ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmf1 GIF version

Theorem ghmf1 13229
Description: Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.)
Hypotheses
Ref Expression
f1ghm0to0.a 𝐴 = (Base‘𝑅)
f1ghm0to0.b 𝐵 = (Base‘𝑆)
f1ghm0to0.n 𝑁 = (0g𝑅)
f1ghm0to0.0 0 = (0g𝑆)
Assertion
Ref Expression
ghmf1 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)))
Distinct variable groups:   𝑥, 0   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹   𝑥,𝑁   𝑥,𝑅   𝑥,𝑆

Proof of Theorem ghmf1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ghm0to0.a . . . . . 6 𝐴 = (Base‘𝑅)
2 f1ghm0to0.b . . . . . 6 𝐵 = (Base‘𝑆)
3 f1ghm0to0.n . . . . . 6 𝑁 = (0g𝑅)
4 f1ghm0to0.0 . . . . . 6 0 = (0g𝑆)
51, 2, 3, 4f1ghm0to0 13228 . . . . 5 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
653expa 1205 . . . 4 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
76biimpd 144 . . 3 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 0𝑥 = 𝑁))
87ralrimiva 2563 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴1-1𝐵) → ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁))
91, 2ghmf 13203 . . . 4 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝐹:𝐴𝐵)
109adantr 276 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) → 𝐹:𝐴𝐵)
11 eqid 2189 . . . . . . . . . 10 (-g𝑅) = (-g𝑅)
12 eqid 2189 . . . . . . . . . 10 (-g𝑆) = (-g𝑆)
131, 11, 12ghmsub 13207 . . . . . . . . 9 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝑦𝐴𝑧𝐴) → (𝐹‘(𝑦(-g𝑅)𝑧)) = ((𝐹𝑦)(-g𝑆)(𝐹𝑧)))
14133expb 1206 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ (𝑦𝐴𝑧𝐴)) → (𝐹‘(𝑦(-g𝑅)𝑧)) = ((𝐹𝑦)(-g𝑆)(𝐹𝑧)))
1514adantlr 477 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (𝐹‘(𝑦(-g𝑅)𝑧)) = ((𝐹𝑦)(-g𝑆)(𝐹𝑧)))
1615eqeq1d 2198 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ((𝐹‘(𝑦(-g𝑅)𝑧)) = 0 ↔ ((𝐹𝑦)(-g𝑆)(𝐹𝑧)) = 0 ))
17 fveqeq2 5543 . . . . . . . 8 (𝑥 = (𝑦(-g𝑅)𝑧) → ((𝐹𝑥) = 0 ↔ (𝐹‘(𝑦(-g𝑅)𝑧)) = 0 ))
18 eqeq1 2196 . . . . . . . 8 (𝑥 = (𝑦(-g𝑅)𝑧) → (𝑥 = 𝑁 ↔ (𝑦(-g𝑅)𝑧) = 𝑁))
1917, 18imbi12d 234 . . . . . . 7 (𝑥 = (𝑦(-g𝑅)𝑧) → (((𝐹𝑥) = 0𝑥 = 𝑁) ↔ ((𝐹‘(𝑦(-g𝑅)𝑧)) = 0 → (𝑦(-g𝑅)𝑧) = 𝑁)))
20 simplr 528 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁))
21 ghmgrp1 13201 . . . . . . . . 9 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑅 ∈ Grp)
2221adantr 276 . . . . . . . 8 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) → 𝑅 ∈ Grp)
231, 11grpsubcl 13039 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝑦𝐴𝑧𝐴) → (𝑦(-g𝑅)𝑧) ∈ 𝐴)
24233expb 1206 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝑦𝐴𝑧𝐴)) → (𝑦(-g𝑅)𝑧) ∈ 𝐴)
2522, 24sylan 283 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (𝑦(-g𝑅)𝑧) ∈ 𝐴)
2619, 20, 25rspcdva 2861 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ((𝐹‘(𝑦(-g𝑅)𝑧)) = 0 → (𝑦(-g𝑅)𝑧) = 𝑁))
2716, 26sylbird 170 . . . . 5 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (((𝐹𝑦)(-g𝑆)(𝐹𝑧)) = 0 → (𝑦(-g𝑅)𝑧) = 𝑁))
28 ghmgrp2 13202 . . . . . . 7 (𝐹 ∈ (𝑅 GrpHom 𝑆) → 𝑆 ∈ Grp)
2928ad2antrr 488 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝑆 ∈ Grp)
309ad2antrr 488 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝐹:𝐴𝐵)
31 simprl 529 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝑦𝐴)
3230, 31ffvelcdmd 5673 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (𝐹𝑦) ∈ 𝐵)
33 simprr 531 . . . . . . 7 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝑧𝐴)
3430, 33ffvelcdmd 5673 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (𝐹𝑧) ∈ 𝐵)
352, 4, 12grpsubeq0 13045 . . . . . 6 ((𝑆 ∈ Grp ∧ (𝐹𝑦) ∈ 𝐵 ∧ (𝐹𝑧) ∈ 𝐵) → (((𝐹𝑦)(-g𝑆)(𝐹𝑧)) = 0 ↔ (𝐹𝑦) = (𝐹𝑧)))
3629, 32, 34, 35syl3anc 1249 . . . . 5 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → (((𝐹𝑦)(-g𝑆)(𝐹𝑧)) = 0 ↔ (𝐹𝑦) = (𝐹𝑧)))
3721ad2antrr 488 . . . . . 6 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → 𝑅 ∈ Grp)
381, 3, 11grpsubeq0 13045 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑦𝐴𝑧𝐴) → ((𝑦(-g𝑅)𝑧) = 𝑁𝑦 = 𝑧))
3937, 31, 33, 38syl3anc 1249 . . . . 5 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ((𝑦(-g𝑅)𝑧) = 𝑁𝑦 = 𝑧))
4027, 36, 393imtr3d 202 . . . 4 (((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) ∧ (𝑦𝐴𝑧𝐴)) → ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
4140ralrimivva 2572 . . 3 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) → ∀𝑦𝐴𝑧𝐴 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧))
42 dff13 5790 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦𝐴𝑧𝐴 ((𝐹𝑦) = (𝐹𝑧) → 𝑦 = 𝑧)))
4310, 41, 42sylanbrc 417 . 2 ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)) → 𝐹:𝐴1-1𝐵)
448, 43impbida 596 1 (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴1-1𝐵 ↔ ∀𝑥𝐴 ((𝐹𝑥) = 0𝑥 = 𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wral 2468  wf 5231  1-1wf1 5232  cfv 5235  (class class class)co 5897  Basecbs 12515  0gc0g 12764  Grpcgrp 12960  -gcsg 12962   GrpHom cghm 13196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1re 7936  ax-addrcl 7939
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-1st 6166  df-2nd 6167  df-inn 8951  df-2 9009  df-ndx 12518  df-slot 12519  df-base 12521  df-plusg 12605  df-0g 12766  df-mgm 12835  df-sgrp 12880  df-mnd 12893  df-grp 12963  df-minusg 12964  df-sbg 12965  df-ghm 13197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator