ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmf1 GIF version

Theorem ghmf1 13805
Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.)
Hypotheses
Ref Expression
f1ghm0to0.a 𝐴 = (Base‘𝑅)
f1ghm0to0.b 𝐵 = (Base‘𝑆)
f1ghm0to0.n 𝑁 = (0g𝑅)
f1ghm0to0.0 0 = (0g𝑆)
Assertion
Ref Expression
ghmf1 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)))
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑁   𝑥,𝑅   𝑥,𝑆

Proof of Theorem ghmf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ghm0to0.a . . . . . 6 𝐴 = (Base‘𝑅)
2 f1ghm0to0.b . . . . . 6 𝐵 = (Base‘𝑆)
3 f1ghm0to0.n . . . . . 6 𝑁 = (0g𝑅)
4 f1ghm0to0.0 . . . . . 6 0 = (0g𝑆)
51, 2, 3, 4f1ghm0to0 13804 . . . . 5 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
653expa 1227 . . . 4 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
76biimpd 144 . . 3 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
87ralrimiva 2603 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁))
91, 2ghmf 13779 . . . 4 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐴𝐵)
109adantr 276 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) → 𝐹:𝐴𝐵)
11 eqid 2229 . . . . . . . . . 10 (-g𝑅) = (-g𝑅)
12 eqid 2229 . . . . . . . . . 10 (-g𝑆) = (-g𝑆)
131, 11, 12ghmsub 13783 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑦𝐴𝑧𝐴) → (𝐹‘(𝑦(-g𝑅)𝑧)) = ((𝐹𝑦)(-g𝑆)(𝐹𝑧)))
14133expb 1228 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑦𝐴𝑧𝐴)) → (𝐹‘(𝑦(-g𝑅)𝑧)) = ((𝐹𝑦)(-g𝑆)(𝐹𝑧)))
1514adantlr 477 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (𝐹‘(𝑦(-g𝑅)𝑧)) = ((𝐹𝑦)(-g𝑆)(𝐹𝑧)))
1615eqeq1d 2238 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ((𝐹‘(𝑦(-g𝑅)𝑧)) = 0 ↔ ((𝐹𝑦)(-g𝑆)(𝐹𝑧)) = 0 ))
17 fveqeq2 5635 . . . . . . . 8 (𝑥 = (𝑦(-g𝑅)𝑧) → ((𝐹𝑥) = 0 ↔ (𝐹‘(𝑦(-g𝑅)𝑧)) = 0 ))
18 eqeq1 2236 . . . . . . . 8 (𝑥 = (𝑦(-g𝑅)𝑧) → (𝑥 = 𝑁 ↔ (𝑦(-g𝑅)𝑧) = 𝑁))
1917, 18imbi12d 234 . . . . . . 7 (𝑥 = (𝑦(-g𝑅)𝑧) → (((𝐹𝑥) = 0𝑥 = 𝑁) ↔ ((𝐹‘(𝑦(-g𝑅)𝑧)) = 0 → (𝑦(-g𝑅)𝑧) = 𝑁)))
20 simplr 528 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁))
21 ghmgrp1 13777 . . . . . . . . 9 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp)
2221adantr 276 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) → 𝑅 ∈ Grp)
231, 11grpsubcl 13608 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑦𝐴𝑧𝐴) → (𝑦(-g𝑅)𝑧) ∈ 𝐴)
24233expb 1228 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝑦𝐴𝑧𝐴)) → (𝑦(-g𝑅)𝑧) ∈ 𝐴)
2522, 24sylan 283 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (𝑦(-g𝑅)𝑧) ∈ 𝐴)
2619, 20, 25rspcdva 2912 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ((𝐹‘(𝑦(-g𝑅)𝑧)) = 0 → (𝑦(-g𝑅)𝑧) = 𝑁))
2716, 26sylbird 170 . . . . 5 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (((𝐹𝑦)(-g𝑆)(𝐹𝑧)) = 0 → (𝑦(-g𝑅)𝑧) = 𝑁))
28 ghmgrp2 13778 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑆 ∈ Grp)
2928ad2antrr 488 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝑆 ∈ Grp)
309ad2antrr 488 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝐹:𝐴𝐵)
31 simprl 529 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝑦𝐴)
3230, 31ffvelcdmd 5770 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (𝐹𝑦) ∈ 𝐵)
33 simprr 531 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝑧𝐴)
3430, 33ffvelcdmd 5770 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (𝐹𝑧) ∈ 𝐵)
352, 4, 12grpsubeq0 13614 . . . . . 6 ((𝑆 ∈ Grp ∧ (𝐹𝑦) ∈ 𝐵 ∧ (𝐹𝑧) ∈ 𝐵) → (((𝐹𝑦)(-g𝑆)(𝐹𝑧)) = 0 ↔ (𝐹𝑦) = (𝐹𝑧)))
3629, 32, 34, 35syl3anc 1271 . . . . 5 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (((𝐹𝑦)(-g𝑆)(𝐹𝑧)) = 0 ↔ (𝐹𝑦) = (𝐹𝑧)))
3721ad2antrr 488 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝑅 ∈ Grp)
381, 3, 11grpsubeq0 13614 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑦𝐴𝑧𝐴) → ((𝑦(-g𝑅)𝑧) = 𝑁𝑦 = 𝑧))
3937, 31, 33, 38syl3anc 1271 . . . . 5 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ((𝑦(-g𝑅)𝑧) = 𝑁𝑦 = 𝑧))
4027, 36, 393imtr3d 202 . . . 4 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
4140ralrimivva 2612 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) → ∀𝑦𝐴𝑧𝐴 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
42 dff13 5891 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐴𝑧𝐴 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
4310, 41, 42sylanbrc 417 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) → 𝐹:𝐴1-1𝐵)
448, 43impbida 598 1 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wral 2508  wf 5313  1-1wf1 5314  cfv 5317  (class class class)co 6000  Basecbs 13027  0gc0g 13284  Grpcgrp 13528  -gcsg 13530   GrpHom cghm 13772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-sbg 13533  df-ghm 13773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator