ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnacom GIF version

Theorem nnacom 6487
Description: Addition of natural numbers is commutative. Theorem 4K(2) of [Enderton] p. 81. (Contributed by NM, 6-May-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnacom ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴))

Proof of Theorem nnacom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5884 . . . . 5 (𝑥 = 𝐴 → (𝑥 +o 𝐵) = (𝐴 +o 𝐵))
2 oveq2 5885 . . . . 5 (𝑥 = 𝐴 → (𝐵 +o 𝑥) = (𝐵 +o 𝐴))
31, 2eqeq12d 2192 . . . 4 (𝑥 = 𝐴 → ((𝑥 +o 𝐵) = (𝐵 +o 𝑥) ↔ (𝐴 +o 𝐵) = (𝐵 +o 𝐴)))
43imbi2d 230 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 +o 𝐵) = (𝐵 +o 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 +o 𝐵) = (𝐵 +o 𝐴))))
5 oveq1 5884 . . . . 5 (𝑥 = ∅ → (𝑥 +o 𝐵) = (∅ +o 𝐵))
6 oveq2 5885 . . . . 5 (𝑥 = ∅ → (𝐵 +o 𝑥) = (𝐵 +o ∅))
75, 6eqeq12d 2192 . . . 4 (𝑥 = ∅ → ((𝑥 +o 𝐵) = (𝐵 +o 𝑥) ↔ (∅ +o 𝐵) = (𝐵 +o ∅)))
8 oveq1 5884 . . . . 5 (𝑥 = 𝑦 → (𝑥 +o 𝐵) = (𝑦 +o 𝐵))
9 oveq2 5885 . . . . 5 (𝑥 = 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o 𝑦))
108, 9eqeq12d 2192 . . . 4 (𝑥 = 𝑦 → ((𝑥 +o 𝐵) = (𝐵 +o 𝑥) ↔ (𝑦 +o 𝐵) = (𝐵 +o 𝑦)))
11 oveq1 5884 . . . . 5 (𝑥 = suc 𝑦 → (𝑥 +o 𝐵) = (suc 𝑦 +o 𝐵))
12 oveq2 5885 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 +o 𝑥) = (𝐵 +o suc 𝑦))
1311, 12eqeq12d 2192 . . . 4 (𝑥 = suc 𝑦 → ((𝑥 +o 𝐵) = (𝐵 +o 𝑥) ↔ (suc 𝑦 +o 𝐵) = (𝐵 +o suc 𝑦)))
14 nna0r 6481 . . . . 5 (𝐵 ∈ ω → (∅ +o 𝐵) = 𝐵)
15 nna0 6477 . . . . 5 (𝐵 ∈ ω → (𝐵 +o ∅) = 𝐵)
1614, 15eqtr4d 2213 . . . 4 (𝐵 ∈ ω → (∅ +o 𝐵) = (𝐵 +o ∅))
17 suceq 4404 . . . . . 6 ((𝑦 +o 𝐵) = (𝐵 +o 𝑦) → suc (𝑦 +o 𝐵) = suc (𝐵 +o 𝑦))
18 oveq2 5885 . . . . . . . . . . 11 (𝑥 = 𝐵 → (suc 𝑦 +o 𝑥) = (suc 𝑦 +o 𝐵))
19 oveq2 5885 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝑦 +o 𝑥) = (𝑦 +o 𝐵))
20 suceq 4404 . . . . . . . . . . . 12 ((𝑦 +o 𝑥) = (𝑦 +o 𝐵) → suc (𝑦 +o 𝑥) = suc (𝑦 +o 𝐵))
2119, 20syl 14 . . . . . . . . . . 11 (𝑥 = 𝐵 → suc (𝑦 +o 𝑥) = suc (𝑦 +o 𝐵))
2218, 21eqeq12d 2192 . . . . . . . . . 10 (𝑥 = 𝐵 → ((suc 𝑦 +o 𝑥) = suc (𝑦 +o 𝑥) ↔ (suc 𝑦 +o 𝐵) = suc (𝑦 +o 𝐵)))
2322imbi2d 230 . . . . . . . . 9 (𝑥 = 𝐵 → ((𝑦 ∈ ω → (suc 𝑦 +o 𝑥) = suc (𝑦 +o 𝑥)) ↔ (𝑦 ∈ ω → (suc 𝑦 +o 𝐵) = suc (𝑦 +o 𝐵))))
24 oveq2 5885 . . . . . . . . . . 11 (𝑥 = ∅ → (suc 𝑦 +o 𝑥) = (suc 𝑦 +o ∅))
25 oveq2 5885 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑦 +o 𝑥) = (𝑦 +o ∅))
26 suceq 4404 . . . . . . . . . . . 12 ((𝑦 +o 𝑥) = (𝑦 +o ∅) → suc (𝑦 +o 𝑥) = suc (𝑦 +o ∅))
2725, 26syl 14 . . . . . . . . . . 11 (𝑥 = ∅ → suc (𝑦 +o 𝑥) = suc (𝑦 +o ∅))
2824, 27eqeq12d 2192 . . . . . . . . . 10 (𝑥 = ∅ → ((suc 𝑦 +o 𝑥) = suc (𝑦 +o 𝑥) ↔ (suc 𝑦 +o ∅) = suc (𝑦 +o ∅)))
29 oveq2 5885 . . . . . . . . . . 11 (𝑥 = 𝑧 → (suc 𝑦 +o 𝑥) = (suc 𝑦 +o 𝑧))
30 oveq2 5885 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑦 +o 𝑥) = (𝑦 +o 𝑧))
31 suceq 4404 . . . . . . . . . . . 12 ((𝑦 +o 𝑥) = (𝑦 +o 𝑧) → suc (𝑦 +o 𝑥) = suc (𝑦 +o 𝑧))
3230, 31syl 14 . . . . . . . . . . 11 (𝑥 = 𝑧 → suc (𝑦 +o 𝑥) = suc (𝑦 +o 𝑧))
3329, 32eqeq12d 2192 . . . . . . . . . 10 (𝑥 = 𝑧 → ((suc 𝑦 +o 𝑥) = suc (𝑦 +o 𝑥) ↔ (suc 𝑦 +o 𝑧) = suc (𝑦 +o 𝑧)))
34 oveq2 5885 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → (suc 𝑦 +o 𝑥) = (suc 𝑦 +o suc 𝑧))
35 oveq2 5885 . . . . . . . . . . . 12 (𝑥 = suc 𝑧 → (𝑦 +o 𝑥) = (𝑦 +o suc 𝑧))
36 suceq 4404 . . . . . . . . . . . 12 ((𝑦 +o 𝑥) = (𝑦 +o suc 𝑧) → suc (𝑦 +o 𝑥) = suc (𝑦 +o suc 𝑧))
3735, 36syl 14 . . . . . . . . . . 11 (𝑥 = suc 𝑧 → suc (𝑦 +o 𝑥) = suc (𝑦 +o suc 𝑧))
3834, 37eqeq12d 2192 . . . . . . . . . 10 (𝑥 = suc 𝑧 → ((suc 𝑦 +o 𝑥) = suc (𝑦 +o 𝑥) ↔ (suc 𝑦 +o suc 𝑧) = suc (𝑦 +o suc 𝑧)))
39 peano2 4596 . . . . . . . . . . . 12 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
40 nna0 6477 . . . . . . . . . . . 12 (suc 𝑦 ∈ ω → (suc 𝑦 +o ∅) = suc 𝑦)
4139, 40syl 14 . . . . . . . . . . 11 (𝑦 ∈ ω → (suc 𝑦 +o ∅) = suc 𝑦)
42 nna0 6477 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝑦 +o ∅) = 𝑦)
43 suceq 4404 . . . . . . . . . . . 12 ((𝑦 +o ∅) = 𝑦 → suc (𝑦 +o ∅) = suc 𝑦)
4442, 43syl 14 . . . . . . . . . . 11 (𝑦 ∈ ω → suc (𝑦 +o ∅) = suc 𝑦)
4541, 44eqtr4d 2213 . . . . . . . . . 10 (𝑦 ∈ ω → (suc 𝑦 +o ∅) = suc (𝑦 +o ∅))
46 suceq 4404 . . . . . . . . . . . 12 ((suc 𝑦 +o 𝑧) = suc (𝑦 +o 𝑧) → suc (suc 𝑦 +o 𝑧) = suc suc (𝑦 +o 𝑧))
47 nnasuc 6479 . . . . . . . . . . . . . 14 ((suc 𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (suc 𝑦 +o suc 𝑧) = suc (suc 𝑦 +o 𝑧))
4839, 47sylan 283 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (suc 𝑦 +o suc 𝑧) = suc (suc 𝑦 +o 𝑧))
