ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpsubcl GIF version

Theorem grpsubcl 12806
Description: Closure of group subtraction. (Contributed by NM, 31-Mar-2014.)
Hypotheses
Ref Expression
grpsubcl.b 𝐵 = (Base‘𝐺)
grpsubcl.m = (-g𝐺)
Assertion
Ref Expression
grpsubcl ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem grpsubcl
StepHypRef Expression
1 grpsubcl.b . . 3 𝐵 = (Base‘𝐺)
2 grpsubcl.m . . 3 = (-g𝐺)
31, 2grpsubf 12805 . 2 (𝐺 ∈ Grp → :(𝐵 × 𝐵)⟶𝐵)
4 fovrn 6004 . 2 (( :(𝐵 × 𝐵)⟶𝐵𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
53, 4syl3an1 1269 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 976   = wceq 1351  wcel 2144   × cxp 4615  wf 5201  cfv 5205  (class class class)co 5862  Basecbs 12425  Grpcgrp 12735  -gcsg 12737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 707  ax-5 1443  ax-7 1444  ax-gen 1445  ax-ie1 1489  ax-ie2 1490  ax-8 1500  ax-10 1501  ax-11 1502  ax-i12 1503  ax-bndl 1505  ax-4 1506  ax-17 1522  ax-i9 1526  ax-ial 1530  ax-i5r 1531  ax-13 2146  ax-14 2147  ax-ext 2155  ax-coll 4110  ax-sep 4113  ax-pow 4166  ax-pr 4200  ax-un 4424  ax-cnex 7874  ax-resscn 7875  ax-1re 7877  ax-addrcl 7880
This theorem depends on definitions:  df-bi 117  df-3an 978  df-tru 1354  df-nf 1457  df-sb 1759  df-eu 2025  df-mo 2026  df-clab 2160  df-cleq 2166  df-clel 2169  df-nfc 2304  df-ral 2456  df-rex 2457  df-reu 2458  df-rmo 2459  df-rab 2460  df-v 2735  df-sbc 2959  df-csb 3053  df-un 3128  df-in 3130  df-ss 3137  df-pw 3571  df-sn 3592  df-pr 3593  df-op 3595  df-uni 3803  df-int 3838  df-iun 3881  df-br 3996  df-opab 4057  df-mpt 4058  df-id 4284  df-xp 4623  df-rel 4624  df-cnv 4625  df-co 4626  df-dm 4627  df-rn 4628  df-res 4629  df-ima 4630  df-iota 5167  df-fun 5207  df-fn 5208  df-f 5209  df-f1 5210  df-fo 5211  df-f1o 5212  df-fv 5213  df-riota 5818  df-ov 5865  df-oprab 5866  df-mpo 5867  df-1st 6128  df-2nd 6129  df-inn 8888  df-2 8946  df-ndx 12428  df-slot 12429  df-base 12431  df-plusg 12502  df-0g 12625  df-mgm 12637  df-sgrp 12670  df-mnd 12680  df-grp 12738  df-minusg 12739  df-sbg 12740
This theorem is referenced by:  grpsubsub  12815  grpsubsub4  12819  grpnpncan  12821  grpnnncan2  12823  dfgrp3m  12825  abladdsub4  12910  abladdsub  12911  ablpncan3  12913  ablsubsub4  12915  ablpnpcan  12916  ablnnncan  12919  ablnnncan1  12920
  Copyright terms: Public domain W3C validator