ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubgg Unicode version

Theorem opprsubgg 13640
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprsubgg  |-  ( R  e.  V  ->  (SubGrp `  R )  =  (SubGrp `  O ) )

Proof of Theorem opprsubgg
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2197 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  R
) )
2 opprbas.1 . . . . . 6  |-  O  =  (oppr
`  R )
3 eqid 2196 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
42, 3opprbasg 13631 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
5 eqid 2196 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
62, 5oppraddg 13632 . . . . . 6  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  O
) )
76oveqdr 5950 . . . . 5  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( x ( +g  `  R ) y )  =  ( x ( +g  `  O
) y ) )
81, 4, 7grppropd 13149 . . . 4  |-  ( R  e.  V  ->  ( R  e.  Grp  <->  O  e.  Grp ) )
9 eqidd 2197 . . . . 5  |-  ( R  e.  V  ->  ( Base `  ( Rs  x ) )  =  ( Base `  ( Rs  x ) ) )
10 eqidd 2197 . . . . . . 7  |-  ( R  e.  V  ->  ( Rs  x )  =  ( Rs  x ) )
11 id 19 . . . . . . 7  |-  ( R  e.  V  ->  R  e.  V )
12 vex 2766 . . . . . . . 8  |-  x  e. 
_V
1312a1i 9 . . . . . . 7  |-  ( R  e.  V  ->  x  e.  _V )
1410, 1, 11, 13ressbasd 12745 . . . . . 6  |-  ( R  e.  V  ->  (
x  i^i  ( Base `  R ) )  =  ( Base `  ( Rs  x ) ) )
15 eqidd 2197 . . . . . . 7  |-  ( R  e.  V  ->  ( Os  x )  =  ( Os  x ) )
162opprex 13629 . . . . . . 7  |-  ( R  e.  V  ->  O  e.  _V )
1715, 4, 16, 13ressbasd 12745 . . . . . 6  |-  ( R  e.  V  ->  (
x  i^i  ( Base `  R ) )  =  ( Base `  ( Os  x ) ) )
1814, 17eqtr3d 2231 . . . . 5  |-  ( R  e.  V  ->  ( Base `  ( Rs  x ) )  =  ( Base `  ( Os  x ) ) )
19 eqidd 2197 . . . . . . . 8  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  R
) )
2010, 19, 13, 11ressplusgd 12806 . . . . . . 7  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  ( Rs  x ) ) )
2115, 6, 13, 16ressplusgd 12806 . . . . . . 7  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  ( Os  x ) ) )
2220, 21eqtr3d 2231 . . . . . 6  |-  ( R  e.  V  ->  ( +g  `  ( Rs  x ) )  =  ( +g  `  ( Os  x ) ) )
2322oveqdr 5950 . . . . 5  |-  ( ( R  e.  V  /\  ( z  e.  (
Base `  ( Rs  x
) )  /\  w  e.  ( Base `  ( Rs  x ) ) ) )  ->  ( z
( +g  `  ( Rs  x ) ) w )  =  ( z ( +g  `  ( Os  x ) ) w ) )
249, 18, 23grppropd 13149 . . . 4  |-  ( R  e.  V  ->  (
( Rs  x )  e.  Grp  <->  ( Os  x )  e.  Grp ) )
258, 243anbi13d 1325 . . 3  |-  ( R  e.  V  ->  (
( R  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Rs  x )  e.  Grp ) 
<->  ( O  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Os  x )  e.  Grp ) ) )
263issubg 13303 . . . 4  |-  ( x  e.  (SubGrp `  R
)  <->  ( R  e. 
Grp  /\  x  C_  ( Base `  R )  /\  ( Rs  x )  e.  Grp ) )
2726a1i 9 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubGrp `  R )  <->  ( R  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Rs  x )  e.  Grp ) ) )
28 eqid 2196 . . . . 5  |-  ( Base `  O )  =  (
Base `  O )
2928issubg 13303 . . . 4  |-  ( x  e.  (SubGrp `  O
)  <->  ( O  e. 
Grp  /\  x  C_  ( Base `  O )  /\  ( Os  x )  e.  Grp ) )
304sseq2d 3213 . . . . 5  |-  ( R  e.  V  ->  (
x  C_  ( Base `  R )  <->  x  C_  ( Base `  O ) ) )
31303anbi2d 1328 . . . 4  |-  ( R  e.  V  ->  (
( O  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Os  x )  e.  Grp ) 
<->  ( O  e.  Grp  /\  x  C_  ( Base `  O )  /\  ( Os  x )  e.  Grp ) ) )
3229, 31bitr4id 199 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubGrp `  O )  <->  ( O  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Os  x )  e.  Grp ) ) )
3325, 27, 323bitr4d 220 . 2  |-  ( R  e.  V  ->  (
x  e.  (SubGrp `  R )  <->  x  e.  (SubGrp `  O ) ) )
3433eqrdv 2194 1  |-  ( R  e.  V  ->  (SubGrp `  R )  =  (SubGrp `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   _Vcvv 2763    i^i cin 3156    C_ wss 3157   ` cfv 5258  (class class class)co 5922   Basecbs 12678   ↾s cress 12679   +g cplusg 12755   Grpcgrp 13132  SubGrpcsubg 13297  opprcoppr 13623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-subg 13300  df-oppr 13624
This theorem is referenced by:  opprsubrngg  13767  isridlrng  14038  isridl  14060
  Copyright terms: Public domain W3C validator