| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lmodsubvs | GIF version | ||
| Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| lmodsubvs.v | ⊢ 𝑉 = (Base‘𝑊) | 
| lmodsubvs.p | ⊢ + = (+g‘𝑊) | 
| lmodsubvs.m | ⊢ − = (-g‘𝑊) | 
| lmodsubvs.t | ⊢ · = ( ·𝑠 ‘𝑊) | 
| lmodsubvs.f | ⊢ 𝐹 = (Scalar‘𝑊) | 
| lmodsubvs.k | ⊢ 𝐾 = (Base‘𝐹) | 
| lmodsubvs.n | ⊢ 𝑁 = (invg‘𝐹) | 
| lmodsubvs.w | ⊢ (𝜑 → 𝑊 ∈ LMod) | 
| lmodsubvs.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) | 
| lmodsubvs.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| lmodsubvs.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) | 
| Ref | Expression | 
|---|---|
| lmodsubvs | ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lmodsubvs.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodsubvs.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | lmodsubvs.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 4 | lmodsubvs.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 5 | lmodsubvs.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | lmodsubvs.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 7 | lmodsubvs.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 8 | lmodsubvs.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 9 | 5, 6, 7, 8 | lmodvscl 13861 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐴 · 𝑌) ∈ 𝑉) | 
| 10 | 1, 3, 4, 9 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑌) ∈ 𝑉) | 
| 11 | lmodsubvs.p | . . . 4 ⊢ + = (+g‘𝑊) | |
| 12 | lmodsubvs.m | . . . 4 ⊢ − = (-g‘𝑊) | |
| 13 | lmodsubvs.n | . . . 4 ⊢ 𝑁 = (invg‘𝐹) | |
| 14 | eqid 2196 | . . . 4 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 15 | 5, 11, 12, 6, 7, 13, 14 | lmodvsubval2 13898 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) | 
| 16 | 1, 2, 10, 15 | syl3anc 1249 | . 2 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) | 
| 17 | 6 | lmodring 13851 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) | 
| 18 | 1, 17 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ Ring) | 
| 19 | ringgrp 13557 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 20 | 18, 19 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Grp) | 
| 21 | 8, 14 | ringidcl 13576 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) | 
| 22 | 18, 21 | syl 14 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) | 
| 23 | 8, 13 | grpinvcl 13180 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → (𝑁‘(1r‘𝐹)) ∈ 𝐾) | 
| 24 | 20, 22, 23 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑁‘(1r‘𝐹)) ∈ 𝐾) | 
| 25 | eqid 2196 | . . . . . 6 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 26 | 5, 6, 7, 8, 25 | lmodvsass 13869 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ ((𝑁‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) | 
| 27 | 1, 24, 3, 4, 26 | syl13anc 1251 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) | 
| 28 | 8, 25, 14, 13, 18, 3 | ringnegl 13607 | . . . . 5 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) = (𝑁‘𝐴)) | 
| 29 | 28 | oveq1d 5937 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘𝐴) · 𝑌)) | 
| 30 | 27, 29 | eqtr3d 2231 | . . 3 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)) = ((𝑁‘𝐴) · 𝑌)) | 
| 31 | 30 | oveq2d 5938 | . 2 ⊢ (𝜑 → (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) | 
| 32 | 16, 31 | eqtrd 2229 | 1 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 .rcmulr 12756 Scalarcsca 12758 ·𝑠 cvsca 12759 Grpcgrp 13132 invgcminusg 13133 -gcsg 13134 1rcur 13515 Ringcrg 13552 LModclmod 13843 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-5 9052 df-6 9053 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-sca 12771 df-vsca 12772 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-sbg 13137 df-mgp 13477 df-ur 13516 df-ring 13554 df-lmod 13845 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |