![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > modqadd12d | GIF version |
Description: Additive property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.) |
Ref | Expression |
---|---|
modqadd12d.1 | ⊢ (𝜑 → 𝐴 ∈ ℚ) |
modqadd12d.2 | ⊢ (𝜑 → 𝐵 ∈ ℚ) |
modqadd12d.3 | ⊢ (𝜑 → 𝐶 ∈ ℚ) |
modqadd12d.4 | ⊢ (𝜑 → 𝐷 ∈ ℚ) |
modqadd12d.5 | ⊢ (𝜑 → 𝐸 ∈ ℚ) |
modqadd12d.egt0 | ⊢ (𝜑 → 0 < 𝐸) |
modqadd12d.6 | ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) |
modqadd12d.7 | ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) |
Ref | Expression |
---|---|
modqadd12d | ⊢ (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | modqadd12d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℚ) | |
2 | modqadd12d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℚ) | |
3 | modqadd12d.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℚ) | |
4 | modqadd12d.5 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℚ) | |
5 | modqadd12d.egt0 | . . 3 ⊢ (𝜑 → 0 < 𝐸) | |
6 | modqadd12d.6 | . . 3 ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) | |
7 | 1, 2, 3, 4, 5, 6 | modqadd1 10363 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐶) mod 𝐸)) |
8 | qcn 9636 | . . . . . 6 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
9 | 2, 8 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
10 | qcn 9636 | . . . . . 6 ⊢ (𝐶 ∈ ℚ → 𝐶 ∈ ℂ) | |
11 | 3, 10 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
12 | 9, 11 | addcomd 8110 | . . . 4 ⊢ (𝜑 → (𝐵 + 𝐶) = (𝐶 + 𝐵)) |
13 | 12 | oveq1d 5892 | . . 3 ⊢ (𝜑 → ((𝐵 + 𝐶) mod 𝐸) = ((𝐶 + 𝐵) mod 𝐸)) |
14 | modqadd12d.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℚ) | |
15 | modqadd12d.7 | . . . 4 ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) | |
16 | 3, 14, 2, 4, 5, 15 | modqadd1 10363 | . . 3 ⊢ (𝜑 → ((𝐶 + 𝐵) mod 𝐸) = ((𝐷 + 𝐵) mod 𝐸)) |
17 | qcn 9636 | . . . . . 6 ⊢ (𝐷 ∈ ℚ → 𝐷 ∈ ℂ) | |
18 | 14, 17 | syl 14 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
19 | 18, 9 | addcomd 8110 | . . . 4 ⊢ (𝜑 → (𝐷 + 𝐵) = (𝐵 + 𝐷)) |
20 | 19 | oveq1d 5892 | . . 3 ⊢ (𝜑 → ((𝐷 + 𝐵) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸)) |
21 | 13, 16, 20 | 3eqtrd 2214 | . 2 ⊢ (𝜑 → ((𝐵 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸)) |
22 | 7, 21 | eqtrd 2210 | 1 ⊢ (𝜑 → ((𝐴 + 𝐶) mod 𝐸) = ((𝐵 + 𝐷) mod 𝐸)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2148 class class class wbr 4005 (class class class)co 5877 ℂcc 7811 0cc0 7813 + caddc 7816 < clt 7994 ℚcq 9621 mod cmo 10324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 ax-arch 7932 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-n0 9179 df-z 9256 df-q 9622 df-rp 9656 df-fl 10272 df-mod 10325 |
This theorem is referenced by: modqsub12d 10383 |
Copyright terms: Public domain | W3C validator |