| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashcl | Unicode version | ||
| Description: Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.) |
| Ref | Expression |
|---|---|
| hashcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6854 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | simprl 529 |
. . . 4
| |
| 4 | simprr 531 |
. . . . 5
| |
| 5 | 4 | ensymd 6877 |
. . . 4
|
| 6 | hashennn 10927 |
. . . 4
| |
| 7 | 3, 5, 6 | syl2anc 411 |
. . 3
|
| 8 | 0zd 9386 |
. . . . . 6
| |
| 9 | eqid 2205 |
. . . . . 6
| |
| 10 | id 19 |
. . . . . 6
| |
| 11 | 8, 9, 10 | frec2uzuzd 10549 |
. . . . 5
|
| 12 | nn0uz 9685 |
. . . . 5
| |
| 13 | 11, 12 | eleqtrrdi 2299 |
. . . 4
|
| 14 | 3, 13 | syl 14 |
. . 3
|
| 15 | 7, 14 | eqeltrd 2282 |
. 2
|
| 16 | 2, 15 | rexlimddv 2628 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-recs 6393 df-frec 6479 df-er 6622 df-en 6830 df-dom 6831 df-fin 6832 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-n0 9298 df-z 9375 df-uz 9651 df-ihash 10923 |
| This theorem is referenced by: hashfiv01gt1 10929 filtinf 10938 isfinite4im 10939 fihashneq0 10941 hashnncl 10942 fihashssdif 10965 hashdifpr 10967 hashxp 10973 zfz1isolemsplit 10985 zfz1isolemiso 10986 zfz1isolem1 10987 ccatfvalfi 11051 ccatval2 11057 fz1f1o 11719 fsumconst 11798 hashiun 11822 hash2iun1dif1 11824 fprodconst 11964 phival 12568 phicl2 12569 phiprmpw 12577 sumhashdc 12703 4sqlem11 12757 hashfinmndnn 13297 0sgm 15490 lgsquadlem1 15587 lgsquadlem2 15588 lgsquadlem3 15589 |
| Copyright terms: Public domain | W3C validator |