-0id 7453  ax-rnegex 7454  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-ltadd 7461
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-inn 8423  df-n0 8674  df-z 8751  df-uz 9020  df-fz 9425  df-fzo 9554  df-iseq 9853  df-seq3 9854
This theorem is referenced by:  ser3le  9953
  Copyright terms: Public domain W3C validator