| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znegcld | Unicode version | ||
| Description: Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| zred.1 |
|
| Ref | Expression |
|---|---|
| znegcld |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zred.1 |
. 2
| |
| 2 | znegcl 9360 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-addcom 7982 ax-addass 7984 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-0id 7990 ax-rnegex 7991 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-ltadd 7998 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-inn 8994 df-z 9330 |
| This theorem is referenced by: infssuzex 10326 zsupssdc 10331 ceilqval 10401 ceiqcl 10402 exp3val 10636 expnegap0 10642 expaddzaplem 10677 seq3shft 11006 nn0abscl 11253 climshft2 11474 fsumshftm 11613 eftlub 11858 zdvdsdc 11980 dvdsadd2b 12008 divalglemex 12090 divalglemeuneg 12091 bitscmp 12126 gcdaddm 12162 modgcd 12169 pcneg 12505 gznegcl 12555 gzcjcl 12556 4sqlem10 12567 4sqexercise1 12578 4sqexercise2 12579 4sqlemsdc 12580 mulgfng 13280 mulgdirlem 13309 mulgdir 13310 mulgmodid 13317 subgmulg 13344 wilthlem1 15242 lgsval 15271 lgseisenlem2 15338 lgseisen 15341 2sqlem4 15385 |
| Copyright terms: Public domain | W3C validator |