ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitnegcl Unicode version

Theorem unitnegcl 13977
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
unitnegcl.1  |-  U  =  (Unit `  R )
unitnegcl.2  |-  N  =  ( invg `  R )
Assertion
Ref Expression
unitnegcl  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  U )

Proof of Theorem unitnegcl
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  R  e.  Ring )
2 ringgrp 13848 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
3 eqidd 2207 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( Base `  R )  =  ( Base `  R
) )
4 unitnegcl.1 . . . . . . . 8  |-  U  =  (Unit `  R )
54a1i 9 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  U  =  (Unit `  R )
)
6 ringsrg 13894 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. SRing
)
76adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  R  e. SRing )
8 simpr 110 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X  e.  U )
93, 5, 7, 8unitcld 13955 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X  e.  ( Base `  R
) )
10 eqid 2206 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
11 unitnegcl.2 . . . . . . 7  |-  N  =  ( invg `  R )
1210, 11grpinvcl 13465 . . . . . 6  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R ) )  -> 
( N `  X
)  e.  ( Base `  R ) )
132, 9, 12syl2an2r 595 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  ( Base `  R
) )
14 eqid 2206 . . . . . 6  |-  ( ||r `  R
)  =  ( ||r `  R
)
1510, 14, 11dvdsrneg 13950 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N `  X )  e.  ( Base `  R
) )  ->  ( N `  X )
( ||r `
 R ) ( N `  ( N `
 X ) ) )
1613, 15syldan 282 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) ( N `  ( N `
 X ) ) )
1710, 11grpinvinv 13484 . . . . 5  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R ) )  -> 
( N `  ( N `  X )
)  =  X )
182, 9, 17syl2an2r 595 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  ( N `  X ) )  =  X )
1916, 18breqtrd 4080 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) X )
20 eqidd 2207 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( 1r `  R )  =  ( 1r `  R
) )
21 eqidd 2207 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( ||r `  R )  =  (
||r `  R ) )
22 eqidd 2207 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (oppr `  R
)  =  (oppr `  R
) )
23 eqidd 2207 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( ||r `  (oppr
`  R ) )  =  ( ||r `
 (oppr
`  R ) ) )
245, 20, 21, 22, 23, 7isunitd 13953 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  e.  U  <->  ( X
( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
258, 24mpbid 147 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2625simpld 112 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X
( ||r `
 R ) ( 1r `  R ) )
2710, 14dvdsrtr 13948 . . 3  |-  ( ( R  e.  Ring  /\  ( N `  X )
( ||r `
 R ) X  /\  X ( ||r `  R
) ( 1r `  R ) )  -> 
( N `  X
) ( ||r `
 R ) ( 1r `  R ) )
281, 19, 26, 27syl3anc 1250 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) ( 1r `  R ) )
29 eqid 2206 . . . . 5  |-  (oppr `  R
)  =  (oppr `  R
)
3029opprring 13926 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
3130adantr 276 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (oppr `  R
)  e.  Ring )
3229, 10opprbasg 13922 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
3332eleq2d 2276 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( ( N `  X )  e.  ( Base `  R
)  <->  ( N `  X )  e.  (
Base `  (oppr
`  R ) ) ) )
3433adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( N `  X
)  e.  ( Base `  R )  <->  ( N `  X )  e.  (
Base `  (oppr
`  R ) ) ) )
3513, 34mpbid 147 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  ( Base `  (oppr `  R
) ) )
36 eqid 2206 . . . . . . 7  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
37 eqid 2206 . . . . . . 7  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
38 eqid 2206 . . . . . . 7  |-  ( invg `  (oppr `  R
) )  =  ( invg `  (oppr `  R
) )
3936, 37, 38dvdsrneg 13950 . . . . . 6  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N `  X )  e.  (
Base `  (oppr
`  R ) ) )  ->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( ( invg `  (oppr `  R
) ) `  ( N `  X )
) )
4030, 35, 39syl2an2r 595 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( ( invg `  (oppr
`  R ) ) `
 ( N `  X ) ) )
4129, 11opprnegg 13930 . . . . . . . 8  |-  ( R  e.  Ring  ->  N  =  ( invg `  (oppr `  R ) ) )
4241fveq1d 5596 . . . . . . 7  |-  ( R  e.  Ring  ->  ( N `
 ( N `  X ) )  =  ( ( invg `  (oppr
`  R ) ) `
 ( N `  X ) ) )
4342breq2d 4066 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( N `  X ) ( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
)  <->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( ( invg `  (oppr `  R
) ) `  ( N `  X )
) ) )
4443adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( N `  X
) ( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
)  <->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( ( invg `  (oppr `  R
) ) `  ( N `  X )
) ) )
4540, 44mpbird 167 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
) )
4645, 18breqtrd 4080 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) X )
4725simprd 114 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
4836, 37dvdsrtr 13948 . . 3  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N `  X ) ( ||r `  (oppr `  R
) ) X  /\  X ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
4931, 46, 47, 48syl3anc 1250 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
505, 20, 21, 22, 23, 7isunitd 13953 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( N `  X
)  e.  U  <->  ( ( N `  X )
( ||r `
 R ) ( 1r `  R )  /\  ( N `  X ) ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
5128, 49, 50mpbir2and 947 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   class class class wbr 4054   ` cfv 5285   Basecbs 12917   Grpcgrp 13417   invgcminusg 13418   1rcur 13806  SRingcsrg 13810   Ringcrg 13843  opprcoppr 13914   ||rcdsr 13933  Unitcui 13934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-tpos 6349  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-plusg 13007  df-mulr 13008  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-grp 13420  df-minusg 13421  df-cmn 13707  df-abl 13708  df-mgp 13768  df-ur 13807  df-srg 13811  df-ring 13845  df-oppr 13915  df-dvdsr 13936  df-unit 13937
This theorem is referenced by:  aprsym  14131
  Copyright terms: Public domain W3C validator