![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulneg1 | GIF version |
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
mulneg1 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 8011 | . . . 4 ⊢ 0 ∈ ℂ | |
2 | subdir 8405 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐴) · 𝐵) = ((0 · 𝐵) − (𝐴 · 𝐵))) | |
3 | 1, 2 | mp3an1 1335 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐴) · 𝐵) = ((0 · 𝐵) − (𝐴 · 𝐵))) |
4 | simpr 110 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
5 | 4 | mul02d 8411 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0) |
6 | 5 | oveq1d 5933 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 · 𝐵) − (𝐴 · 𝐵)) = (0 − (𝐴 · 𝐵))) |
7 | 3, 6 | eqtrd 2226 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐴) · 𝐵) = (0 − (𝐴 · 𝐵))) |
8 | df-neg 8193 | . . 3 ⊢ -𝐴 = (0 − 𝐴) | |
9 | 8 | oveq1i 5928 | . 2 ⊢ (-𝐴 · 𝐵) = ((0 − 𝐴) · 𝐵) |
10 | df-neg 8193 | . 2 ⊢ -(𝐴 · 𝐵) = (0 − (𝐴 · 𝐵)) | |
11 | 7, 9, 10 | 3eqtr4g 2251 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 (class class class)co 5918 ℂcc 7870 0cc0 7872 · cmul 7877 − cmin 8190 -cneg 8191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-resscn 7964 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-neg 8193 |
This theorem is referenced by: mulneg2 8415 mulneg12 8416 mulm1 8419 mulneg1i 8423 mulneg1d 8430 divnegap 8725 zmulcl 9370 cjreim 11047 tanval3ap 11857 dvdsnegb 11951 odd2np1 12014 modgcd 12128 pcexp 12447 cnfldmulg 14064 sinperlem 14943 |
Copyright terms: Public domain | W3C validator |