| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0ge0div | GIF version | ||
| Description: Division of a nonnegative integer by a positive number is not negative. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| Ref | Expression |
|---|---|
| nn0ge0div | ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ge0 9350 | . . 3 ⊢ (𝐾 ∈ ℕ0 → 0 ≤ 𝐾) | |
| 2 | 1 | adantr 276 | . 2 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 0 ≤ 𝐾) |
| 3 | elnnz 9412 | . . . 4 ⊢ (𝐿 ∈ ℕ ↔ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) | |
| 4 | nn0re 9334 | . . . . . 6 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ) | |
| 5 | 4 | adantr 276 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → 𝐾 ∈ ℝ) |
| 6 | zre 9406 | . . . . . 6 ⊢ (𝐿 ∈ ℤ → 𝐿 ∈ ℝ) | |
| 7 | 6 | ad2antrl 490 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → 𝐿 ∈ ℝ) |
| 8 | simprr 531 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → 0 < 𝐿) | |
| 9 | 5, 7, 8 | 3jca 1180 | . . . 4 ⊢ ((𝐾 ∈ ℕ0 ∧ (𝐿 ∈ ℤ ∧ 0 < 𝐿)) → (𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿)) |
| 10 | 3, 9 | sylan2b 287 | . . 3 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿)) |
| 11 | ge0div 8974 | . . 3 ⊢ ((𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 0 < 𝐿) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / 𝐿))) | |
| 12 | 10, 11 | syl 14 | . 2 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (0 ≤ 𝐾 ↔ 0 ≤ (𝐾 / 𝐿))) |
| 13 | 2, 12 | mpbid 147 | 1 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → 0 ≤ (𝐾 / 𝐿)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 981 ∈ wcel 2177 class class class wbr 4054 (class class class)co 5962 ℝcr 7954 0cc0 7955 < clt 8137 ≤ cle 8138 / cdiv 8775 ℕcn 9066 ℕ0cn0 9325 ℤcz 9402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-id 4353 df-po 4356 df-iso 4357 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-iota 5246 df-fun 5287 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-n0 9326 df-z 9403 |
| This theorem is referenced by: fldivnn0 10470 divfl0 10471 |
| Copyright terms: Public domain | W3C validator |