| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitnegcl | Unicode version | ||
| Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitnegcl.1 |
|
| unitnegcl.2 |
|
| Ref | Expression |
|---|---|
| unitnegcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . 3
| |
| 2 | ringgrp 13705 |
. . . . . 6
| |
| 3 | eqidd 2205 |
. . . . . . 7
| |
| 4 | unitnegcl.1 |
. . . . . . . 8
| |
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | ringsrg 13751 |
. . . . . . . 8
| |
| 7 | 6 | adantr 276 |
. . . . . . 7
|
| 8 | simpr 110 |
. . . . . . 7
| |
| 9 | 3, 5, 7, 8 | unitcld 13812 |
. . . . . 6
|
| 10 | eqid 2204 |
. . . . . . 7
| |
| 11 | unitnegcl.2 |
. . . . . . 7
| |
| 12 | 10, 11 | grpinvcl 13322 |
. . . . . 6
|
| 13 | 2, 9, 12 | syl2an2r 595 |
. . . . 5
|
| 14 | eqid 2204 |
. . . . . 6
| |
| 15 | 10, 14, 11 | dvdsrneg 13807 |
. . . . 5
|
| 16 | 13, 15 | syldan 282 |
. . . 4
|
| 17 | 10, 11 | grpinvinv 13341 |
. . . . 5
|
| 18 | 2, 9, 17 | syl2an2r 595 |
. . . 4
|
| 19 | 16, 18 | breqtrd 4069 |
. . 3
|
| 20 | eqidd 2205 |
. . . . . 6
| |
| 21 | eqidd 2205 |
. . . . . 6
| |
| 22 | eqidd 2205 |
. . . . . 6
| |
| 23 | eqidd 2205 |
. . . . . 6
| |
| 24 | 5, 20, 21, 22, 23, 7 | isunitd 13810 |
. . . . 5
|
| 25 | 8, 24 | mpbid 147 |
. . . 4
|
| 26 | 25 | simpld 112 |
. . 3
|
| 27 | 10, 14 | dvdsrtr 13805 |
. . 3
|
| 28 | 1, 19, 26, 27 | syl3anc 1249 |
. 2
|
| 29 | eqid 2204 |
. . . . 5
| |
| 30 | 29 | opprring 13783 |
. . . 4
|
| 31 | 30 | adantr 276 |
. . 3
|
| 32 | 29, 10 | opprbasg 13779 |
. . . . . . . . 9
|
| 33 | 32 | eleq2d 2274 |
. . . . . . . 8
|
| 34 | 33 | adantr 276 |
. . . . . . 7
|
| 35 | 13, 34 | mpbid 147 |
. . . . . 6
|
| 36 | eqid 2204 |
. . . . . . 7
| |
| 37 | eqid 2204 |
. . . . . . 7
| |
| 38 | eqid 2204 |
. . . . . . 7
| |
| 39 | 36, 37, 38 | dvdsrneg 13807 |
. . . . . 6
|
| 40 | 30, 35, 39 | syl2an2r 595 |
. . . . 5
|
| 41 | 29, 11 | opprnegg 13787 |
. . . . . . . 8
|
| 42 | 41 | fveq1d 5577 |
. . . . . . 7
|
| 43 | 42 | breq2d 4055 |
. . . . . 6
|
| 44 | 43 | adantr 276 |
. . . . 5
|
| 45 | 40, 44 | mpbird 167 |
. . . 4
|
| 46 | 45, 18 | breqtrd 4069 |
. . 3
|
| 47 | 25 | simprd 114 |
. . 3
|
| 48 | 36, 37 | dvdsrtr 13805 |
. . 3
|
| 49 | 31, 46, 47, 48 | syl3anc 1249 |
. 2
|
| 50 | 5, 20, 21, 22, 23, 7 | isunitd 13810 |
. 2
|
| 51 | 28, 49, 50 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-pre-ltirr 8036 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-tpos 6330 df-pnf 8108 df-mnf 8109 df-ltxr 8111 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12777 df-slot 12778 df-base 12780 df-sets 12781 df-plusg 12864 df-mulr 12865 df-0g 13032 df-mgm 13130 df-sgrp 13176 df-mnd 13191 df-grp 13277 df-minusg 13278 df-cmn 13564 df-abl 13565 df-mgp 13625 df-ur 13664 df-srg 13668 df-ring 13702 df-oppr 13772 df-dvdsr 13793 df-unit 13794 |
| This theorem is referenced by: aprsym 13988 |
| Copyright terms: Public domain | W3C validator |