ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulneg1 GIF version

Theorem mulneg1 8449
Description: Product with negative is negative of product. Theorem I.12 of [Apostol] p. 18. (Contributed by NM, 14-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
mulneg1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))

Proof of Theorem mulneg1
StepHypRef Expression
1 0cn 8046 . . . 4 0 ∈ ℂ
2 subdir 8440 . . . 4 ((0 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐴) · 𝐵) = ((0 · 𝐵) − (𝐴 · 𝐵)))
31, 2mp3an1 1336 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐴) · 𝐵) = ((0 · 𝐵) − (𝐴 · 𝐵)))
4 simpr 110 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
54mul02d 8446 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (0 · 𝐵) = 0)
65oveq1d 5949 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 · 𝐵) − (𝐴 · 𝐵)) = (0 − (𝐴 · 𝐵)))
73, 6eqtrd 2237 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐴) · 𝐵) = (0 − (𝐴 · 𝐵)))
8 df-neg 8228 . . 3 -𝐴 = (0 − 𝐴)
98oveq1i 5944 . 2 (-𝐴 · 𝐵) = ((0 − 𝐴) · 𝐵)
10 df-neg 8228 . 2 -(𝐴 · 𝐵) = (0 − (𝐴 · 𝐵))
117, 9, 103eqtr4g 2262 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · 𝐵) = -(𝐴 · 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  (class class class)co 5934  cc 7905  0cc0 7907   · cmul 7912  cmin 8225  -cneg 8226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-setind 4583  ax-resscn 7999  ax-1cn 8000  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-iota 5229  df-fun 5270  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-sub 8227  df-neg 8228
This theorem is referenced by:  mulneg2  8450  mulneg12  8451  mulm1  8454  mulneg1i  8458  mulneg1d  8465  divnegap  8761  zmulcl  9408  cjreim  11133  tanval3ap  11944  dvdsnegb  12038  odd2np1  12103  modgcd  12231  pcexp  12551  cnfldmulg  14256  sinperlem  15198
  Copyright terms: Public domain W3C validator