ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnacom GIF version

Theorem nnacom 6175
Description: Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnacom ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) = (𝐵 +𝑜 𝐴))

Proof of Theorem nnacom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5596 . . . . 5 (𝑥 = 𝐴 → (𝑥 +𝑜 𝐵) = (𝐴 +𝑜 𝐵))
2 oveq2 5597 . . . . 5 (𝑥 = 𝐴 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝐴))
31, 2eqeq12d 2097 . . . 4 (𝑥 = 𝐴 → ((𝑥 +𝑜 𝐵) = (𝐵 +𝑜 𝑥) ↔ (𝐴 +𝑜 𝐵) = (𝐵 +𝑜 𝐴)))
43imbi2d 228 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 +𝑜 𝐵) = (𝐵 +𝑜 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 +𝑜 𝐵) = (𝐵 +𝑜 𝐴))))
5 oveq1 5596 . . . . 5 (𝑥 = ∅ → (𝑥 +𝑜 𝐵) = (∅ +𝑜 𝐵))
6 oveq2 5597 . . . . 5 (𝑥 = ∅ → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 ∅))
75, 6eqeq12d 2097 . . . 4 (𝑥 = ∅ → ((𝑥 +𝑜 𝐵) = (𝐵 +𝑜 𝑥) ↔ (∅ +𝑜 𝐵) = (𝐵 +𝑜 ∅)))
8 oveq1 5596 . . . . 5 (𝑥 = 𝑦 → (𝑥 +𝑜 𝐵) = (𝑦 +𝑜 𝐵))
9 oveq2 5597 . . . . 5 (𝑥 = 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝑦))
108, 9eqeq12d 2097 . . . 4 (𝑥 = 𝑦 → ((𝑥 +𝑜 𝐵) = (𝐵 +𝑜 𝑥) ↔ (𝑦 +𝑜 𝐵) = (𝐵 +𝑜 𝑦)))
11 oveq1 5596 . . . . 5 (𝑥 = suc 𝑦 → (𝑥 +𝑜 𝐵) = (suc 𝑦 +𝑜 𝐵))
12 oveq2 5597 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 suc 𝑦))
1311, 12eqeq12d 2097 . . . 4 (𝑥 = suc 𝑦 → ((𝑥 +𝑜 𝐵) = (𝐵 +𝑜 𝑥) ↔ (suc 𝑦 +𝑜 𝐵) = (𝐵 +𝑜 suc 𝑦)))
14 nna0r 6169 . . . . 5 (𝐵 ∈ ω → (∅ +𝑜 𝐵) = 𝐵)
15 nna0 6165 . . . . 5 (𝐵 ∈ ω → (𝐵 +𝑜 ∅) = 𝐵)
1614, 15eqtr4d 2118 . . . 4 (𝐵 ∈ ω → (∅ +𝑜 𝐵) = (𝐵 +𝑜 ∅))
17 suceq 4192 . . . . . 6 ((𝑦 +𝑜 𝐵) = (𝐵 +𝑜 𝑦) → suc (𝑦 +𝑜 𝐵) = suc (𝐵 +𝑜 𝑦))
18 oveq2 5597 . . . . . . . . . . 11 (𝑥 = 𝐵 → (suc 𝑦 +𝑜 𝑥) = (suc 𝑦 +𝑜 𝐵))
19 oveq2 5597 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑦 +𝑜 𝑥) = (𝑦 +𝑜 𝐵))
20 suceq 4192 . . . . . . . . . . . 12 ((𝑦 +𝑜 𝑥) = (𝑦 +𝑜 𝐵) → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝐵))
2119, 20syl 14 . . . . . . . . . . 11 (𝑥 = 𝐵 → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝐵))
2218, 21eqeq12d 2097 . . . . . . . . . 10 (𝑥 = 𝐵 → ((suc 𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑥) ↔ (suc 𝑦 +𝑜 𝐵) = suc (𝑦 +𝑜 𝐵)))
2322imbi2d 228 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝑦 ∈ ω → (suc 𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑥)) ↔ (𝑦 ∈ ω → (suc 𝑦 +𝑜 𝐵) = suc (𝑦 +𝑜 𝐵))))
24 oveq2 5597 . . . . . . . . . . 11 (𝑥 = ∅ → (suc 𝑦 +𝑜 𝑥) = (suc 𝑦 +𝑜 ∅))
25 oveq2 5597 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑦 +𝑜 𝑥) = (𝑦 +𝑜 ∅))
26 suceq 4192 . . . . . . . . . . . 12 ((𝑦 +𝑜 𝑥) = (𝑦 +𝑜 ∅) → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 ∅))
2725, 26syl 14 . . . . . . . . . . 11 (𝑥 = ∅ → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 ∅))
2824, 27eqeq12d 2097 . . . . . . . . . 10 (𝑥 = ∅ → ((suc 𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑥) ↔ (suc 𝑦 +𝑜 ∅) = suc (𝑦 +𝑜 ∅)))
29 oveq2 5597 . . . . . . . . . . 11 (𝑥 = 𝑧 → (suc 𝑦 +𝑜 𝑥) = (suc 𝑦 +𝑜 𝑧))
30 oveq2 5597 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑦 +𝑜 𝑥) = (𝑦 +𝑜 𝑧))
31 suceq 4192 . . . . . . . . . . . 12 ((𝑦 +𝑜 𝑥) = (𝑦 +𝑜 𝑧) → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑧))
3230, 31syl 14 . . . . . . . . . . 11 (𝑥 = 𝑧 → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑧))
3329, 32eqeq12d 2097 . . . . . . . . . 10 (𝑥 = 𝑧 → ((suc 𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑥) ↔ (suc 𝑦 +𝑜 𝑧) = suc (𝑦 +𝑜 𝑧)))
34 oveq2 5597 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → (suc 𝑦 +𝑜 𝑥) = (suc 𝑦 +𝑜 suc 𝑧))
35 oveq2 5597 . . . . . . . . . . . 12 (𝑥 = suc 𝑧 → (𝑦 +𝑜 𝑥) = (𝑦 +𝑜 suc 𝑧))
36 suceq 4192 . . . . . . . . . . . 12 ((𝑦 +𝑜 𝑥) = (𝑦 +𝑜 suc 𝑧) → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 suc 𝑧))
3735, 36syl 14 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → suc (𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 suc 𝑧))
3834, 37eqeq12d 2097 . . . . . . . . . 10 (𝑥 = suc 𝑧 → ((suc 𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑥) ↔ (suc 𝑦 +𝑜 suc 𝑧) = suc (𝑦 +𝑜 suc 𝑧)))
39 peano2 4372 . . . . . . . . . . . 12 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
40 nna0 6165 . . . . . . . . . . . 12 (suc 𝑦 ∈ ω → (suc 𝑦 +𝑜 ∅) = suc 𝑦)
4139, 40syl 14 . . . . . . . . . . 11 (𝑦 ∈ ω → (suc 𝑦 +𝑜 ∅) = suc 𝑦)
42 nna0 6165 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝑦 +𝑜 ∅) = 𝑦)
43 suceq 4192 . . . . . . . . . . . 12 ((𝑦 +𝑜 ∅) = 𝑦 → suc (𝑦 +𝑜 ∅) = suc 𝑦)
4442, 43syl 14 . . . . . . . . . . 11 (𝑦 ∈ ω → suc (𝑦 +𝑜 ∅) = suc 𝑦)
4541, 44eqtr4d 2118 . . . . . . . . . 10 (𝑦 ∈ ω → (suc 𝑦 +𝑜 ∅) = suc (𝑦 +𝑜 ∅))
46 suceq 4192 . . . . . . . . . . . 12 ((suc 𝑦 +𝑜 𝑧) = suc (𝑦 +𝑜 𝑧) → suc (suc 𝑦 +𝑜 𝑧) = suc suc (𝑦 +𝑜 𝑧))
47 nnasuc 6167 . . . . . . . . . . . . . 14 ((suc 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (suc 𝑦 +𝑜 suc 𝑧) = suc (suc 𝑦 +𝑜 𝑧))
4839, 47sylan 277 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (suc 𝑦 +𝑜 suc 𝑧) = suc (suc 𝑦 +𝑜 𝑧))
49 nnasuc 6167 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 +𝑜 suc 𝑧) = suc (𝑦 +𝑜 𝑧))
