| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitnegcl | Unicode version | ||
| Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitnegcl.1 |
|
| unitnegcl.2 |
|
| Ref | Expression |
|---|---|
| unitnegcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . 3
| |
| 2 | ringgrp 13848 |
. . . . . 6
| |
| 3 | eqidd 2207 |
. . . . . . 7
| |
| 4 | unitnegcl.1 |
. . . . . . . 8
| |
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | ringsrg 13894 |
. . . . . . . 8
| |
| 7 | 6 | adantr 276 |
. . . . . . 7
|
| 8 | simpr 110 |
. . . . . . 7
| |
| 9 | 3, 5, 7, 8 | unitcld 13955 |
. . . . . 6
|
| 10 | eqid 2206 |
. . . . . . 7
| |
| 11 | unitnegcl.2 |
. . . . . . 7
| |
| 12 | 10, 11 | grpinvcl 13465 |
. . . . . 6
|
| 13 | 2, 9, 12 | syl2an2r 595 |
. . . . 5
|
| 14 | eqid 2206 |
. . . . . 6
| |
| 15 | 10, 14, 11 | dvdsrneg 13950 |
. . . . 5
|
| 16 | 13, 15 | syldan 282 |
. . . 4
|
| 17 | 10, 11 | grpinvinv 13484 |
. . . . 5
|
| 18 | 2, 9, 17 | syl2an2r 595 |
. . . 4
|
| 19 | 16, 18 | breqtrd 4080 |
. . 3
|
| 20 | eqidd 2207 |
. . . . . 6
| |
| 21 | eqidd 2207 |
. . . . . 6
| |
| 22 | eqidd 2207 |
. . . . . 6
| |
| 23 | eqidd 2207 |
. . . . . 6
| |
| 24 | 5, 20, 21, 22, 23, 7 | isunitd 13953 |
. . . . 5
|
| 25 | 8, 24 | mpbid 147 |
. . . 4
|
| 26 | 25 | simpld 112 |
. . 3
|
| 27 | 10, 14 | dvdsrtr 13948 |
. . 3
|
| 28 | 1, 19, 26, 27 | syl3anc 1250 |
. 2
|
| 29 | eqid 2206 |
. . . . 5
| |
| 30 | 29 | opprring 13926 |
. . . 4
|
| 31 | 30 | adantr 276 |
. . 3
|
| 32 | 29, 10 | opprbasg 13922 |
. . . . . . . . 9
|
| 33 | 32 | eleq2d 2276 |
. . . . . . . 8
|
| 34 | 33 | adantr 276 |
. . . . . . 7
|
| 35 | 13, 34 | mpbid 147 |
. . . . . 6
|
| 36 | eqid 2206 |
. . . . . . 7
| |
| 37 | eqid 2206 |
. . . . . . 7
| |
| 38 | eqid 2206 |
. . . . . . 7
| |
| 39 | 36, 37, 38 | dvdsrneg 13950 |
. . . . . 6
|
| 40 | 30, 35, 39 | syl2an2r 595 |
. . . . 5
|
| 41 | 29, 11 | opprnegg 13930 |
. . . . . . . 8
|
| 42 | 41 | fveq1d 5596 |
. . . . . . 7
|
| 43 | 42 | breq2d 4066 |
. . . . . 6
|
| 44 | 43 | adantr 276 |
. . . . 5
|
| 45 | 40, 44 | mpbird 167 |
. . . 4
|
| 46 | 45, 18 | breqtrd 4080 |
. . 3
|
| 47 | 25 | simprd 114 |
. . 3
|
| 48 | 36, 37 | dvdsrtr 13948 |
. . 3
|
| 49 | 31, 46, 47, 48 | syl3anc 1250 |
. 2
|
| 50 | 5, 20, 21, 22, 23, 7 | isunitd 13953 |
. 2
|
| 51 | 28, 49, 50 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-lttrn 8069 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-tpos 6349 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-inn 9067 df-2 9125 df-3 9126 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-plusg 13007 df-mulr 13008 df-0g 13175 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-grp 13420 df-minusg 13421 df-cmn 13707 df-abl 13708 df-mgp 13768 df-ur 13807 df-srg 13811 df-ring 13845 df-oppr 13915 df-dvdsr 13936 df-unit 13937 |
| This theorem is referenced by: aprsym 14131 |
| Copyright terms: Public domain | W3C validator |