49 nnasuc 6479 . . . . . . . . . . . . . 14 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → (𝑦 +o suc 𝑧) = suc (𝑦 +o 𝑧))
50 suceq 4404 . . . . . . . . . . . . . 14 ((𝑦 +o suc 𝑧) = suc (𝑦 +o 𝑧) → suc (𝑦 +o suc 𝑧) = suc suc (𝑦 +o 𝑧))
5149, 50syl 14 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → suc (𝑦 +o suc 𝑧) = suc suc (𝑦 +o 𝑧))
5248, 51eqeq12d 2192 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((suc 𝑦 +o suc 𝑧) = suc (𝑦 +o suc 𝑧) ↔ suc (suc 𝑦 +o 𝑧) = suc suc (𝑦 +o 𝑧)))
5346, 52imbitrrid 156 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝑧 ∈ ω) → ((suc 𝑦 +o 𝑧) = suc (𝑦 +o 𝑧) → (suc 𝑦 +o suc 𝑧) = suc (𝑦 +o suc 𝑧)))
5453expcom 116 . . . . . . . . . 10 (𝑧 ∈ ω → (𝑦 ∈ ω → ((suc 𝑦 +o 𝑧) = suc (𝑦 +o 𝑧) → (suc 𝑦 +o suc 𝑧) = suc (𝑦 +o suc 𝑧))))
5528, 33, 38, 45, 54finds2 4602 . . . . . . . . 9 (𝑥 ∈ ω → (𝑦 ∈ ω → (suc 𝑦 +o 𝑥) = suc (𝑦 +o 𝑥)))
5623, 55vtoclga 2805 . . . . . . . 8 (𝐵 ∈ ω → (𝑦 ∈ ω → (suc 𝑦 +o 𝐵) = suc (𝑦 +o 𝐵)))
5756imp 124 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (suc 𝑦 +o 𝐵) = suc (𝑦 +o 𝐵))
58 nnasuc 6479 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 +o suc 𝑦) = suc (𝐵 +o 𝑦))
5957, 58eqeq12d 2192 . . . . . 6 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((suc 𝑦 +o 𝐵) = (𝐵 +o suc 𝑦) ↔ suc (𝑦 +o 𝐵) = suc (𝐵 +o 𝑦)))
6017, 59imbitrrid 156 . . . . 5 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +o 𝐵) = (𝐵 +o 𝑦) → (suc 𝑦 +o 𝐵) = (𝐵 +o suc 𝑦)))
6160expcom 116 . . . 4 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 +o 𝐵) = (𝐵 +o 𝑦) → (suc 𝑦 +o 𝐵) = (𝐵 +o suc 𝑦))))
627, 10, 13, 16, 61finds2 4602 . . 3 (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 +o 𝐵) = (𝐵 +o 𝑥)))
634, 62vtoclga 2805 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 +o 𝐵) = (𝐵 +o 𝐴)))
6463imp 124 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +o 𝐵) = (𝐵 +o 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  c0 3424  suc csuc 4367  ωcom 4591  (class class class)co 5877   +o coa 6416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-oadd 6423
This theorem is referenced by:  nnmsucr  6491  nnaordi  6511  nnaordr  6513  nnaword  6514  nnaword2  6517  nnawordi  6518  addcompig  7330  nqpnq0nq  7454  prarloclemlt  7494  prarloclemlo  7495
  Copyright terms: Public domain W3C validator