| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nna0 | GIF version | ||
| Description: Addition with zero. Theorem 4I(A1) of [Enderton] p. 79. (Contributed by NM, 20-Sep-1995.) |
| Ref | Expression |
|---|---|
| nna0 | ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnon 4656 | . 2 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 2 | oa0 6533 | . 2 ⊢ (𝐴 ∈ On → (𝐴 +o ∅) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 ∅c0 3459 Oncon0 4408 ωcom 4636 (class class class)co 5934 +o coa 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-recs 6381 df-irdg 6446 df-oadd 6496 |
| This theorem is referenced by: nnacl 6556 nnacom 6560 nnaass 6561 nndi 6562 nnmsucr 6564 nnaordi 6584 nnmordi 6592 nnaordex 6604 nnawordex 6605 addnidpig 7431 1lt2pi 7435 archnqq 7512 prarloclemarch2 7514 nq0a0 7552 prarloclem3 7592 omgadd 10928 hashunlem 10930 |
| Copyright terms: Public domain | W3C validator |