![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qusecsub | GIF version |
Description: Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.) |
Ref | Expression |
---|---|
qusecsub.x | ⊢ 𝐵 = (Base‘𝐺) |
qusecsub.n | ⊢ − = (-g‘𝐺) |
qusecsub.r | ⊢ ∼ = (𝐺 ~QG 𝑆) |
Ref | Expression |
---|---|
qusecsub | ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ = [𝑌] ∼ ↔ (𝑌 − 𝑋) ∈ 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusecsub.x | . . . . . 6 ⊢ 𝐵 = (Base‘𝐺) | |
2 | 1 | subgss 13113 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) |
3 | 2 | anim2i 342 | . . . 4 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝐵)) |
4 | 3 | adantr 276 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝐵)) |
5 | qusecsub.n | . . . 4 ⊢ − = (-g‘𝐺) | |
6 | qusecsub.r | . . . 4 ⊢ ∼ = (𝐺 ~QG 𝑆) | |
7 | 1, 5, 6 | eqgabl 13267 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝐵) → (𝑋 ∼ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑌 − 𝑋) ∈ 𝑆))) |
8 | 4, 7 | syl 14 | . 2 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑌 − 𝑋) ∈ 𝑆))) |
9 | 1, 6 | eqger 13163 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → ∼ Er 𝐵) |
10 | 9 | ad2antlr 489 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ∼ Er 𝐵) |
11 | simprl 529 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → 𝑋 ∈ 𝐵) | |
12 | 10, 11 | erth 6605 | . 2 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 ∼ 𝑌 ↔ [𝑋] ∼ = [𝑌] ∼ )) |
13 | df-3an 982 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑌 − 𝑋) ∈ 𝑆) ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 − 𝑋) ∈ 𝑆)) | |
14 | ibar 301 | . . . 4 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑌 − 𝑋) ∈ 𝑆 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 − 𝑋) ∈ 𝑆))) | |
15 | 14 | adantl 277 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑌 − 𝑋) ∈ 𝑆 ↔ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑌 − 𝑋) ∈ 𝑆))) |
16 | 13, 15 | bitr4id 199 | . 2 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (𝑌 − 𝑋) ∈ 𝑆) ↔ (𝑌 − 𝑋) ∈ 𝑆)) |
17 | 8, 12, 16 | 3bitr3d 218 | 1 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ([𝑋] ∼ = [𝑌] ∼ ↔ (𝑌 − 𝑋) ∈ 𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2160 ⊆ wss 3144 class class class wbr 4018 ‘cfv 5235 (class class class)co 5896 Er wer 6556 [cec 6557 Basecbs 12512 -gcsg 12947 SubGrpcsubg 13106 ~QG cqg 13108 Abelcabl 13224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1cn 7934 ax-1re 7935 ax-icn 7936 ax-addcl 7937 ax-addrcl 7938 ax-mulcl 7939 ax-addcom 7941 ax-addass 7943 ax-i2m1 7946 ax-0lt1 7947 ax-0id 7949 ax-rnegex 7950 ax-pre-ltirr 7953 ax-pre-ltadd 7957 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5852 df-ov 5899 df-oprab 5900 df-mpo 5901 df-1st 6165 df-2nd 6166 df-er 6559 df-ec 6561 df-pnf 8024 df-mnf 8025 df-ltxr 8027 df-inn 8950 df-2 9008 df-ndx 12515 df-slot 12516 df-base 12518 df-sets 12519 df-iress 12520 df-plusg 12602 df-0g 12763 df-mgm 12832 df-sgrp 12865 df-mnd 12878 df-grp 12948 df-minusg 12949 df-sbg 12950 df-subg 13109 df-eqg 13111 df-cmn 13225 df-abl 13226 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |