ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusecsub GIF version

Theorem qusecsub 13401
Description: Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025.)
Hypotheses
Ref Expression
qusecsub.x 𝐵 = (Base‘𝐺)
qusecsub.n = (-g𝐺)
qusecsub.r = (𝐺 ~QG 𝑆)
Assertion
Ref Expression
qusecsub (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝐵𝑌𝐵)) → ([𝑋] = [𝑌] ↔ (𝑌 𝑋) ∈ 𝑆))

Proof of Theorem qusecsub
StepHypRef Expression
1 qusecsub.x . . . . . 6 𝐵 = (Base‘𝐺)
21subgss 13244 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝐵)
32anim2i 342 . . . 4 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (𝐺 ∈ Abel ∧ 𝑆𝐵))
43adantr 276 . . 3 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝐵𝑌𝐵)) → (𝐺 ∈ Abel ∧ 𝑆𝐵))
5 qusecsub.n . . . 4 = (-g𝐺)
6 qusecsub.r . . . 4 = (𝐺 ~QG 𝑆)
71, 5, 6eqgabl 13400 . . 3 ((𝐺 ∈ Abel ∧ 𝑆𝐵) → (𝑋 𝑌 ↔ (𝑋𝐵𝑌𝐵 ∧ (𝑌 𝑋) ∈ 𝑆)))
84, 7syl 14 . 2 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ (𝑋𝐵𝑌𝐵 ∧ (𝑌 𝑋) ∈ 𝑆)))
91, 6eqger 13294 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → Er 𝐵)
109ad2antlr 489 . . 3 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝐵𝑌𝐵)) → Er 𝐵)
11 simprl 529 . . 3 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
1210, 11erth 6633 . 2 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝐵𝑌𝐵)) → (𝑋 𝑌 ↔ [𝑋] = [𝑌] ))
13 df-3an 982 . . 3 ((𝑋𝐵𝑌𝐵 ∧ (𝑌 𝑋) ∈ 𝑆) ↔ ((𝑋𝐵𝑌𝐵) ∧ (𝑌 𝑋) ∈ 𝑆))
14 ibar 301 . . . 4 ((𝑋𝐵𝑌𝐵) → ((𝑌 𝑋) ∈ 𝑆 ↔ ((𝑋𝐵𝑌𝐵) ∧ (𝑌 𝑋) ∈ 𝑆)))
1514adantl 277 . . 3 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝐵𝑌𝐵)) → ((𝑌 𝑋) ∈ 𝑆 ↔ ((𝑋𝐵𝑌𝐵) ∧ (𝑌 𝑋) ∈ 𝑆)))
1613, 15bitr4id 199 . 2 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝐵𝑌𝐵)) → ((𝑋𝐵𝑌𝐵 ∧ (𝑌 𝑋) ∈ 𝑆) ↔ (𝑌 𝑋) ∈ 𝑆))
178, 12, 163bitr3d 218 1 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ (𝑋𝐵𝑌𝐵)) → ([𝑋] = [𝑌] ↔ (𝑌 𝑋) ∈ 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2164  wss 3153   class class class wbr 4029  cfv 5254  (class class class)co 5918   Er wer 6584  [cec 6585  Basecbs 12618  -gcsg 13074  SubGrpcsubg 13237   ~QG cqg 13239  Abelcabl 13355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-er 6587  df-ec 6589  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-subg 13240  df-eqg 13242  df-cmn 13356  df-abl 13357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator