| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lmodsubvs | GIF version | ||
| Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.) |
| Ref | Expression |
|---|---|
| lmodsubvs.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodsubvs.p | ⊢ + = (+g‘𝑊) |
| lmodsubvs.m | ⊢ − = (-g‘𝑊) |
| lmodsubvs.t | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodsubvs.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodsubvs.k | ⊢ 𝐾 = (Base‘𝐹) |
| lmodsubvs.n | ⊢ 𝑁 = (invg‘𝐹) |
| lmodsubvs.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lmodsubvs.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| lmodsubvs.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lmodsubvs.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| lmodsubvs | ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodsubvs.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 2 | lmodsubvs.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 3 | lmodsubvs.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 4 | lmodsubvs.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 5 | lmodsubvs.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 6 | lmodsubvs.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 7 | lmodsubvs.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 8 | lmodsubvs.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 9 | 5, 6, 7, 8 | lmodvscl 13937 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐴 · 𝑌) ∈ 𝑉) |
| 10 | 1, 3, 4, 9 | syl3anc 1249 | . . 3 ⊢ (𝜑 → (𝐴 · 𝑌) ∈ 𝑉) |
| 11 | lmodsubvs.p | . . . 4 ⊢ + = (+g‘𝑊) | |
| 12 | lmodsubvs.m | . . . 4 ⊢ − = (-g‘𝑊) | |
| 13 | lmodsubvs.n | . . . 4 ⊢ 𝑁 = (invg‘𝐹) | |
| 14 | eqid 2196 | . . . 4 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
| 15 | 5, 11, 12, 6, 7, 13, 14 | lmodvsubval2 13974 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
| 16 | 1, 2, 10, 15 | syl3anc 1249 | . 2 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
| 17 | 6 | lmodring 13927 | . . . . . . . 8 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
| 18 | 1, 17 | syl 14 | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ Ring) |
| 19 | ringgrp 13633 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
| 20 | 18, 19 | syl 14 | . . . . . 6 ⊢ (𝜑 → 𝐹 ∈ Grp) |
| 21 | 8, 14 | ringidcl 13652 | . . . . . . 7 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ 𝐾) |
| 22 | 18, 21 | syl 14 | . . . . . 6 ⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
| 23 | 8, 13 | grpinvcl 13250 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ (1r‘𝐹) ∈ 𝐾) → (𝑁‘(1r‘𝐹)) ∈ 𝐾) |
| 24 | 20, 22, 23 | syl2anc 411 | . . . . 5 ⊢ (𝜑 → (𝑁‘(1r‘𝐹)) ∈ 𝐾) |
| 25 | eqid 2196 | . . . . . 6 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 26 | 5, 6, 7, 8, 25 | lmodvsass 13945 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ ((𝑁‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
| 27 | 1, 24, 3, 4, 26 | syl13anc 1251 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
| 28 | 8, 25, 14, 13, 18, 3 | ringnegl 13683 | . . . . 5 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) = (𝑁‘𝐴)) |
| 29 | 28 | oveq1d 5940 | . . . 4 ⊢ (𝜑 → (((𝑁‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = ((𝑁‘𝐴) · 𝑌)) |
| 30 | 27, 29 | eqtr3d 2231 | . . 3 ⊢ (𝜑 → ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌)) = ((𝑁‘𝐴) · 𝑌)) |
| 31 | 30 | oveq2d 5941 | . 2 ⊢ (𝜑 → (𝑋 + ((𝑁‘(1r‘𝐹)) · (𝐴 · 𝑌))) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
| 32 | 16, 31 | eqtrd 2229 | 1 ⊢ (𝜑 → (𝑋 − (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘𝐴) · 𝑌))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 Basecbs 12703 +gcplusg 12780 .rcmulr 12781 Scalarcsca 12783 ·𝑠 cvsca 12784 Grpcgrp 13202 invgcminusg 13203 -gcsg 13204 1rcur 13591 Ringcrg 13628 LModclmod 13919 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-4 9068 df-5 9069 df-6 9070 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-plusg 12793 df-mulr 12794 df-sca 12796 df-vsca 12797 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-sbg 13207 df-mgp 13553 df-ur 13592 df-ring 13630 df-lmod 13921 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |