![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lmodsubvs | GIF version |
Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.) |
Ref | Expression |
---|---|
lmodsubvs.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodsubvs.p | ⊢ + = (+g‘𝑊) |
lmodsubvs.m | ⊢ − = (-g‘𝑊) |
lmodsubvs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodsubvs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodsubvs.k | ⊢ 𝐾 = (Base‘𝐹) |
lmodsubvs.n | ⊢ 𝑁 = (invg‘𝐹) |
lmodsubvs.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lmodsubvs.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
lmodsubvs.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lmodsubvs.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
Ref | Expression |
---|---|
lmodsubvs | ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmodsubvs.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lmodsubvs.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | lmodsubvs.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
4 | lmodsubvs.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
5 | lmodsubvs.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
6 | lmodsubvs.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
7 | lmodsubvs.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
8 | lmodsubvs.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
9 | 5, 6, 7, 8 | lmodvscl 13801 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐴 · 𝑌) ∈ 𝑉) |
10 | 1, 3, 4, 9 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑌) ∈ 𝑉) |
11 | lmodsubvs.p | . . . 4 ⊢ + = (+g‘𝑊) | |
12 | lmodsubvs.m | . . . 4 ⊢ − = (-g‘𝑊) | |
13 | lmodsubvs.n | . . . 4 ⊢ 𝑁 = (invg‘𝐹) | |
14 | eqid 2193 | . . . 4 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
15 | 5, 11, 12, 6, 7, 13, 14 | lmodvsubval2 13838 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
16 | 1, 2, 10, 15 | syl3anc 1249 | . 2 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
17 | 6 | lmodring 13791 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
18 | 1, 17 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ Ring) |
19 | ringgrp 13497 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
20 | 18, 19 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Grp) |
21 | 8, 14 | ringidcl 13516 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
22 | 18, 21 | syl 14 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
23 | 8, 13 | grpinvcl 13120 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → (𝑁‘(1r‘𝐹)) ∈ 𝐾) |
24 | 20, 22, 23 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑁‘(1r‘𝐹)) ∈ 𝐾) |
25 | eqid 2193 | . . . . . 6 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
26 | 5, 6, 7, 8, 25 | lmodvsass 13809 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ ((𝑁‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
27 | 1, 24, 3, 4, 26 | syl13anc 1251 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
28 | 8, 25, 14, 13, 18, 3 | ringnegl 13547 | . . . . 5 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) = (𝑁‘𝐴)) |
29 | 28 | oveq1d 5933 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘𝐴) · 𝑌)) |
30 | 27, 29 | eqtr3d 2228 | . . 3 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)) = ((𝑁‘𝐴) · 𝑌)) |
31 | 30 | oveq2d 5934 | . 2 ⊢ (𝜑 → (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
32 | 16, 31 | eqtrd 2226 | 1 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 Scalarcsca 12698 ·𝑠 cvsca 12699 Grpcgrp 13072 invgcminusg 13073 -gcsg 13074 1rcur 13455 Ringcrg 13492 LModclmod 13783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-plusg 12708 df-mulr 12709 df-sca 12711 df-vsca 12712 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-sbg 13077 df-mgp 13417 df-ur 13456 df-ring 13494 df-lmod 13785 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |