ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubgg Unicode version

Theorem opprsubgg 13580
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprsubgg  |-  ( R  e.  V  ->  (SubGrp `  R )  =  (SubGrp `  O ) )

Proof of Theorem opprsubgg
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2194 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  R
) )
2 opprbas.1 . . . . . 6  |-  O  =  (oppr
`  R )
3 eqid 2193 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
42, 3opprbasg 13571 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
5 eqid 2193 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
62, 5oppraddg 13572 . . . . . 6  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  O
) )
76oveqdr 5946 . . . . 5  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( x ( +g  `  R ) y )  =  ( x ( +g  `  O
) y ) )
81, 4, 7grppropd 13089 . . . 4  |-  ( R  e.  V  ->  ( R  e.  Grp  <->  O  e.  Grp ) )
9 eqidd 2194 . . . . 5  |-  ( R  e.  V  ->  ( Base `  ( Rs  x ) )  =  ( Base `  ( Rs  x ) ) )
10 eqidd 2194 . . . . . . 7  |-  ( R  e.  V  ->  ( Rs  x )  =  ( Rs  x ) )
11 id 19 . . . . . . 7  |-  ( R  e.  V  ->  R  e.  V )
12 vex 2763 . . . . . . . 8  |-  x  e. 
_V
1312a1i 9 . . . . . . 7  |-  ( R  e.  V  ->  x  e.  _V )
1410, 1, 11, 13ressbasd 12685 . . . . . 6  |-  ( R  e.  V  ->  (
x  i^i  ( Base `  R ) )  =  ( Base `  ( Rs  x ) ) )
15 eqidd 2194 . . . . . . 7  |-  ( R  e.  V  ->  ( Os  x )  =  ( Os  x ) )
162opprex 13569 . . . . . . 7  |-  ( R  e.  V  ->  O  e.  _V )
1715, 4, 16, 13ressbasd 12685 . . . . . 6  |-  ( R  e.  V  ->  (
x  i^i  ( Base `  R ) )  =  ( Base `  ( Os  x ) ) )
1814, 17eqtr3d 2228 . . . . 5  |-  ( R  e.  V  ->  ( Base `  ( Rs  x ) )  =  ( Base `  ( Os  x ) ) )
19 eqidd 2194 . . . . . . . 8  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  R
) )
2010, 19, 13, 11ressplusgd 12746 . . . . . . 7  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  ( Rs  x ) ) )
2115, 6, 13, 16ressplusgd 12746 . . . . . . 7  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  ( Os  x ) ) )
2220, 21eqtr3d 2228 . . . . . 6  |-  ( R  e.  V  ->  ( +g  `  ( Rs  x ) )  =  ( +g  `  ( Os  x ) ) )
2322oveqdr 5946 . . . . 5  |-  ( ( R  e.  V  /\  ( z  e.  (
Base `  ( Rs  x
) )  /\  w  e.  ( Base `  ( Rs  x ) ) ) )  ->  ( z
( +g  `  ( Rs  x ) ) w )  =  ( z ( +g  `  ( Os  x ) ) w ) )
249, 18, 23grppropd 13089 . . . 4  |-  ( R  e.  V  ->  (
( Rs  x )  e.  Grp  <->  ( Os  x )  e.  Grp ) )
258, 243anbi13d 1325 . . 3  |-  ( R  e.  V  ->  (
( R  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Rs  x )  e.  Grp ) 
<->  ( O  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Os  x )  e.  Grp ) ) )
263issubg 13243 . . . 4  |-  ( x  e.  (SubGrp `  R
)  <->  ( R  e. 
Grp  /\  x  C_  ( Base `  R )  /\  ( Rs  x )  e.  Grp ) )
2726a1i 9 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubGrp `  R )  <->  ( R  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Rs  x )  e.  Grp ) ) )
28 eqid 2193 . . . . 5  |-  ( Base `  O )  =  (
Base `  O )
2928issubg 13243 . . . 4  |-  ( x  e.  (SubGrp `  O
)  <->  ( O  e. 
Grp  /\  x  C_  ( Base `  O )  /\  ( Os  x )  e.  Grp ) )
304sseq2d 3209 . . . . 5  |-  ( R  e.  V  ->  (
x  C_  ( Base `  R )  <->  x  C_  ( Base `  O ) ) )
31303anbi2d 1328 . . . 4  |-  ( R  e.  V  ->  (
( O  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Os  x )  e.  Grp ) 
<->  ( O  e.  Grp  /\  x  C_  ( Base `  O )  /\  ( Os  x )  e.  Grp ) ) )
3229, 31bitr4id 199 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubGrp `  O )  <->  ( O  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Os  x )  e.  Grp ) ) )
3325, 27, 323bitr4d 220 . 2  |-  ( R  e.  V  ->  (
x  e.  (SubGrp `  R )  <->  x  e.  (SubGrp `  O ) ) )
3433eqrdv 2191 1  |-  ( R  e.  V  ->  (SubGrp `  R )  =  (SubGrp `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760    i^i cin 3152    C_ wss 3153   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   +g cplusg 12695   Grpcgrp 13072  SubGrpcsubg 13237  opprcoppr 13563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-subg 13240  df-oppr 13564
This theorem is referenced by:  opprsubrngg  13707  isridlrng  13978  isridl  14000
  Copyright terms: Public domain W3C validator