ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oexpneg Unicode version

Theorem oexpneg 11865
Description: The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.)
Assertion
Ref Expression
oexpneg  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( -u A ^ N
)  =  -u ( A ^ N ) )

Proof of Theorem oexpneg
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 nnz 9261 . . . . 5  |-  ( N  e.  NN  ->  N  e.  ZZ )
2 odd2np1 11861 . . . . 5  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
31, 2syl 14 . . . 4  |-  ( N  e.  NN  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
43biimpa 296 . . 3  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
543adant1 1015 . 2  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  ->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N )
6 simpl1 1000 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  A  e.  CC )
7 simprr 531 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( 2  x.  n )  +  1 )  =  N )
8 simpl2 1001 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  N  e.  NN )
98nncnd 8922 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  N  e.  CC )
10 1cnd 7964 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
1  e.  CC )
11 2z 9270 . . . . . . . . . . 11  |-  2  e.  ZZ
12 simprl 529 . . . . . . . . . . 11  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  n  e.  ZZ )
13 zmulcl 9295 . . . . . . . . . . 11  |-  ( ( 2  e.  ZZ  /\  n  e.  ZZ )  ->  ( 2  x.  n
)  e.  ZZ )
1411, 12, 13sylancr 414 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( 2  x.  n
)  e.  ZZ )
1514zcnd 9365 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( 2  x.  n
)  e.  CC )
169, 10, 15subadd2d 8277 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( N  - 
1 )  =  ( 2  x.  n )  <-> 
( ( 2  x.  n )  +  1 )  =  N ) )
177, 16mpbird 167 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( N  -  1 )  =  ( 2  x.  n ) )
18 nnm1nn0 9206 . . . . . . . 8  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
198, 18syl 14 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( N  -  1 )  e.  NN0 )
2017, 19eqeltrrd 2255 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( 2  x.  n
)  e.  NN0 )
216, 20expcld 10639 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( A ^ (
2  x.  n ) )  e.  CC )
2221, 6mulneg2d 8359 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( A ^
( 2  x.  n
) )  x.  -u A
)  =  -u (
( A ^ (
2  x.  n ) )  x.  A ) )
23 sqneg 10565 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( -u A ^ 2 )  =  ( A ^
2 ) )
246, 23syl 14 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ 2 )  =  ( A ^ 2 ) )
2524oveq1d 5884 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( -u A ^ 2 ) ^
n )  =  ( ( A ^ 2 ) ^ n ) )
266negcld 8245 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  -u A  e.  CC )
27 2re 8978 . . . . . . . . . . 11  |-  2  e.  RR
2827a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
2  e.  RR )
2912zred 9364 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  n  e.  RR )
30 2pos 8999 . . . . . . . . . . 11  |-  0  <  2
3130a1i 9 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
0  <  2 )
3220nn0ge0d 9221 . . . . . . . . . 10  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
0  <_  ( 2  x.  n ) )
33 prodge0 8800 . . . . . . . . . 10  |-  ( ( ( 2  e.  RR  /\  n  e.  RR )  /\  ( 0  <  2  /\  0  <_ 
( 2  x.  n
) ) )  -> 
0  <_  n )
3428, 29, 31, 32, 33syl22anc 1239 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
0  <_  n )
35 elnn0z 9255 . . . . . . . . 9  |-  ( n  e.  NN0  <->  ( n  e.  ZZ  /\  0  <_  n ) )
3612, 34, 35sylanbrc 417 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  n  e.  NN0 )
37 2nn0 9182 . . . . . . . . 9  |-  2  e.  NN0
3837a1i 9 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
2  e.  NN0 )
3926, 36, 38expmuld 10642 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ (
2  x.  n ) )  =  ( (
-u A ^ 2 ) ^ n ) )
406, 36, 38expmuld 10642 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( A ^ (
2  x.  n ) )  =  ( ( A ^ 2 ) ^ n ) )
4125, 39, 403eqtr4d 2220 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ (
2  x.  n ) )  =  ( A ^ ( 2  x.  n ) ) )
4241oveq1d 5884 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( -u A ^ ( 2  x.  n ) )  x.  -u A )  =  ( ( A ^ (
2  x.  n ) )  x.  -u A
) )
4326, 20expp1d 10640 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ (
( 2  x.  n
)  +  1 ) )  =  ( (
-u A ^ (
2  x.  n ) )  x.  -u A
) )
447oveq2d 5885 . . . . . 6  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ (
( 2  x.  n
)  +  1 ) )  =  ( -u A ^ N ) )
4543, 44eqtr3d 2212 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( -u A ^ ( 2  x.  n ) )  x.  -u A )  =  (
-u A ^ N
) )
4642, 45eqtr3d 2212 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( A ^
( 2  x.  n
) )  x.  -u A
)  =  ( -u A ^ N ) )
4722, 46eqtr3d 2212 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  -u ( ( A ^
( 2  x.  n
) )  x.  A
)  =  ( -u A ^ N ) )
486, 20expp1d 10640 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( A ^ (
( 2  x.  n
)  +  1 ) )  =  ( ( A ^ ( 2  x.  n ) )  x.  A ) )
497oveq2d 5885 . . . . 5  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( A ^ (
( 2  x.  n
)  +  1 ) )  =  ( A ^ N ) )
5048, 49eqtr3d 2212 . . . 4  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( ( A ^
( 2  x.  n
) )  x.  A
)  =  ( A ^ N ) )
5150negeqd 8142 . . 3  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  ->  -u ( ( A ^
( 2  x.  n
) )  x.  A
)  =  -u ( A ^ N ) )
5247, 51eqtr3d 2212 . 2  |-  ( ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  /\  ( n  e.  ZZ  /\  ( ( 2  x.  n )  +  1 )  =  N ) )  -> 
( -u A ^ N
)  =  -u ( A ^ N ) )
535, 52rexlimddv 2599 1  |-  ( ( A  e.  CC  /\  N  e.  NN  /\  -.  2  ||  N )  -> 
( -u A ^ N
)  =  -u ( A ^ N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   class class class wbr 4000  (class class class)co 5869   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983    - cmin 8118   -ucneg 8119   NNcn 8908   2c2 8959   NN0cn0 9165   ZZcz 9242   ^cexp 10505    || cdvds 11778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-xor 1376  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432  df-exp 10506  df-dvds 11779
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator