ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulneg1 GIF version

Theorem mulneg1 8249
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulneg1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))

Proof of Theorem mulneg1
StepHypRef Expression
1 0cn 7849 . . . 4 0 ∈ ℂ
2 subdir 8240 . . . 4 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐴) · 𝐵) = ((0 · 𝐵) − (𝐴 · 𝐵)))
31, 2mp3an1 1303 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐴) · 𝐵) = ((0 · 𝐵) − (𝐴 · 𝐵)))
4 simpr 109 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
54mul02d 8246 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0)
65oveq1d 5829 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 · 𝐵) − (𝐴 · 𝐵)) = (0 − (𝐴 · 𝐵)))
73, 6eqtrd 2187 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐴) · 𝐵) = (0 − (𝐴 · 𝐵)))
8 df-neg 8028 . . 3 -𝐴 = (0 − 𝐴)
98oveq1i 5824 . 2 (-𝐴 · 𝐵) = ((0 − 𝐴) · 𝐵)
10 df-neg 8028 . 2 -(𝐴 · 𝐵) = (0 − (𝐴 · 𝐵))
117, 9, 103eqtr4g 2212 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 2125  (class class class)co 5814  cc 7709  0cc0 7711   · cmul 7716  cmin 8025  -cneg 8026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-setind 4490  ax-resscn 7803  ax-1cn 7804  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-distr 7815  ax-i2m1 7816  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-sub 8027  df-neg 8028
This theorem is referenced by:  mulneg2  8250  mulneg12  8251  mulm1  8254  mulneg1i  8258  mulneg1d  8265  divnegap  8558  zmulcl  9199  cjreim  10780  tanval3ap  11588  dvdsnegb  11677  odd2np1  11737  modgcd  11846  sinperlem  13068
  Copyright terms: Public domain W3C validator