| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashcl | Unicode version | ||
| Description: Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.) |
| Ref | Expression |
|---|---|
| hashcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6822 |
. . 3
| |
| 2 | 1 | biimpi 120 |
. 2
|
| 3 | simprl 529 |
. . . 4
| |
| 4 | simprr 531 |
. . . . 5
| |
| 5 | 4 | ensymd 6844 |
. . . 4
|
| 6 | hashennn 10875 |
. . . 4
| |
| 7 | 3, 5, 6 | syl2anc 411 |
. . 3
|
| 8 | 0zd 9341 |
. . . . . 6
| |
| 9 | eqid 2196 |
. . . . . 6
| |
| 10 | id 19 |
. . . . . 6
| |
| 11 | 8, 9, 10 | frec2uzuzd 10497 |
. . . . 5
|
| 12 | nn0uz 9639 |
. . . . 5
| |
| 13 | 11, 12 | eleqtrrdi 2290 |
. . . 4
|
| 14 | 3, 13 | syl 14 |
. . 3
|
| 15 | 7, 14 | eqeltrd 2273 |
. 2
|
| 16 | 2, 15 | rexlimddv 2619 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-addcom 7982 ax-addass 7984 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-0id 7990 ax-rnegex 7991 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-ltadd 7998 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-recs 6365 df-frec 6451 df-er 6594 df-en 6802 df-dom 6803 df-fin 6804 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-inn 8994 df-n0 9253 df-z 9330 df-uz 9605 df-ihash 10871 |
| This theorem is referenced by: hashfiv01gt1 10877 filtinf 10886 isfinite4im 10887 fihashneq0 10889 hashnncl 10890 fihashssdif 10913 hashdifpr 10915 hashxp 10921 zfz1isolemsplit 10933 zfz1isolemiso 10934 zfz1isolem1 10935 fz1f1o 11543 fsumconst 11622 hashiun 11646 hash2iun1dif1 11648 fprodconst 11788 phival 12392 phicl2 12393 phiprmpw 12401 sumhashdc 12527 4sqlem11 12581 hashfinmndnn 13099 0sgm 15247 lgsquadlem1 15344 lgsquadlem2 15345 lgsquadlem3 15346 |
| Copyright terms: Public domain | W3C validator |