ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lmodsubvs GIF version

Theorem lmodsubvs 14149
Description: Subtraction of a scalar product in terms of addition. (Contributed by NM, 9-Apr-2015.)
Hypotheses
Ref Expression
lmodsubvs.v 𝑉 = (Base‘𝑊)
lmodsubvs.p + = (+g𝑊)
lmodsubvs.m = (-g𝑊)
lmodsubvs.t · = ( ·𝑠𝑊)
lmodsubvs.f 𝐹 = (Scalar‘𝑊)
lmodsubvs.k 𝐾 = (Base‘𝐹)
lmodsubvs.n 𝑁 = (invg𝐹)
lmodsubvs.w (𝜑𝑊 ∈ LMod)
lmodsubvs.a (𝜑𝐴𝐾)
lmodsubvs.x (𝜑𝑋𝑉)
lmodsubvs.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lmodsubvs (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁𝐴) · 𝑌)))

Proof of Theorem lmodsubvs
StepHypRef Expression
1 lmodsubvs.w . . 3 (𝜑𝑊 ∈ LMod)
2 lmodsubvs.x . . 3 (𝜑𝑋𝑉)
3 lmodsubvs.a . . . 4 (𝜑𝐴𝐾)
4 lmodsubvs.y . . . 4 (𝜑𝑌𝑉)
5 lmodsubvs.v . . . . 5 𝑉 = (Base‘𝑊)
6 lmodsubvs.f . . . . 5 𝐹 = (Scalar‘𝑊)
7 lmodsubvs.t . . . . 5 · = ( ·𝑠𝑊)
8 lmodsubvs.k . . . . 5 𝐾 = (Base‘𝐹)
95, 6, 7, 8lmodvscl 14111 . . . 4 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑌𝑉) → (𝐴 · 𝑌) ∈ 𝑉)
101, 3, 4, 9syl3anc 1250 . . 3 (𝜑 → (𝐴 · 𝑌) ∈ 𝑉)
11 lmodsubvs.p . . . 4 + = (+g𝑊)
12 lmodsubvs.m . . . 4 = (-g𝑊)
13 lmodsubvs.n . . . 4 𝑁 = (invg𝐹)
14 eqid 2206 . . . 4 (1r𝐹) = (1r𝐹)
155, 11, 12, 6, 7, 13, 14lmodvsubval2 14148 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌))))
161, 2, 10, 15syl3anc 1250 . 2 (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌))))
176lmodring 14101 . . . . . . . 8 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
181, 17syl 14 . . . . . . 7 (𝜑𝐹 ∈ Ring)
19 ringgrp 13807 . . . . . . 7 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
2018, 19syl 14 . . . . . 6 (𝜑𝐹 ∈ Grp)
218, 14ringidcl 13826 . . . . . . 7 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
2218, 21syl 14 . . . . . 6 (𝜑 → (1r𝐹) ∈ 𝐾)
238, 13grpinvcl 13424 . . . . . 6 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → (𝑁‘(1r𝐹)) ∈ 𝐾)
2420, 22, 23syl2anc 411 . . . . 5 (𝜑 → (𝑁‘(1r𝐹)) ∈ 𝐾)
25 eqid 2206 . . . . . 6 (.r𝐹) = (.r𝐹)
265, 6, 7, 8, 25lmodvsass 14119 . . . . 5 ((𝑊 ∈ LMod ∧ ((𝑁‘(1r𝐹)) ∈ 𝐾𝐴𝐾𝑌𝑉)) → (((𝑁‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌)))
271, 24, 3, 4, 26syl13anc 1252 . . . 4 (𝜑 → (((𝑁‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌)))
288, 25, 14, 13, 18, 3ringnegl 13857 . . . . 5 (𝜑 → ((𝑁‘(1r𝐹))(.r𝐹)𝐴) = (𝑁𝐴))
2928oveq1d 5966 . . . 4 (𝜑 → (((𝑁‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = ((𝑁𝐴) · 𝑌))
3027, 29eqtr3d 2241 . . 3 (𝜑 → ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌)) = ((𝑁𝐴) · 𝑌))
3130oveq2d 5967 . 2 (𝜑 → (𝑋 + ((𝑁‘(1r𝐹)) · (𝐴 · 𝑌))) = (𝑋 + ((𝑁𝐴) · 𝑌)))
3216, 31eqtrd 2239 1 (𝜑 → (𝑋 (𝐴 · 𝑌)) = (𝑋 + ((𝑁𝐴) · 𝑌)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  .rcmulr 12954  Scalarcsca 12956   ·𝑠 cvsca 12957  Grpcgrp 13376  invgcminusg 13377  -gcsg 13378  1rcur 13765  Ringcrg 13802  LModclmod 14093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-sbg 13381  df-mgp 13727  df-ur 13766  df-ring 13804  df-lmod 14095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator