ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ge0div Unicode version

Theorem ge0div 8780
Description: Division of a nonnegative number by a positive number. (Contributed by NM, 28-Sep-2005.)
Assertion
Ref Expression
ge0div  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  B )  ->  (
0  <_  A  <->  0  <_  ( A  /  B ) ) )

Proof of Theorem ge0div
StepHypRef Expression
1 0re 7913 . . . 4  |-  0  e.  RR
2 lediv1 8778 . . . 4  |-  ( ( 0  e.  RR  /\  A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( 0  <_  A  <->  ( 0  /  B )  <_  ( A  /  B ) ) )
31, 2mp3an1 1319 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( 0  <_  A  <->  ( 0  /  B )  <_ 
( A  /  B
) ) )
433impb 1194 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  B )  ->  (
0  <_  A  <->  ( 0  /  B )  <_ 
( A  /  B
) ) )
5 gt0ap0 8538 . . . . 5  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B #  0 )
6 recn 7900 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
7 div0ap 8612 . . . . . 6  |-  ( ( B  e.  CC  /\  B #  0 )  ->  (
0  /  B )  =  0 )
86, 7sylan 281 . . . . 5  |-  ( ( B  e.  RR  /\  B #  0 )  ->  (
0  /  B )  =  0 )
95, 8syldan 280 . . . 4  |-  ( ( B  e.  RR  /\  0  <  B )  -> 
( 0  /  B
)  =  0 )
109breq1d 3997 . . 3  |-  ( ( B  e.  RR  /\  0  <  B )  -> 
( ( 0  /  B )  <_  ( A  /  B )  <->  0  <_  ( A  /  B ) ) )
11103adant1 1010 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  B )  ->  (
( 0  /  B
)  <_  ( A  /  B )  <->  0  <_  ( A  /  B ) ) )
124, 11bitrd 187 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  B )  ->  (
0  <_  A  <->  0  <_  ( A  /  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3987  (class class class)co 5851   CCcc 7765   RRcr 7766   0cc0 7767    < clt 7947    <_ cle 7948   # cap 8493    / cdiv 8582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-br 3988  df-opab 4049  df-id 4276  df-po 4279  df-iso 4280  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583
This theorem is referenced by:  divge0  8782  halfnneg2  9103  nn0ge0div  9292  ge0divd  9685  2tnp1ge0ge0  10250  nn0ehalf  11855  nn0oddm1d2  11861  odzdvds  12192  pcfaclem  12294  pockthlem  12301
  Copyright terms: Public domain W3C validator