ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0ge0div Unicode version

Theorem nn0ge0div 9311
Description: Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
nn0ge0div  |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  0  <_  ( K  /  L ) )

Proof of Theorem nn0ge0div
StepHypRef Expression
1 nn0ge0 9172 . . 3  |-  ( K  e.  NN0  ->  0  <_  K )
21adantr 276 . 2  |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  0  <_  K )
3 elnnz 9234 . . . 4  |-  ( L  e.  NN  <->  ( L  e.  ZZ  /\  0  < 
L ) )
4 nn0re 9156 . . . . . 6  |-  ( K  e.  NN0  ->  K  e.  RR )
54adantr 276 . . . . 5  |-  ( ( K  e.  NN0  /\  ( L  e.  ZZ  /\  0  <  L ) )  ->  K  e.  RR )
6 zre 9228 . . . . . 6  |-  ( L  e.  ZZ  ->  L  e.  RR )
76ad2antrl 490 . . . . 5  |-  ( ( K  e.  NN0  /\  ( L  e.  ZZ  /\  0  <  L ) )  ->  L  e.  RR )
8 simprr 531 . . . . 5  |-  ( ( K  e.  NN0  /\  ( L  e.  ZZ  /\  0  <  L ) )  ->  0  <  L )
95, 7, 83jca 1177 . . . 4  |-  ( ( K  e.  NN0  /\  ( L  e.  ZZ  /\  0  <  L ) )  ->  ( K  e.  RR  /\  L  e.  RR  /\  0  < 
L ) )
103, 9sylan2b 287 . . 3  |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  ( K  e.  RR  /\  L  e.  RR  /\  0  <  L ) )
11 ge0div 8799 . . 3  |-  ( ( K  e.  RR  /\  L  e.  RR  /\  0  <  L )  ->  (
0  <_  K  <->  0  <_  ( K  /  L ) ) )
1210, 11syl 14 . 2  |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  ( 0  <_  K  <->  0  <_  ( K  /  L ) ) )
132, 12mpbid 147 1  |-  ( ( K  e.  NN0  /\  L  e.  NN )  ->  0  <_  ( K  /  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    e. wcel 2146   class class class wbr 3998  (class class class)co 5865   RRcr 7785   0cc0 7786    < clt 7966    <_ cle 7967    / cdiv 8601   NNcn 8890   NN0cn0 9147   ZZcz 9224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-cnex 7877  ax-resscn 7878  ax-1cn 7879  ax-1re 7880  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-mulrcl 7885  ax-addcom 7886  ax-mulcom 7887  ax-addass 7888  ax-mulass 7889  ax-distr 7890  ax-i2m1 7891  ax-0lt1 7892  ax-1rid 7893  ax-0id 7894  ax-rnegex 7895  ax-precex 7896  ax-cnre 7897  ax-pre-ltirr 7898  ax-pre-ltwlin 7899  ax-pre-lttrn 7900  ax-pre-apti 7901  ax-pre-ltadd 7902  ax-pre-mulgt0 7903  ax-pre-mulext 7904
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-nel 2441  df-ral 2458  df-rex 2459  df-reu 2460  df-rmo 2461  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-br 3999  df-opab 4060  df-id 4287  df-po 4290  df-iso 4291  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-pnf 7968  df-mnf 7969  df-xr 7970  df-ltxr 7971  df-le 7972  df-sub 8104  df-neg 8105  df-reap 8506  df-ap 8513  df-div 8602  df-inn 8891  df-n0 9148  df-z 9225
This theorem is referenced by:  fldivnn0  10263  divfl0  10264
  Copyright terms: Public domain W3C validator