ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitnegcl Unicode version

Theorem unitnegcl 13762
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
unitnegcl.1  |-  U  =  (Unit `  R )
unitnegcl.2  |-  N  =  ( invg `  R )
Assertion
Ref Expression
unitnegcl  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  U )

Proof of Theorem unitnegcl
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  R  e.  Ring )
2 ringgrp 13633 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
3 eqidd 2197 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( Base `  R )  =  ( Base `  R
) )
4 unitnegcl.1 . . . . . . . 8  |-  U  =  (Unit `  R )
54a1i 9 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  U  =  (Unit `  R )
)
6 ringsrg 13679 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. SRing
)
76adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  R  e. SRing )
8 simpr 110 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X  e.  U )
93, 5, 7, 8unitcld 13740 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X  e.  ( Base `  R
) )
10 eqid 2196 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
11 unitnegcl.2 . . . . . . 7  |-  N  =  ( invg `  R )
1210, 11grpinvcl 13250 . . . . . 6  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R ) )  -> 
( N `  X
)  e.  ( Base `  R ) )
132, 9, 12syl2an2r 595 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  ( Base `  R
) )
14 eqid 2196 . . . . . 6  |-  ( ||r `  R
)  =  ( ||r `  R
)
1510, 14, 11dvdsrneg 13735 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N `  X )  e.  ( Base `  R
) )  ->  ( N `  X )
( ||r `
 R ) ( N `  ( N `
 X ) ) )
1613, 15syldan 282 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) ( N `  ( N `
 X ) ) )
1710, 11grpinvinv 13269 . . . . 5  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R ) )  -> 
( N `  ( N `  X )
)  =  X )
182, 9, 17syl2an2r 595 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  ( N `  X ) )  =  X )
1916, 18breqtrd 4060 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) X )
20 eqidd 2197 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( 1r `  R )  =  ( 1r `  R
) )
21 eqidd 2197 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( ||r `  R )  =  (
||r `  R ) )
22 eqidd 2197 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (oppr `  R
)  =  (oppr `  R
) )
23 eqidd 2197 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( ||r `  (oppr
`  R ) )  =  ( ||r `
 (oppr
`  R ) ) )
245, 20, 21, 22, 23, 7isunitd 13738 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  e.  U  <->  ( X
( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
258, 24mpbid 147 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2625simpld 112 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X
( ||r `
 R ) ( 1r `  R ) )
2710, 14dvdsrtr 13733 . . 3  |-  ( ( R  e.  Ring  /\  ( N `  X )
( ||r `
 R ) X  /\  X ( ||r `  R
) ( 1r `  R ) )  -> 
( N `  X
) ( ||r `
 R ) ( 1r `  R ) )
281, 19, 26, 27syl3anc 1249 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) ( 1r `  R ) )
29 eqid 2196 . . . . 5  |-  (oppr `  R
)  =  (oppr `  R
)
3029opprring 13711 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
3130adantr 276 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (oppr `  R
)  e.  Ring )
3229, 10opprbasg 13707 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
3332eleq2d 2266 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( ( N `  X )  e.  ( Base `  R
)  <->  ( N `  X )  e.  (
Base `  (oppr
`  R ) ) ) )
3433adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( N `  X
)  e.  ( Base `  R )  <->  ( N `  X )  e.  (
Base `  (oppr
`  R ) ) ) )
3513, 34mpbid 147 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  ( Base `  (oppr `  R
) ) )
36 eqid 2196 . . . . . . 7  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
37 eqid 2196 . . . . . . 7  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
38 eqid 2196 . . . . . . 7  |-  ( invg `  (oppr `  R
) )  =  ( invg `  (oppr `  R
) )
3936, 37, 38dvdsrneg 13735 . . . . . 6  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N `  X )  e.  (
Base `  (oppr
`  R ) ) )  ->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( ( invg `  (oppr `  R
) ) `  ( N `  X )
) )
4030, 35, 39syl2an2r 595 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( ( invg `  (oppr
`  R ) ) `
 ( N `  X ) ) )
4129, 11opprnegg 13715 . . . . . . . 8  |-  ( R  e.  Ring  ->  N  =  ( invg `  (oppr `  R ) ) )
4241fveq1d 5563 . . . . . . 7  |-  ( R  e.  Ring  ->  ( N `
 ( N `  X ) )  =  ( ( invg `  (oppr
`  R ) ) `
 ( N `  X ) ) )
4342breq2d 4046 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( N `  X ) ( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
)  <->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( ( invg `  (oppr `  R
) ) `  ( N `  X )
) ) )
4443adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( N `  X
) ( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
)  <->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( ( invg `  (oppr `  R
) ) `  ( N `  X )
) ) )
4540, 44mpbird 167 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
) )
4645, 18breqtrd 4060 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) X )
4725simprd 114 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
4836, 37dvdsrtr 13733 . . 3  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N `  X ) ( ||r `  (oppr `  R
) ) X  /\  X ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
4931, 46, 47, 48syl3anc 1249 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
505, 20, 21, 22, 23, 7isunitd 13738 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( N `  X
)  e.  U  <->  ( ( N `  X )
( ||r `
 R ) ( 1r `  R )  /\  ( N `  X ) ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
5128, 49, 50mpbir2and 946 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259   Basecbs 12703   Grpcgrp 13202   invgcminusg 13203   1rcur 13591  SRingcsrg 13595   Ringcrg 13628  opprcoppr 13699   ||rcdsr 13718  Unitcui 13719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722
This theorem is referenced by:  aprsym  13916
  Copyright terms: Public domain W3C validator