ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashcl Unicode version

Theorem hashcl 10024
Description: Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashcl  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )

Proof of Theorem hashcl
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6408 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 118 . 2  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
3 simprl 498 . . . 4  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  n  e.  om )
4 simprr 499 . . . . 5  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~~  n )
54ensymd 6430 . . . 4  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  n  ~~  A )
6 hashennn 10023 . . . 4  |-  ( ( n  e.  om  /\  n  ~~  A )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n ) )
73, 5, 6syl2anc 403 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( `  A
)  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  n ) )
8 0zd 8658 . . . . . 6  |-  ( n  e.  om  ->  0  e.  ZZ )
9 eqid 2083 . . . . . 6  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
10 id 19 . . . . . 6  |-  ( n  e.  om  ->  n  e.  om )
118, 9, 10frec2uzuzd 9698 . . . . 5  |-  ( n  e.  om  ->  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  n
)  e.  ( ZZ>= ` 
0 ) )
12 nn0uz 8948 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
1311, 12syl6eleqr 2176 . . . 4  |-  ( n  e.  om  ->  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  n
)  e.  NN0 )
143, 13syl 14 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  (frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  n )  e.  NN0 )
157, 14eqeltrd 2159 . 2  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( `  A
)  e.  NN0 )
162, 15rexlimddv 2487 1  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   E.wrex 2354   class class class wbr 3811    |-> cmpt 3865   omcom 4368   ` cfv 4969  (class class class)co 5591  freccfrec 6087    ~~ cen 6385   Fincfn 6387   0cc0 7253   1c1 7254    + caddc 7256   NN0cn0 8565   ZZcz 8646   ZZ>=cuz 8914  ♯chash 10018
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-iinf 4366  ax-cnex 7339  ax-resscn 7340  ax-1cn 7341  ax-1re 7342  ax-icn 7343  ax-addcl 7344  ax-addrcl 7345  ax-mulcl 7346  ax-addcom 7348  ax-addass 7350  ax-distr 7352  ax-i2m1 7353  ax-0lt1 7354  ax-0id 7356  ax-rnegex 7357  ax-cnre 7359  ax-pre-ltirr 7360  ax-pre-ltwlin 7361  ax-pre-lttrn 7362  ax-pre-ltadd 7364
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4084  df-iord 4157  df-on 4159  df-ilim 4160  df-suc 4162  df-iom 4369  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-f1 4974  df-fo 4975  df-f1o 4976  df-fv 4977  df-riota 5547  df-ov 5594  df-oprab 5595  df-mpt2 5596  df-recs 6002  df-frec 6088  df-er 6222  df-en 6388  df-dom 6389  df-fin 6390  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-sub 7558  df-neg 7559  df-inn 8317  df-n0 8566  df-z 8647  df-uz 8915  df-ihash 10019
This theorem is referenced by:  hashfiv01gt1  10025  filtinf  10035  isfinite4im  10036  fihashneq0  10038  hashnncl  10039  fihashssdif  10061  hashdifpr  10063  hashxp  10069  fz1f1o  10572  phival  10969  phicl2  10970  phiprmpw  10978
  Copyright terms: Public domain W3C validator