ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lediv12a Unicode version

Theorem lediv12a 8789
Description: Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005.)
Assertion
Ref Expression
lediv12a  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  <_  ( B  /  C ) )

Proof of Theorem lediv12a
StepHypRef Expression
1 simplrr 526 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  A  <_  B )
2 simprrr 530 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  C  <_  D )
3 simprll 527 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  C  e.  RR )
4 simprrl 529 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  0  <  C )
5 simprlr 528 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  D  e.  RR )
6 0red 7900 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  0  e.  RR )
76, 3, 5, 4, 2ltletrd 8321 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  0  <  D )
8 lerec 8779 . . . . 5  |-  ( ( ( C  e.  RR  /\  0  <  C )  /\  ( D  e.  RR  /\  0  < 
D ) )  -> 
( C  <_  D  <->  ( 1  /  D )  <_  ( 1  /  C ) ) )
93, 4, 5, 7, 8syl22anc 1229 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( C  <_  D  <->  ( 1  /  D )  <_  (
1  /  C ) ) )
102, 9mpbid 146 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( 1  /  D )  <_ 
( 1  /  C
) )
11 simplll 523 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  A  e.  RR )
12 simplrl 525 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  0  <_  A )
1311, 12jca 304 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  e.  RR  /\  0  <_  A ) )
14 simpllr 524 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  B  e.  RR )
155, 7gt0ap0d 8527 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  D #  0
)
165, 15rerecclapd 8730 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( 1  /  D )  e.  RR )
17 recgt0 8745 . . . . . . 7  |-  ( ( D  e.  RR  /\  0  <  D )  -> 
0  <  ( 1  /  D ) )
185, 7, 17syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  0  <  ( 1  /  D ) )
196, 16, 18ltled 8017 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  0  <_  ( 1  /  D ) )
2016, 19jca 304 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( (
1  /  D )  e.  RR  /\  0  <_  ( 1  /  D
) ) )
213, 4gt0ap0d 8527 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  C #  0
)
223, 21rerecclapd 8730 . . . 4  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( 1  /  C )  e.  RR )
23 lemul12a 8757 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  (
( ( 1  /  D )  e.  RR  /\  0  <_  ( 1  /  D ) )  /\  ( 1  /  C )  e.  RR ) )  ->  (
( A  <_  B  /\  ( 1  /  D
)  <_  ( 1  /  C ) )  ->  ( A  x.  ( 1  /  D
) )  <_  ( B  x.  ( 1  /  C ) ) ) )
2413, 14, 20, 22, 23syl22anc 1229 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( ( A  <_  B  /\  (
1  /  D )  <_  ( 1  /  C ) )  -> 
( A  x.  (
1  /  D ) )  <_  ( B  x.  ( 1  /  C
) ) ) )
251, 10, 24mp2and 430 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  x.  ( 1  /  D
) )  <_  ( B  x.  ( 1  /  C ) ) )
2611recnd 7927 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  A  e.  CC )
275recnd 7927 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  D  e.  CC )
2826, 27, 15divrecapd 8689 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  =  ( A  x.  ( 1  /  D ) ) )
2914recnd 7927 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  B  e.  CC )
303recnd 7927 . . 3  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  C  e.  CC )
3129, 30, 21divrecapd 8689 . 2  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( B  /  C )  =  ( B  x.  ( 1  /  C ) ) )
3225, 28, 313brtr4d 4014 1  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  <_  ( B  /  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   RRcr 7752   0cc0 7753   1c1 7754    x. cmul 7758    < clt 7933    <_ cle 7934    / cdiv 8568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569
This theorem is referenced by:  lediv2a  8790  lediv12ad  9692
  Copyright terms: Public domain W3C validator