Colors of
variables: wff set class |
Syntax hints: wi 4
wa 104
wceq 1353
wcel 2148
wrex 2456
class class class wbr 4003 cmpt 4064 com 4589 cfv 5216 (class class class)co 5874
freccfrec 6390 cen 6737 cfn 6739 cc0 7810 c1 7811 caddc 7813 cn0 9175 cz 9252 cuz 9527 ♯chash 10754 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709
ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4118 ax-sep 4121 ax-nul 4129 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-iinf 4587 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-distr 7914 ax-i2m1 7915 ax-0lt1 7916 ax-0id 7918 ax-rnegex 7919 ax-cnre 7921 ax-pre-ltirr 7922 ax-pre-ltwlin 7923 ax-pre-lttrn 7924 ax-pre-ltadd 7926 |
This theorem depends on definitions:
df-bi 117 df-dc 835
df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4004 df-opab 4065 df-mpt 4066 df-tr 4102 df-id 4293 df-iord 4366 df-on 4368 df-ilim 4369 df-suc 4371 df-iom 4590 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-f 5220 df-f1 5221 df-fo 5222 df-f1o 5223 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-recs 6305 df-frec 6391 df-er 6534 df-en 6740 df-dom 6741 df-fin 6742 df-pnf 7993 df-mnf 7994 df-xr 7995 df-ltxr 7996 df-le 7997 df-sub 8129 df-neg 8130 df-inn 8919 df-n0 9176 df-z 9253 df-uz 9528 df-ihash 10755 |
This theorem is referenced by: hashfiv01gt1
10761 filtinf
10770 isfinite4im
10771 fihashneq0
10773 hashnncl
10774 fihashssdif
10797 hashdifpr
10799 hashxp
10805 zfz1isolemsplit
10817 zfz1isolemiso
10818 zfz1isolem1
10819 fz1f1o
11382 fsumconst
11461 hashiun
11485 hash2iun1dif1
11487 fprodconst
11627 phival
12212 phicl2
12213 phiprmpw
12221 sumhashdc
12344 hashfinmndnn
12832 |