| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprsubgg | Unicode version | ||
| Description: Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.) |
| Ref | Expression |
|---|---|
| opprbas.1 |
|
| Ref | Expression |
|---|---|
| opprsubgg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2230 |
. . . . 5
| |
| 2 | opprbas.1 |
. . . . . 6
| |
| 3 | eqid 2229 |
. . . . . 6
| |
| 4 | 2, 3 | opprbasg 14038 |
. . . . 5
|
| 5 | eqid 2229 |
. . . . . . 7
| |
| 6 | 2, 5 | oppraddg 14039 |
. . . . . 6
|
| 7 | 6 | oveqdr 6029 |
. . . . 5
|
| 8 | 1, 4, 7 | grppropd 13550 |
. . . 4
|
| 9 | eqidd 2230 |
. . . . 5
| |
| 10 | eqidd 2230 |
. . . . . . 7
| |
| 11 | id 19 |
. . . . . . 7
| |
| 12 | vex 2802 |
. . . . . . . 8
| |
| 13 | 12 | a1i 9 |
. . . . . . 7
|
| 14 | 10, 1, 11, 13 | ressbasd 13100 |
. . . . . 6
|
| 15 | eqidd 2230 |
. . . . . . 7
| |
| 16 | 2 | opprex 14036 |
. . . . . . 7
|
| 17 | 15, 4, 16, 13 | ressbasd 13100 |
. . . . . 6
|
| 18 | 14, 17 | eqtr3d 2264 |
. . . . 5
|
| 19 | eqidd 2230 |
. . . . . . . 8
| |
| 20 | 10, 19, 13, 11 | ressplusgd 13162 |
. . . . . . 7
|
| 21 | 15, 6, 13, 16 | ressplusgd 13162 |
. . . . . . 7
|
| 22 | 20, 21 | eqtr3d 2264 |
. . . . . 6
|
| 23 | 22 | oveqdr 6029 |
. . . . 5
|
| 24 | 9, 18, 23 | grppropd 13550 |
. . . 4
|
| 25 | 8, 24 | 3anbi13d 1348 |
. . 3
|
| 26 | 3 | issubg 13710 |
. . . 4
|
| 27 | 26 | a1i 9 |
. . 3
|
| 28 | eqid 2229 |
. . . . 5
| |
| 29 | 28 | issubg 13710 |
. . . 4
|
| 30 | 4 | sseq2d 3254 |
. . . . 5
|
| 31 | 30 | 3anbi2d 1351 |
. . . 4
|
| 32 | 29, 31 | bitr4id 199 |
. . 3
|
| 33 | 25, 27, 32 | 3bitr4d 220 |
. 2
|
| 34 | 33 | eqrdv 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-tpos 6391 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 df-plusg 13123 df-mulr 13124 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-subg 13707 df-oppr 14031 |
| This theorem is referenced by: opprsubrngg 14175 isridlrng 14446 isridl 14468 |
| Copyright terms: Public domain | W3C validator |