ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitnegcl Unicode version

Theorem unitnegcl 13834
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
unitnegcl.1  |-  U  =  (Unit `  R )
unitnegcl.2  |-  N  =  ( invg `  R )
Assertion
Ref Expression
unitnegcl  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  U )

Proof of Theorem unitnegcl
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  R  e.  Ring )
2 ringgrp 13705 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
3 eqidd 2205 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( Base `  R )  =  ( Base `  R
) )
4 unitnegcl.1 . . . . . . . 8  |-  U  =  (Unit `  R )
54a1i 9 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  U  =  (Unit `  R )
)
6 ringsrg 13751 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. SRing
)
76adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  R  e. SRing )
8 simpr 110 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X  e.  U )
93, 5, 7, 8unitcld 13812 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X  e.  ( Base `  R
) )
10 eqid 2204 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
11 unitnegcl.2 . . . . . . 7  |-  N  =  ( invg `  R )
1210, 11grpinvcl 13322 . . . . . 6  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R ) )  -> 
( N `  X
)  e.  ( Base `  R ) )
132, 9, 12syl2an2r 595 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  ( Base `  R
) )
14 eqid 2204 . . . . . 6  |-  ( ||r `  R
)  =  ( ||r `  R
)
1510, 14, 11dvdsrneg 13807 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N `  X )  e.  ( Base `  R
) )  ->  ( N `  X )
( ||r `
 R ) ( N `  ( N `
 X ) ) )
1613, 15syldan 282 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) ( N `  ( N `
 X ) ) )
1710, 11grpinvinv 13341 . . . . 5  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R ) )  -> 
( N `  ( N `  X )
)  =  X )
182, 9, 17syl2an2r 595 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  ( N `  X ) )  =  X )
1916, 18breqtrd 4069 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) X )
20 eqidd 2205 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( 1r `  R )  =  ( 1r `  R
) )
21 eqidd 2205 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( ||r `  R )  =  (
||r `  R ) )
22 eqidd 2205 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (oppr `  R
)  =  (oppr `  R
) )
23 eqidd 2205 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( ||r `  (oppr
`  R ) )  =  ( ||r `
 (oppr
`  R ) ) )
245, 20, 21, 22, 23, 7isunitd 13810 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  e.  U  <->  ( X
( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
258, 24mpbid 147 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2625simpld 112 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X
( ||r `
 R ) ( 1r `  R ) )
2710, 14dvdsrtr 13805 . . 3  |-  ( ( R  e.  Ring  /\  ( N `  X )
( ||r `
 R ) X  /\  X ( ||r `  R
) ( 1r `  R ) )  -> 
( N `  X
) ( ||r `
 R ) ( 1r `  R ) )
281, 19, 26, 27syl3anc 1249 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) ( 1r `  R ) )
29 eqid 2204 . . . . 5  |-  (oppr `  R
)  =  (oppr `  R
)
3029opprring 13783 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
3130adantr 276 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (oppr `  R
)  e.  Ring )
3229, 10opprbasg 13779 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
3332eleq2d 2274 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( ( N `  X )  e.  ( Base `  R
)  <->  ( N `  X )  e.  (
Base `  (oppr
`  R ) ) ) )
3433adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( N `  X
)  e.  ( Base `  R )  <->  ( N `  X )  e.  (
Base `  (oppr
`  R ) ) ) )
3513, 34mpbid 147 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  ( Base `  (oppr `  R
) ) )
36 eqid 2204 . . . . . . 7  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
37 eqid 2204 . . . . . . 7  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
38 eqid 2204 . . . . . . 7  |-  ( invg `  (oppr `  R
) )  =  ( invg `  (oppr `  R
) )
3936, 37, 38dvdsrneg 13807 . . . . . 6  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N `  X )  e.  (
Base `  (oppr
`  R ) ) )  ->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( ( invg `  (oppr `  R
) ) `  ( N `  X )
) )
4030, 35, 39syl2an2r 595 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( ( invg `  (oppr
`  R ) ) `
 ( N `  X ) ) )
4129, 11opprnegg 13787 . . . . . . . 8  |-  ( R  e.  Ring  ->  N  =  ( invg `  (oppr `  R ) ) )
4241fveq1d 5577 . . . . . . 7  |-  ( R  e.  Ring  ->  ( N `
 ( N `  X ) )  =  ( ( invg `  (oppr
`  R ) ) `
 ( N `  X ) ) )
4342breq2d 4055 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( N `  X ) ( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
)  <->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( ( invg `  (oppr `  R
) ) `  ( N `  X )
) ) )
4443adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( N `  X
) ( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
)  <->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( ( invg `  (oppr `  R
) ) `  ( N `  X )
) ) )
4540, 44mpbird 167 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
) )
4645, 18breqtrd 4069 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) X )
4725simprd 114 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
4836, 37dvdsrtr 13805 . . 3  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N `  X ) ( ||r `  (oppr `  R
) ) X  /\  X ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
4931, 46, 47, 48syl3anc 1249 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
505, 20, 21, 22, 23, 7isunitd 13810 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( N `  X
)  e.  U  <->  ( ( N `  X )
( ||r `
 R ) ( 1r `  R )  /\  ( N `  X ) ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
5128, 49, 50mpbir2and 946 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   class class class wbr 4043   ` cfv 5270   Basecbs 12774   Grpcgrp 13274   invgcminusg 13275   1rcur 13663  SRingcsrg 13667   Ringcrg 13700  opprcoppr 13771   ||rcdsr 13790  Unitcui 13791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-lttrn 8038  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-tpos 6330  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-grp 13277  df-minusg 13278  df-cmn 13564  df-abl 13565  df-mgp 13625  df-ur 13664  df-srg 13668  df-ring 13702  df-oppr 13772  df-dvdsr 13793  df-unit 13794
This theorem is referenced by:  aprsym  13988
  Copyright terms: Public domain W3C validator