ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashcl Unicode version

Theorem hashcl 10876
Description: Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.)
Assertion
Ref Expression
hashcl  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )

Proof of Theorem hashcl
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6822 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . 2  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
3 simprl 529 . . . 4  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  n  e.  om )
4 simprr 531 . . . . 5  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  A  ~~  n )
54ensymd 6844 . . . 4  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  n  ~~  A )
6 hashennn 10875 . . . 4  |-  ( ( n  e.  om  /\  n  ~~  A )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n ) )
73, 5, 6syl2anc 411 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( `  A
)  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  n ) )
8 0zd 9341 . . . . . 6  |-  ( n  e.  om  ->  0  e.  ZZ )
9 eqid 2196 . . . . . 6  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
10 id 19 . . . . . 6  |-  ( n  e.  om  ->  n  e.  om )
118, 9, 10frec2uzuzd 10497 . . . . 5  |-  ( n  e.  om  ->  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  n
)  e.  ( ZZ>= ` 
0 ) )
12 nn0uz 9639 . . . . 5  |-  NN0  =  ( ZZ>= `  0 )
1311, 12eleqtrrdi 2290 . . . 4  |-  ( n  e.  om  ->  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  n
)  e.  NN0 )
143, 13syl 14 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  (frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  n )  e.  NN0 )
157, 14eqeltrd 2273 . 2  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( `  A
)  e.  NN0 )
162, 15rexlimddv 2619 1  |-  ( A  e.  Fin  ->  ( `  A )  e.  NN0 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4034    |-> cmpt 4095   omcom 4627   ` cfv 5259  (class class class)co 5923  freccfrec 6450    ~~ cen 6799   Fincfn 6801   0cc0 7882   1c1 7883    + caddc 7885   NN0cn0 9252   ZZcz 9329   ZZ>=cuz 9604  ♯chash 10870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-addcom 7982  ax-addass 7984  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-0id 7990  ax-rnegex 7991  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-ltadd 7998
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-recs 6365  df-frec 6451  df-er 6594  df-en 6802  df-dom 6803  df-fin 6804  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-inn 8994  df-n0 9253  df-z 9330  df-uz 9605  df-ihash 10871
This theorem is referenced by:  hashfiv01gt1  10877  filtinf  10886  isfinite4im  10887  fihashneq0  10889  hashnncl  10890  fihashssdif  10913  hashdifpr  10915  hashxp  10921  zfz1isolemsplit  10933  zfz1isolemiso  10934  zfz1isolem1  10935  fz1f1o  11543  fsumconst  11622  hashiun  11646  hash2iun1dif1  11648  fprodconst  11788  phival  12392  phicl2  12393  phiprmpw  12401  sumhashdc  12527  4sqlem11  12581  hashfinmndnn  13099  0sgm  15247  lgsquadlem1  15344  lgsquadlem2  15345  lgsquadlem3  15346
  Copyright terms: Public domain W3C validator