ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitnegcl Unicode version

Theorem unitnegcl 14088
Description: The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
unitnegcl.1  |-  U  =  (Unit `  R )
unitnegcl.2  |-  N  =  ( invg `  R )
Assertion
Ref Expression
unitnegcl  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  U )

Proof of Theorem unitnegcl
StepHypRef Expression
1 simpl 109 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  R  e.  Ring )
2 ringgrp 13959 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
3 eqidd 2230 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( Base `  R )  =  ( Base `  R
) )
4 unitnegcl.1 . . . . . . . 8  |-  U  =  (Unit `  R )
54a1i 9 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  U  =  (Unit `  R )
)
6 ringsrg 14005 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. SRing
)
76adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  R  e. SRing )
8 simpr 110 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X  e.  U )
93, 5, 7, 8unitcld 14066 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X  e.  ( Base `  R
) )
10 eqid 2229 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
11 unitnegcl.2 . . . . . . 7  |-  N  =  ( invg `  R )
1210, 11grpinvcl 13576 . . . . . 6  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R ) )  -> 
( N `  X
)  e.  ( Base `  R ) )
132, 9, 12syl2an2r 597 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  ( Base `  R
) )
14 eqid 2229 . . . . . 6  |-  ( ||r `  R
)  =  ( ||r `  R
)
1510, 14, 11dvdsrneg 14061 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N `  X )  e.  ( Base `  R
) )  ->  ( N `  X )
( ||r `
 R ) ( N `  ( N `
 X ) ) )
1613, 15syldan 282 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) ( N `  ( N `
 X ) ) )
1710, 11grpinvinv 13595 . . . . 5  |-  ( ( R  e.  Grp  /\  X  e.  ( Base `  R ) )  -> 
( N `  ( N `  X )
)  =  X )
182, 9, 17syl2an2r 597 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  ( N `  X ) )  =  X )
1916, 18breqtrd 4108 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) X )
20 eqidd 2230 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( 1r `  R )  =  ( 1r `  R
) )
21 eqidd 2230 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( ||r `  R )  =  (
||r `  R ) )
22 eqidd 2230 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (oppr `  R
)  =  (oppr `  R
) )
23 eqidd 2230 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( ||r `  (oppr
`  R ) )  =  ( ||r `
 (oppr
`  R ) ) )
245, 20, 21, 22, 23, 7isunitd 14064 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X  e.  U  <->  ( X
( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
258, 24mpbid 147 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( X ( ||r `
 R ) ( 1r `  R )  /\  X ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) )
2625simpld 112 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X
( ||r `
 R ) ( 1r `  R ) )
2710, 14dvdsrtr 14059 . . 3  |-  ( ( R  e.  Ring  /\  ( N `  X )
( ||r `
 R ) X  /\  X ( ||r `  R
) ( 1r `  R ) )  -> 
( N `  X
) ( ||r `
 R ) ( 1r `  R ) )
281, 19, 26, 27syl3anc 1271 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 R ) ( 1r `  R ) )
29 eqid 2229 . . . . 5  |-  (oppr `  R
)  =  (oppr `  R
)
3029opprring 14037 . . . 4  |-  ( R  e.  Ring  ->  (oppr `  R
)  e.  Ring )
3130adantr 276 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (oppr `  R
)  e.  Ring )
3229, 10opprbasg 14033 . . . . . . . . 9  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (oppr
`  R ) ) )
3332eleq2d 2299 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( ( N `  X )  e.  ( Base `  R
)  <->  ( N `  X )  e.  (
Base `  (oppr
`  R ) ) ) )
3433adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( N `  X
)  e.  ( Base `  R )  <->  ( N `  X )  e.  (
Base `  (oppr
`  R ) ) ) )
3513, 34mpbid 147 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  ( Base `  (oppr `  R
) ) )
36 eqid 2229 . . . . . . 7  |-  ( Base `  (oppr
`  R ) )  =  ( Base `  (oppr `  R
) )
37 eqid 2229 . . . . . . 7  |-  ( ||r `  (oppr `  R
) )  =  (
||r `  (oppr
`  R ) )
38 eqid 2229 . . . . . . 7  |-  ( invg `  (oppr `  R
) )  =  ( invg `  (oppr `  R
) )
3936, 37, 38dvdsrneg 14061 . . . . . 6  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N `  X )  e.  (
Base `  (oppr
`  R ) ) )  ->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( ( invg `  (oppr `  R
) ) `  ( N `  X )
) )
4030, 35, 39syl2an2r 597 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( ( invg `  (oppr
`  R ) ) `
 ( N `  X ) ) )
4129, 11opprnegg 14041 . . . . . . . 8  |-  ( R  e.  Ring  ->  N  =  ( invg `  (oppr `  R ) ) )
4241fveq1d 5628 . . . . . . 7  |-  ( R  e.  Ring  ->  ( N `
 ( N `  X ) )  =  ( ( invg `  (oppr
`  R ) ) `
 ( N `  X ) ) )
4342breq2d 4094 . . . . . 6  |-  ( R  e.  Ring  ->  ( ( N `  X ) ( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
)  <->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( ( invg `  (oppr `  R
) ) `  ( N `  X )
) ) )
4443adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( N `  X
) ( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
)  <->  ( N `  X ) ( ||r `  (oppr `  R
) ) ( ( invg `  (oppr `  R
) ) `  ( N `  X )
) ) )
4540, 44mpbird 167 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( N `  ( N `  X )
) )
4645, 18breqtrd 4108 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) X )
4725simprd 114 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  X
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
4836, 37dvdsrtr 14059 . . 3  |-  ( ( (oppr
`  R )  e. 
Ring  /\  ( N `  X ) ( ||r `  (oppr `  R
) ) X  /\  X ( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
4931, 46, 47, 48syl3anc 1271 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )
( ||r `
 (oppr
`  R ) ) ( 1r `  R
) )
505, 20, 21, 22, 23, 7isunitd 14064 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( N `  X
)  e.  U  <->  ( ( N `  X )
( ||r `
 R ) ( 1r `  R )  /\  ( N `  X ) ( ||r `  (oppr `  R
) ) ( 1r
`  R ) ) ) )
5128, 49, 50mpbir2and 950 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  ( N `  X )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4082   ` cfv 5317   Basecbs 13027   Grpcgrp 13528   invgcminusg 13529   1rcur 13917  SRingcsrg 13921   Ringcrg 13954  opprcoppr 14025   ||rcdsr 14044  Unitcui 14045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-tpos 6389  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-cmn 13818  df-abl 13819  df-mgp 13879  df-ur 13918  df-srg 13922  df-ring 13956  df-oppr 14026  df-dvdsr 14047  df-unit 14048
This theorem is referenced by:  aprsym  14242
  Copyright terms: Public domain W3C validator