Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemres Unicode version

Theorem trilpolemres 15713
Description: Lemma for trilpo 15714. The result. (Contributed by Jim Kingdon, 23-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
trilpolemgt1.a  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
trilpolemres.a  |-  ( ph  ->  ( A  <  1  \/  A  =  1  \/  1  <  A ) )
Assertion
Ref Expression
trilpolemres  |-  ( ph  ->  ( E. x  e.  NN  ( F `  x )  =  0  \/  A. x  e.  NN  ( F `  x )  =  1 ) )
Distinct variable groups:    i, F, x    ph, i, x    A, i, x

Proof of Theorem trilpolemres
StepHypRef Expression
1 trilpolemgt1.f . . . . 5  |-  ( ph  ->  F : NN --> { 0 ,  1 } )
21adantr 276 . . . 4  |-  ( (
ph  /\  A  <  1 )  ->  F : NN --> { 0 ,  1 } )
3 trilpolemgt1.a . . . 4  |-  A  = 
sum_ i  e.  NN  ( ( 1  / 
( 2 ^ i
) )  x.  ( F `  i )
)
4 simpr 110 . . . 4  |-  ( (
ph  /\  A  <  1 )  ->  A  <  1 )
52, 3, 4trilpolemlt1 15712 . . 3  |-  ( (
ph  /\  A  <  1 )  ->  E. x  e.  NN  ( F `  x )  =  0 )
65orcd 734 . 2  |-  ( (
ph  /\  A  <  1 )  ->  ( E. x  e.  NN  ( F `  x )  =  0  \/  A. x  e.  NN  ( F `  x )  =  1 ) )
71adantr 276 . . . 4  |-  ( (
ph  /\  A  = 
1 )  ->  F : NN --> { 0 ,  1 } )
8 simpr 110 . . . 4  |-  ( (
ph  /\  A  = 
1 )  ->  A  =  1 )
97, 3, 8trilpolemeq1 15711 . . 3  |-  ( (
ph  /\  A  = 
1 )  ->  A. x  e.  NN  ( F `  x )  =  1 )
109olcd 735 . 2  |-  ( (
ph  /\  A  = 
1 )  ->  ( E. x  e.  NN  ( F `  x )  =  0  \/  A. x  e.  NN  ( F `  x )  =  1 ) )
111, 3trilpolemgt1 15710 . . . 4  |-  ( ph  ->  -.  1  <  A
)
1211pm2.21d 620 . . 3  |-  ( ph  ->  ( 1  <  A  ->  ( E. x  e.  NN  ( F `  x )  =  0  \/  A. x  e.  NN  ( F `  x )  =  1 ) ) )
1312imp 124 . 2  |-  ( (
ph  /\  1  <  A )  ->  ( E. x  e.  NN  ( F `  x )  =  0  \/  A. x  e.  NN  ( F `  x )  =  1 ) )
14 trilpolemres.a . 2  |-  ( ph  ->  ( A  <  1  \/  A  =  1  \/  1  <  A ) )
156, 10, 13, 14mpjao3dan 1318 1  |-  ( ph  ->  ( E. x  e.  NN  ( F `  x )  =  0  \/  A. x  e.  NN  ( F `  x )  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    \/ w3o 979    = wceq 1364   A.wral 2475   E.wrex 2476   {cpr 3624   class class class wbr 4034   -->wf 5255   ` cfv 5259  (class class class)co 5923   0cc0 7882   1c1 7883    x. cmul 7887    < clt 8064    / cdiv 8702   NNcn 8993   2c2 9044   ^cexp 10633   sum_csu 11521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7973  ax-resscn 7974  ax-1cn 7975  ax-1re 7976  ax-icn 7977  ax-addcl 7978  ax-addrcl 7979  ax-mulcl 7980  ax-mulrcl 7981  ax-addcom 7982  ax-mulcom 7983  ax-addass 7984  ax-mulass 7985  ax-distr 7986  ax-i2m1 7987  ax-0lt1 7988  ax-1rid 7989  ax-0id 7990  ax-rnegex 7991  ax-precex 7992  ax-cnre 7993  ax-pre-ltirr 7994  ax-pre-ltwlin 7995  ax-pre-lttrn 7996  ax-pre-apti 7997  ax-pre-ltadd 7998  ax-pre-mulgt0 7999  ax-pre-mulext 8000  ax-arch 8001  ax-caucvg 8002
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6200  df-2nd 6201  df-recs 6365  df-irdg 6430  df-frec 6451  df-1o 6476  df-2o 6477  df-oadd 6480  df-er 6594  df-map 6711  df-en 6802  df-dom 6803  df-fin 6804  df-omni 7203  df-pnf 8066  df-mnf 8067  df-xr 8068  df-ltxr 8069  df-le 8070  df-sub 8202  df-neg 8203  df-reap 8605  df-ap 8612  df-div 8703  df-inn 8994  df-2 9052  df-3 9053  df-4 9054  df-n0 9253  df-z 9330  df-uz 9605  df-q 9697  df-rp 9732  df-ico 9972  df-fz 10087  df-fzo 10221  df-seqfrec 10543  df-exp 10634  df-ihash 10871  df-cj 11010  df-re 11011  df-im 11012  df-rsqrt 11166  df-abs 11167  df-clim 11447  df-sumdc 11522
This theorem is referenced by:  trilpo  15714
  Copyright terms: Public domain W3C validator