ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqadd12d GIF version

Theorem modqadd12d 10180
Description: Additive property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.)
Hypotheses
Ref Expression
modqadd12d.1 (𝜑𝐴 ∈ ℚ)
modqadd12d.2 (𝜑𝐵 ∈ ℚ)
modqadd12d.3 (𝜑𝐶 ∈ ℚ)
modqadd12d.4 (𝜑𝐷 ∈ ℚ)
modqadd12d.5 (𝜑𝐸 ∈ ℚ)
modqadd12d.egt0 (𝜑 → 0 < 𝐸)
modqadd12d.6 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
modqadd12d.7 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
Assertion
Ref Expression
modqadd12d (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸))

Proof of Theorem modqadd12d
StepHypRef Expression
1 modqadd12d.1 . . 3 (𝜑𝐴 ∈ ℚ)
2 modqadd12d.2 . . 3 (𝜑𝐵 ∈ ℚ)
3 modqadd12d.3 . . 3 (𝜑𝐶 ∈ ℚ)
4 modqadd12d.5 . . 3 (𝜑𝐸 ∈ ℚ)
5 modqadd12d.egt0 . . 3 (𝜑 → 0 < 𝐸)
6 modqadd12d.6 . . 3 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
71, 2, 3, 4, 5, 6modqadd1 10161 . 2 (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐶) mod 𝐸))
8 qcn 9449 . . . . . 6 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
92, 8syl 14 . . . . 5 (𝜑𝐵 ∈ ℂ)
10 qcn 9449 . . . . . 6 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
113, 10syl 14 . . . . 5 (𝜑𝐶 ∈ ℂ)
129, 11addcomd 7933 . . . 4 (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐵))
1312oveq1d 5793 . . 3 (𝜑 → ((𝐵 + 𝐶) mod 𝐸) = ((𝐶 + 𝐵) mod 𝐸))
14 modqadd12d.4 . . . 4 (𝜑𝐷 ∈ ℚ)
15 modqadd12d.7 . . . 4 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
163, 14, 2, 4, 5, 15modqadd1 10161 . . 3 (𝜑 → ((𝐶 + 𝐵) mod 𝐸) = ((𝐷 + 𝐵) mod 𝐸))
17 qcn 9449 . . . . . 6 (𝐷 ∈ ℚ → 𝐷 ∈ ℂ)
1814, 17syl 14 . . . . 5 (𝜑𝐷 ∈ ℂ)
1918, 9addcomd 7933 . . . 4 (𝜑 → (𝐷 + 𝐵) = (𝐵 + 𝐷))
2019oveq1d 5793 . . 3 (𝜑 → ((𝐷 + 𝐵) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸))
2113, 16, 203eqtrd 2177 . 2 (𝜑 → ((𝐵 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸))
227, 21eqtrd 2173 1 (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1332  wcel 1481   class class class wbr 3933  (class class class)co 5778  cc 7638  0cc0 7640   + caddc 7643   < clt 7820  cq 9434   mod cmo 10122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-un 4359  ax-setind 4456  ax-cnex 7731  ax-resscn 7732  ax-1cn 7733  ax-1re 7734  ax-icn 7735  ax-addcl 7736  ax-addrcl 7737  ax-mulcl 7738  ax-mulrcl 7739  ax-addcom 7740  ax-mulcom 7741  ax-addass 7742  ax-mulass 7743  ax-distr 7744  ax-i2m1 7745  ax-0lt1 7746  ax-1rid 7747  ax-0id 7748  ax-rnegex 7749  ax-precex 7750  ax-cnre 7751  ax-pre-ltirr 7752  ax-pre-ltwlin 7753  ax-pre-lttrn 7754  ax-pre-apti 7755  ax-pre-ltadd 7756  ax-pre-mulgt0 7757  ax-pre-mulext 7758  ax-arch 7759
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2689  df-sbc 2911  df-csb 3005  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-int 3776  df-iun 3819  df-br 3934  df-opab 3994  df-mpt 3995  df-id 4219  df-po 4222  df-iso 4223  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-ima 4556  df-iota 5092  df-fun 5129  df-fn 5130  df-f 5131  df-fv 5135  df-riota 5734  df-ov 5781  df-oprab 5782  df-mpo 5783  df-1st 6042  df-2nd 6043  df-pnf 7822  df-mnf 7823  df-xr 7824  df-ltxr 7825  df-le 7826  df-sub 7955  df-neg 7956  df-reap 8357  df-ap 8364  df-div 8453  df-inn 8741  df-n0 8998  df-z 9075  df-q 9435  df-rp 9467  df-fl 10070  df-mod 10123
This theorem is referenced by:  modqsub12d  10181
  Copyright terms: Public domain W3C validator