ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modgcd Unicode version

Theorem modgcd 11975
Description: The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
modgcd  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  mod  N )  gcd  N )  =  ( M  gcd  N ) )

Proof of Theorem modgcd
StepHypRef Expression
1 zq 9615 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  QQ )
21adantr 276 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  QQ )
3 nnq 9622 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  QQ )
43adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  QQ )
5 nngt0 8933 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  N )
65adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  0  <  N )
7 modqval 10310 . . . . . 6  |-  ( ( M  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  ( M  mod  N )  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N
) ) ) ) )
82, 4, 6, 7syl3anc 1238 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  mod  N
)  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N ) ) ) ) )
9 zcn 9247 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
109adantr 276 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  CC )
11 nncn 8916 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
1211adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
13 znq 9613 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  QQ )
1413flqcld 10263 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  ZZ )
1514zcnd 9365 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  CC )
16 mulneg1 8342 . . . . . . . . . . 11  |-  ( ( ( |_ `  ( M  /  N ) )  e.  CC  /\  N  e.  CC )  ->  ( -u ( |_ `  ( M  /  N ) )  x.  N )  = 
-u ( ( |_
`  ( M  /  N ) )  x.  N ) )
17 mulcom 7931 . . . . . . . . . . . 12  |-  ( ( ( |_ `  ( M  /  N ) )  e.  CC  /\  N  e.  CC )  ->  (
( |_ `  ( M  /  N ) )  x.  N )  =  ( N  x.  ( |_ `  ( M  /  N ) ) ) )
1817negeqd 8142 . . . . . . . . . . 11  |-  ( ( ( |_ `  ( M  /  N ) )  e.  CC  /\  N  e.  CC )  ->  -u (
( |_ `  ( M  /  N ) )  x.  N )  = 
-u ( N  x.  ( |_ `  ( M  /  N ) ) ) )
1916, 18eqtrd 2210 . . . . . . . . . 10  |-  ( ( ( |_ `  ( M  /  N ) )  e.  CC  /\  N  e.  CC )  ->  ( -u ( |_ `  ( M  /  N ) )  x.  N )  = 
-u ( N  x.  ( |_ `  ( M  /  N ) ) ) )
2019ancoms 268 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC )  -> 
( -u ( |_ `  ( M  /  N
) )  x.  N
)  =  -u ( N  x.  ( |_ `  ( M  /  N
) ) ) )
21203adant1 1015 . . . . . . . 8  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC )  ->  ( -u ( |_ `  ( M  /  N ) )  x.  N )  = 
-u ( N  x.  ( |_ `  ( M  /  N ) ) ) )
2221oveq2d 5885 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC )  ->  ( M  +  ( -u ( |_ `  ( M  /  N ) )  x.  N ) )  =  ( M  +  -u ( N  x.  ( |_ `  ( M  /  N ) ) ) ) )
23 mulcl 7929 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC )  -> 
( N  x.  ( |_ `  ( M  /  N ) ) )  e.  CC )
24 negsub 8195 . . . . . . . . 9  |-  ( ( M  e.  CC  /\  ( N  x.  ( |_ `  ( M  /  N ) ) )  e.  CC )  -> 
( M  +  -u ( N  x.  ( |_ `  ( M  /  N ) ) ) )  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N ) ) ) ) )
2523, 24sylan2 286 . . . . . . . 8  |-  ( ( M  e.  CC  /\  ( N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC ) )  ->  ( M  +  -u ( N  x.  ( |_ `  ( M  /  N ) ) ) )  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N ) ) ) ) )
26253impb 1199 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC )  ->  ( M  +  -u ( N  x.  ( |_ `  ( M  /  N
) ) ) )  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N ) ) ) ) )
2722, 26eqtrd 2210 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC )  ->  ( M  +  ( -u ( |_ `  ( M  /  N ) )  x.  N ) )  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N
) ) ) ) )
2810, 12, 15, 27syl3anc 1238 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  (
-u ( |_ `  ( M  /  N
) )  x.  N
) )  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N
) ) ) ) )
298, 28eqtr4d 2213 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  mod  N
)  =  ( M  +  ( -u ( |_ `  ( M  /  N ) )  x.  N ) ) )
3029oveq2d 5885 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  ( M  mod  N ) )  =  ( N  gcd  ( M  +  ( -u ( |_ `  ( M  /  N ) )  x.  N ) ) ) )
3114znegcld 9366 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  -> 
-u ( |_ `  ( M  /  N
) )  e.  ZZ )
32 nnz 9261 . . . . 5  |-  ( N  e.  NN  ->  N  e.  ZZ )
3332adantl 277 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  ZZ )
34 simpl 109 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  ZZ )
35 gcdaddm 11968 . . . 4  |-  ( (
-u ( |_ `  ( M  /  N
) )  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( N  gcd  ( M  +  ( -u ( |_ `  ( M  /  N
) )  x.  N
) ) ) )
3631, 33, 34, 35syl3anc 1238 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  M
)  =  ( N  gcd  ( M  +  ( -u ( |_ `  ( M  /  N
) )  x.  N
) ) ) )
3730, 36eqtr4d 2213 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  ( M  mod  N ) )  =  ( N  gcd  M ) )
38 zmodcl 10330 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  mod  N
)  e.  NN0 )
3938nn0zd 9362 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  mod  N
)  e.  ZZ )
40 gcdcom 11957 . . 3  |-  ( ( N  e.  ZZ  /\  ( M  mod  N )  e.  ZZ )  -> 
( N  gcd  ( M  mod  N ) )  =  ( ( M  mod  N )  gcd 
N ) )
4133, 39, 40syl2anc 411 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  ( M  mod  N ) )  =  ( ( M  mod  N )  gcd 
N ) )
42 gcdcom 11957 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
4333, 34, 42syl2anc 411 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
4437, 41, 433eqtr3d 2218 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  mod  N )  gcd  N )  =  ( M  gcd  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   class class class wbr 4000   ` cfv 5212  (class class class)co 5869   CCcc 7800   0cc0 7802    + caddc 7805    x. cmul 7807    < clt 7982    - cmin 8118   -ucneg 8119    / cdiv 8618   NNcn 8908   ZZcz 9242   QQcq 9608   |_cfl 10254    mod cmo 10308    gcd cgcd 11926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927
This theorem is referenced by:  eucalginv  12039  phimullem  12208  eulerthlem1  12210  eulerthlemth  12215  pockthlem  12337
  Copyright terms: Public domain W3C validator