50 suceq 4192 . . . . . . . . . . . . . 14 ((𝑦 +𝑜 suc 𝑧) = suc (𝑦 +𝑜 𝑧) → suc (𝑦 +𝑜 suc 𝑧) = suc suc (𝑦 +𝑜 𝑧))
5149, 50syl 14 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → suc (𝑦 +𝑜 suc 𝑧) = suc suc (𝑦 +𝑜 𝑧))
5248, 51eqeq12d 2097 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((suc 𝑦 +𝑜 suc 𝑧) = suc (𝑦 +𝑜 suc 𝑧) ↔ suc (suc 𝑦 +𝑜 𝑧) = suc suc (𝑦 +𝑜 𝑧)))
5346, 52syl5ibr 154 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((suc 𝑦 +𝑜 𝑧) = suc (𝑦 +𝑜 𝑧) → (suc 𝑦 +𝑜 suc 𝑧) = suc (𝑦 +𝑜 suc 𝑧)))
5453expcom 114 . . . . . . . . . 10 (𝑧 ∈ ω → (𝑦 ∈ ω → ((suc 𝑦 +𝑜 𝑧) = suc (𝑦 +𝑜 𝑧) → (suc 𝑦 +𝑜 suc 𝑧) = suc (𝑦 +𝑜 suc 𝑧))))
5528, 33, 38, 45, 54finds2 4378 . . . . . . . . 9 (𝑥 ∈ ω → (𝑦 ∈ ω → (suc 𝑦 +𝑜 𝑥) = suc (𝑦 +𝑜 𝑥)))
5623, 55vtoclga 2675 . . . . . . . 8 (𝐵 ∈ ω → (𝑦 ∈ ω → (suc 𝑦 +𝑜 𝐵) = suc (𝑦 +𝑜 𝐵)))
5756imp 122 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑦 +𝑜 𝐵) = suc (𝑦 +𝑜 𝐵))
58 nnasuc 6167 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
5957, 58eqeq12d 2097 . . . . . 6 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝑦 +𝑜 𝐵) = (𝐵 +𝑜 suc 𝑦) ↔ suc (𝑦 +𝑜 𝐵) = suc (𝐵 +𝑜 𝑦)))
6017, 59syl5ibr 154 . . . . 5 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +𝑜 𝐵) = (𝐵 +𝑜 𝑦) → (suc 𝑦 +𝑜 𝐵) = (𝐵 +𝑜 suc 𝑦)))
6160expcom 114 . . . 4 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 +𝑜 𝐵) = (𝐵 +𝑜 𝑦) → (suc 𝑦 +𝑜 𝐵) = (𝐵 +𝑜 suc 𝑦))))
627, 10, 13, 16, 61finds2 4378 . . 3 (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 +𝑜 𝐵) = (𝐵 +𝑜 𝑥)))
634, 62vtoclga 2675 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 +𝑜 𝐵) = (𝐵 +𝑜 𝐴)))
6463imp 122 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) = (𝐵 +𝑜 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  c0 3269  suc csuc 4155  ωcom 4367  (class class class)co 5589   +𝑜 coa 6108
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3919  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2614  df-sbc 2827  df-csb 2920  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-iun 3706  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-iord 4156  df-on 4158  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-ov 5592  df-oprab 5593  df-mpt2 5594  df-1st 5844  df-2nd 5845  df-recs 6000  df-irdg 6065  df-oadd 6115
This theorem is referenced by:  nnmsucr  6179  nnaordi  6195  nnaordr  6197  nnaword  6198  nnaword2  6201  nnawordi  6202  addcompig  6789  nqpnq0nq  6913  prarloclemlt  6953  prarloclemlo  6954
  Copyright terms: Public domain W3C validator