Step | Hyp | Ref
| Expression |
1 | | rimrcl 13656 |
. 2
⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
2 | | rhmrcl1 13651 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
3 | 2 | elexd 2773 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ V) |
4 | | rhmrcl2 13652 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
5 | 4 | elexd 2773 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ V) |
6 | 3, 5 | jca 306 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
7 | 6 | adantr 276 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
8 | | df-rim 13649 |
. . . . . 6
⊢ RingIso
= (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) |
9 | 8 | a1i 9 |
. . . . 5
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → RingIso =
(𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)})) |
10 | | oveq12 5927 |
. . . . . . 7
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆)) |
11 | 10 | adantl 277 |
. . . . . 6
⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑟 RingHom 𝑠) = (𝑅 RingHom 𝑆)) |
12 | | oveq12 5927 |
. . . . . . . . 9
⊢ ((𝑠 = 𝑆 ∧ 𝑟 = 𝑅) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) |
13 | 12 | ancoms 268 |
. . . . . . . 8
⊢ ((𝑟 = 𝑅 ∧ 𝑠 = 𝑆) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) |
14 | 13 | adantl 277 |
. . . . . . 7
⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (𝑠 RingHom 𝑟) = (𝑆 RingHom 𝑅)) |
15 | 14 | eleq2d 2263 |
. . . . . 6
⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → (◡𝑓 ∈ (𝑠 RingHom 𝑟) ↔ ◡𝑓 ∈ (𝑆 RingHom 𝑅))) |
16 | 11, 15 | rabeqbidv 2755 |
. . . . 5
⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑟 = 𝑅 ∧ 𝑠 = 𝑆)) → {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)} = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)}) |
17 | | simpl 109 |
. . . . 5
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑅 ∈ V) |
18 | | simpr 110 |
. . . . 5
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → 𝑆 ∈ V) |
19 | | rhmex 13653 |
. . . . . . 7
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 RingHom 𝑆) ∈ V) |
20 | 17, 18, 19 | syl2anc 411 |
. . . . . 6
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 RingHom 𝑆) ∈ V) |
21 | | rabexg 4172 |
. . . . . 6
⊢ ((𝑅 RingHom 𝑆) ∈ V → {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V) |
22 | 20, 21 | syl 14 |
. . . . 5
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ∈ V) |
23 | 9, 16, 17, 18, 22 | ovmpod 6046 |
. . . 4
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝑅 RingIso 𝑆) = {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)}) |
24 | 23 | eleq2d 2263 |
. . 3
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)})) |
25 | | cnveq 4836 |
. . . . 5
⊢ (𝑓 = 𝐹 → ◡𝑓 = ◡𝐹) |
26 | 25 | eleq1d 2262 |
. . . 4
⊢ (𝑓 = 𝐹 → (◡𝑓 ∈ (𝑆 RingHom 𝑅) ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
27 | 26 | elrab 2916 |
. . 3
⊢ (𝐹 ∈ {𝑓 ∈ (𝑅 RingHom 𝑆) ∣ ◡𝑓 ∈ (𝑆 RingHom 𝑅)} ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |
28 | 24, 27 | bitrdi 196 |
. 2
⊢ ((𝑅 ∈ V ∧ 𝑆 ∈ V) → (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅)))) |
29 | 1, 7, 28 | pm5.21nii 705 |
1
⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) |