ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modgcd Unicode version

Theorem modgcd 12185
Description: The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
modgcd  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  mod  N )  gcd  N )  =  ( M  gcd  N ) )

Proof of Theorem modgcd
StepHypRef Expression
1 zq 9719 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  QQ )
21adantr 276 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  QQ )
3 nnq 9726 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  QQ )
43adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  QQ )
5 nngt0 9034 . . . . . . 7  |-  ( N  e.  NN  ->  0  <  N )
65adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  0  <  N )
7 modqval 10435 . . . . . 6  |-  ( ( M  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  ( M  mod  N )  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N
) ) ) ) )
82, 4, 6, 7syl3anc 1249 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  mod  N
)  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N ) ) ) ) )
9 zcn 9350 . . . . . . 7  |-  ( M  e.  ZZ  ->  M  e.  CC )
109adantr 276 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  CC )
11 nncn 9017 . . . . . . 7  |-  ( N  e.  NN  ->  N  e.  CC )
1211adantl 277 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  CC )
13 znq 9717 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  /  N
)  e.  QQ )
1413flqcld 10386 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  ZZ )
1514zcnd 9468 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( |_ `  ( M  /  N ) )  e.  CC )
16 mulneg1 8440 . . . . . . . . . . 11  |-  ( ( ( |_ `  ( M  /  N ) )  e.  CC  /\  N  e.  CC )  ->  ( -u ( |_ `  ( M  /  N ) )  x.  N )  = 
-u ( ( |_
`  ( M  /  N ) )  x.  N ) )
17 mulcom 8027 . . . . . . . . . . . 12  |-  ( ( ( |_ `  ( M  /  N ) )  e.  CC  /\  N  e.  CC )  ->  (
( |_ `  ( M  /  N ) )  x.  N )  =  ( N  x.  ( |_ `  ( M  /  N ) ) ) )
1817negeqd 8240 . . . . . . . . . . 11  |-  ( ( ( |_ `  ( M  /  N ) )  e.  CC  /\  N  e.  CC )  ->  -u (
( |_ `  ( M  /  N ) )  x.  N )  = 
-u ( N  x.  ( |_ `  ( M  /  N ) ) ) )
1916, 18eqtrd 2229 . . . . . . . . . 10  |-  ( ( ( |_ `  ( M  /  N ) )  e.  CC  /\  N  e.  CC )  ->  ( -u ( |_ `  ( M  /  N ) )  x.  N )  = 
-u ( N  x.  ( |_ `  ( M  /  N ) ) ) )
2019ancoms 268 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC )  -> 
( -u ( |_ `  ( M  /  N
) )  x.  N
)  =  -u ( N  x.  ( |_ `  ( M  /  N
) ) ) )
21203adant1 1017 . . . . . . . 8  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC )  ->  ( -u ( |_ `  ( M  /  N ) )  x.  N )  = 
-u ( N  x.  ( |_ `  ( M  /  N ) ) ) )
2221oveq2d 5941 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC )  ->  ( M  +  ( -u ( |_ `  ( M  /  N ) )  x.  N ) )  =  ( M  +  -u ( N  x.  ( |_ `  ( M  /  N ) ) ) ) )
23 mulcl 8025 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC )  -> 
( N  x.  ( |_ `  ( M  /  N ) ) )  e.  CC )
24 negsub 8293 . . . . . . . . 9  |-  ( ( M  e.  CC  /\  ( N  x.  ( |_ `  ( M  /  N ) ) )  e.  CC )  -> 
( M  +  -u ( N  x.  ( |_ `  ( M  /  N ) ) ) )  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N ) ) ) ) )
2523, 24sylan2 286 . . . . . . . 8  |-  ( ( M  e.  CC  /\  ( N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC ) )  ->  ( M  +  -u ( N  x.  ( |_ `  ( M  /  N ) ) ) )  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N ) ) ) ) )
26253impb 1201 . . . . . . 7  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC )  ->  ( M  +  -u ( N  x.  ( |_ `  ( M  /  N
) ) ) )  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N ) ) ) ) )
2722, 26eqtrd 2229 . . . . . 6  |-  ( ( M  e.  CC  /\  N  e.  CC  /\  ( |_ `  ( M  /  N ) )  e.  CC )  ->  ( M  +  ( -u ( |_ `  ( M  /  N ) )  x.  N ) )  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N
) ) ) ) )
2810, 12, 15, 27syl3anc 1249 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  +  (
-u ( |_ `  ( M  /  N
) )  x.  N
) )  =  ( M  -  ( N  x.  ( |_ `  ( M  /  N
) ) ) ) )
298, 28eqtr4d 2232 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  mod  N
)  =  ( M  +  ( -u ( |_ `  ( M  /  N ) )  x.  N ) ) )
3029oveq2d 5941 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  ( M  mod  N ) )  =  ( N  gcd  ( M  +  ( -u ( |_ `  ( M  /  N ) )  x.  N ) ) ) )
3114znegcld 9469 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  -> 
-u ( |_ `  ( M  /  N
) )  e.  ZZ )
32 nnz 9364 . . . . 5  |-  ( N  e.  NN  ->  N  e.  ZZ )
3332adantl 277 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  N  e.  ZZ )
34 simpl 109 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  M  e.  ZZ )
35 gcdaddm 12178 . . . 4  |-  ( (
-u ( |_ `  ( M  /  N
) )  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( N  gcd  ( M  +  ( -u ( |_ `  ( M  /  N
) )  x.  N
) ) ) )
3631, 33, 34, 35syl3anc 1249 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  M
)  =  ( N  gcd  ( M  +  ( -u ( |_ `  ( M  /  N
) )  x.  N
) ) ) )
3730, 36eqtr4d 2232 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  ( M  mod  N ) )  =  ( N  gcd  M ) )
38 zmodcl 10455 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  mod  N
)  e.  NN0 )
3938nn0zd 9465 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( M  mod  N
)  e.  ZZ )
40 gcdcom 12167 . . 3  |-  ( ( N  e.  ZZ  /\  ( M  mod  N )  e.  ZZ )  -> 
( N  gcd  ( M  mod  N ) )  =  ( ( M  mod  N )  gcd 
N ) )
4133, 39, 40syl2anc 411 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  ( M  mod  N ) )  =  ( ( M  mod  N )  gcd 
N ) )
42 gcdcom 12167 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
4333, 34, 42syl2anc 411 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( N  gcd  M
)  =  ( M  gcd  N ) )
4437, 41, 433eqtr3d 2237 1  |-  ( ( M  e.  ZZ  /\  N  e.  NN )  ->  ( ( M  mod  N )  gcd  N )  =  ( M  gcd  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7896   0cc0 7898    + caddc 7901    x. cmul 7903    < clt 8080    - cmin 8216   -ucneg 8217    / cdiv 8718   NNcn 9009   ZZcz 9345   QQcq 9712   |_cfl 10377    mod cmo 10433    gcd cgcd 12147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016  ax-arch 8017  ax-caucvg 8018
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-sup 7059  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-n0 9269  df-z 9346  df-uz 9621  df-q 9713  df-rp 9748  df-fz 10103  df-fzo 10237  df-fl 10379  df-mod 10434  df-seqfrec 10559  df-exp 10650  df-cj 11026  df-re 11027  df-im 11028  df-rsqrt 11182  df-abs 11183  df-dvds 11972  df-gcd 12148
This theorem is referenced by:  eucalginv  12251  phimullem  12420  eulerthlem1  12422  eulerthlemth  12427  pockthlem  12552  gcdmodi  12617
  Copyright terms: Public domain W3C validator