ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprsubgg Unicode version

Theorem opprsubgg 13431
Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
Hypothesis
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprsubgg  |-  ( R  e.  V  ->  (SubGrp `  R )  =  (SubGrp `  O ) )

Proof of Theorem opprsubgg
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2190 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  R
) )
2 opprbas.1 . . . . . 6  |-  O  =  (oppr
`  R )
3 eqid 2189 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
42, 3opprbasg 13422 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
5 eqid 2189 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
62, 5oppraddg 13423 . . . . . 6  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  O
) )
76oveqdr 5923 . . . . 5  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( x ( +g  `  R ) y )  =  ( x ( +g  `  O
) y ) )
81, 4, 7grppropd 12959 . . . 4  |-  ( R  e.  V  ->  ( R  e.  Grp  <->  O  e.  Grp ) )
9 eqidd 2190 . . . . 5  |-  ( R  e.  V  ->  ( Base `  ( Rs  x ) )  =  ( Base `  ( Rs  x ) ) )
10 eqidd 2190 . . . . . . 7  |-  ( R  e.  V  ->  ( Rs  x )  =  ( Rs  x ) )
11 id 19 . . . . . . 7  |-  ( R  e.  V  ->  R  e.  V )
12 vex 2755 . . . . . . . 8  |-  x  e. 
_V
1312a1i 9 . . . . . . 7  |-  ( R  e.  V  ->  x  e.  _V )
1410, 1, 11, 13ressbasd 12576 . . . . . 6  |-  ( R  e.  V  ->  (
x  i^i  ( Base `  R ) )  =  ( Base `  ( Rs  x ) ) )
15 eqidd 2190 . . . . . . 7  |-  ( R  e.  V  ->  ( Os  x )  =  ( Os  x ) )
162opprex 13420 . . . . . . 7  |-  ( R  e.  V  ->  O  e.  _V )
1715, 4, 16, 13ressbasd 12576 . . . . . 6  |-  ( R  e.  V  ->  (
x  i^i  ( Base `  R ) )  =  ( Base `  ( Os  x ) ) )
1814, 17eqtr3d 2224 . . . . 5  |-  ( R  e.  V  ->  ( Base `  ( Rs  x ) )  =  ( Base `  ( Os  x ) ) )
19 eqidd 2190 . . . . . . . 8  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  R
) )
2010, 19, 13, 11ressplusgd 12637 . . . . . . 7  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  ( Rs  x ) ) )
2115, 6, 13, 16ressplusgd 12637 . . . . . . 7  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  ( Os  x ) ) )
2220, 21eqtr3d 2224 . . . . . 6  |-  ( R  e.  V  ->  ( +g  `  ( Rs  x ) )  =  ( +g  `  ( Os  x ) ) )
2322oveqdr 5923 . . . . 5  |-  ( ( R  e.  V  /\  ( z  e.  (
Base `  ( Rs  x
) )  /\  w  e.  ( Base `  ( Rs  x ) ) ) )  ->  ( z
( +g  `  ( Rs  x ) ) w )  =  ( z ( +g  `  ( Os  x ) ) w ) )
249, 18, 23grppropd 12959 . . . 4  |-  ( R  e.  V  ->  (
( Rs  x )  e.  Grp  <->  ( Os  x )  e.  Grp ) )
258, 243anbi13d 1325 . . 3  |-  ( R  e.  V  ->  (
( R  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Rs  x )  e.  Grp ) 
<->  ( O  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Os  x )  e.  Grp ) ) )
263issubg 13109 . . . 4  |-  ( x  e.  (SubGrp `  R
)  <->  ( R  e. 
Grp  /\  x  C_  ( Base `  R )  /\  ( Rs  x )  e.  Grp ) )
2726a1i 9 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubGrp `  R )  <->  ( R  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Rs  x )  e.  Grp ) ) )
28 eqid 2189 . . . . 5  |-  ( Base `  O )  =  (
Base `  O )
2928issubg 13109 . . . 4  |-  ( x  e.  (SubGrp `  O
)  <->  ( O  e. 
Grp  /\  x  C_  ( Base `  O )  /\  ( Os  x )  e.  Grp ) )
304sseq2d 3200 . . . . 5  |-  ( R  e.  V  ->  (
x  C_  ( Base `  R )  <->  x  C_  ( Base `  O ) ) )
31303anbi2d 1328 . . . 4  |-  ( R  e.  V  ->  (
( O  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Os  x )  e.  Grp ) 
<->  ( O  e.  Grp  /\  x  C_  ( Base `  O )  /\  ( Os  x )  e.  Grp ) ) )
3229, 31bitr4id 199 . . 3  |-  ( R  e.  V  ->  (
x  e.  (SubGrp `  O )  <->  ( O  e.  Grp  /\  x  C_  ( Base `  R )  /\  ( Os  x )  e.  Grp ) ) )
3325, 27, 323bitr4d 220 . 2  |-  ( R  e.  V  ->  (
x  e.  (SubGrp `  R )  <->  x  e.  (SubGrp `  O ) ) )
3433eqrdv 2187 1  |-  ( R  e.  V  ->  (SubGrp `  R )  =  (SubGrp `  O ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   _Vcvv 2752    i^i cin 3143    C_ wss 3144   ` cfv 5235  (class class class)co 5895   Basecbs 12511   ↾s cress 12512   +g cplusg 12586   Grpcgrp 12942  SubGrpcsubg 13103  opprcoppr 13414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-tpos 6269  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-iress 12519  df-plusg 12599  df-mulr 12600  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-subg 13106  df-oppr 13415
This theorem is referenced by:  opprsubrngg  13555  isridlrng  13795  isridl  13816
  Copyright terms: Public domain W3C validator