ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nna0 GIF version

Theorem nna0 6527
Description: Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.)
Assertion
Ref Expression
nna0 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)

Proof of Theorem nna0
StepHypRef Expression
1 nnon 4642 . 2 (𝐴 ∈ ω → 𝐴 ∈ On)
2 oa0 6510 . 2 (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴)
31, 2syl 14 1 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2164  c0 3446  Oncon0 4394  ωcom 4622  (class class class)co 5918   +o coa 6466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-recs 6358  df-irdg 6423  df-oadd 6473
This theorem is referenced by:  nnacl  6533  nnacom  6537  nnaass  6538  nndi  6539  nnmsucr  6541  nnaordi  6561  nnmordi  6569  nnaordex  6581  nnawordex  6582  addnidpig  7396  1lt2pi  7400  archnqq  7477  prarloclemarch2  7479  nq0a0  7517  prarloclem3  7557  omgadd  10873  hashunlem  10875
  Copyright terms: Public domain W3C validator