| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitnegcl | Unicode version | ||
| Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitnegcl.1 |
|
| unitnegcl.2 |
|
| Ref | Expression |
|---|---|
| unitnegcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . 3
| |
| 2 | ringgrp 13557 |
. . . . . 6
| |
| 3 | eqidd 2197 |
. . . . . . 7
| |
| 4 | unitnegcl.1 |
. . . . . . . 8
| |
| 5 | 4 | a1i 9 |
. . . . . . 7
|
| 6 | ringsrg 13603 |
. . . . . . . 8
| |
| 7 | 6 | adantr 276 |
. . . . . . 7
|
| 8 | simpr 110 |
. . . . . . 7
| |
| 9 | 3, 5, 7, 8 | unitcld 13664 |
. . . . . 6
|
| 10 | eqid 2196 |
. . . . . . 7
| |
| 11 | unitnegcl.2 |
. . . . . . 7
| |
| 12 | 10, 11 | grpinvcl 13180 |
. . . . . 6
|
| 13 | 2, 9, 12 | syl2an2r 595 |
. . . . 5
|
| 14 | eqid 2196 |
. . . . . 6
| |
| 15 | 10, 14, 11 | dvdsrneg 13659 |
. . . . 5
|
| 16 | 13, 15 | syldan 282 |
. . . 4
|
| 17 | 10, 11 | grpinvinv 13199 |
. . . . 5
|
| 18 | 2, 9, 17 | syl2an2r 595 |
. . . 4
|
| 19 | 16, 18 | breqtrd 4059 |
. . 3
|
| 20 | eqidd 2197 |
. . . . . 6
| |
| 21 | eqidd 2197 |
. . . . . 6
| |
| 22 | eqidd 2197 |
. . . . . 6
| |
| 23 | eqidd 2197 |
. . . . . 6
| |
| 24 | 5, 20, 21, 22, 23, 7 | isunitd 13662 |
. . . . 5
|
| 25 | 8, 24 | mpbid 147 |
. . . 4
|
| 26 | 25 | simpld 112 |
. . 3
|
| 27 | 10, 14 | dvdsrtr 13657 |
. . 3
|
| 28 | 1, 19, 26, 27 | syl3anc 1249 |
. 2
|
| 29 | eqid 2196 |
. . . . 5
| |
| 30 | 29 | opprring 13635 |
. . . 4
|
| 31 | 30 | adantr 276 |
. . 3
|
| 32 | 29, 10 | opprbasg 13631 |
. . . . . . . . 9
|
| 33 | 32 | eleq2d 2266 |
. . . . . . . 8
|
| 34 | 33 | adantr 276 |
. . . . . . 7
|
| 35 | 13, 34 | mpbid 147 |
. . . . . 6
|
| 36 | eqid 2196 |
. . . . . . 7
| |
| 37 | eqid 2196 |
. . . . . . 7
| |
| 38 | eqid 2196 |
. . . . . . 7
| |
| 39 | 36, 37, 38 | dvdsrneg 13659 |
. . . . . 6
|
| 40 | 30, 35, 39 | syl2an2r 595 |
. . . . 5
|
| 41 | 29, 11 | opprnegg 13639 |
. . . . . . . 8
|
| 42 | 41 | fveq1d 5560 |
. . . . . . 7
|
| 43 | 42 | breq2d 4045 |
. . . . . 6
|
| 44 | 43 | adantr 276 |
. . . . 5
|
| 45 | 40, 44 | mpbird 167 |
. . . 4
|
| 46 | 45, 18 | breqtrd 4059 |
. . 3
|
| 47 | 25 | simprd 114 |
. . 3
|
| 48 | 36, 37 | dvdsrtr 13657 |
. . 3
|
| 49 | 31, 46, 47, 48 | syl3anc 1249 |
. 2
|
| 50 | 5, 20, 21, 22, 23, 7 | isunitd 13662 |
. 2
|
| 51 | 28, 49, 50 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-tpos 6303 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-cmn 13416 df-abl 13417 df-mgp 13477 df-ur 13516 df-srg 13520 df-ring 13554 df-oppr 13624 df-dvdsr 13645 df-unit 13646 |
| This theorem is referenced by: aprsym 13840 |
| Copyright terms: Public domain | W3C validator |