ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqfrac Unicode version

Theorem modqfrac 10414
Description: The fractional part of a number is the number modulo 1. (Contributed by Jim Kingdon, 18-Oct-2021.)
Assertion
Ref Expression
modqfrac  |-  ( A  e.  QQ  ->  ( A  mod  1 )  =  ( A  -  ( |_ `  A ) ) )

Proof of Theorem modqfrac
StepHypRef Expression
1 1z 9349 . . . 4  |-  1  e.  ZZ
2 zq 9697 . . . 4  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
31, 2ax-mp 5 . . 3  |-  1  e.  QQ
4 0lt1 8151 . . 3  |-  0  <  1
5 modqval 10401 . . 3  |-  ( ( A  e.  QQ  /\  1  e.  QQ  /\  0  <  1 )  ->  ( A  mod  1 )  =  ( A  -  (
1  x.  ( |_
`  ( A  / 
1 ) ) ) ) )
63, 4, 5mp3an23 1340 . 2  |-  ( A  e.  QQ  ->  ( A  mod  1 )  =  ( A  -  (
1  x.  ( |_
`  ( A  / 
1 ) ) ) ) )
7 qcn 9705 . . . . . . 7  |-  ( A  e.  QQ  ->  A  e.  CC )
87div1d 8804 . . . . . 6  |-  ( A  e.  QQ  ->  ( A  /  1 )  =  A )
98fveq2d 5562 . . . . 5  |-  ( A  e.  QQ  ->  ( |_ `  ( A  / 
1 ) )  =  ( |_ `  A
) )
109oveq2d 5938 . . . 4  |-  ( A  e.  QQ  ->  (
1  x.  ( |_
`  ( A  / 
1 ) ) )  =  ( 1  x.  ( |_ `  A
) ) )
11 flqcl 10348 . . . . . 6  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  ZZ )
1211zcnd 9446 . . . . 5  |-  ( A  e.  QQ  ->  ( |_ `  A )  e.  CC )
1312mulid2d 8043 . . . 4  |-  ( A  e.  QQ  ->  (
1  x.  ( |_
`  A ) )  =  ( |_ `  A ) )
1410, 13eqtrd 2229 . . 3  |-  ( A  e.  QQ  ->  (
1  x.  ( |_
`  ( A  / 
1 ) ) )  =  ( |_ `  A ) )
1514oveq2d 5938 . 2  |-  ( A  e.  QQ  ->  ( A  -  ( 1  x.  ( |_ `  ( A  /  1
) ) ) )  =  ( A  -  ( |_ `  A ) ) )
166, 15eqtrd 2229 1  |-  ( A  e.  QQ  ->  ( A  mod  1 )  =  ( A  -  ( |_ `  A ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   0cc0 7877   1c1 7878    x. cmul 7882    < clt 8059    - cmin 8195    / cdiv 8696   ZZcz 9323   QQcq 9690   |_cfl 10343    mod cmo 10399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-mulrcl 7976  ax-addcom 7977  ax-mulcom 7978  ax-addass 7979  ax-mulass 7980  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-1rid 7984  ax-0id 7985  ax-rnegex 7986  ax-precex 7987  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-apti 7992  ax-pre-ltadd 7993  ax-pre-mulgt0 7994  ax-pre-mulext 7995  ax-arch 7996
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-reap 8599  df-ap 8606  df-div 8697  df-inn 8988  df-n0 9247  df-z 9324  df-q 9691  df-rp 9726  df-fl 10345  df-mod 10400
This theorem is referenced by:  flqmod  10415  intqfrac  10416  zmod10  10417
  Copyright terms: Public domain W3C validator