ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remul2 Unicode version

Theorem remul2 11040
Description: Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
remul2  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( A  x.  ( Re `  B ) ) )

Proof of Theorem remul2
StepHypRef Expression
1 recn 8014 . . 3  |-  ( A  e.  RR  ->  A  e.  CC )
2 remul 11039 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
31, 2sylan 283 . 2  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
4 rere 11032 . . . . 5  |-  ( A  e.  RR  ->  (
Re `  A )  =  A )
54adantr 276 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  A
)  =  A )
65oveq1d 5938 . . 3  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  =  ( A  x.  ( Re `  B ) ) )
7 reim0 11028 . . . . 5  |-  ( A  e.  RR  ->  (
Im `  A )  =  0 )
87oveq1d 5938 . . . 4  |-  ( A  e.  RR  ->  (
( Im `  A
)  x.  ( Im
`  B ) )  =  ( 0  x.  ( Im `  B
) ) )
9 imcl 11021 . . . . . 6  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
109recnd 8057 . . . . 5  |-  ( B  e.  CC  ->  (
Im `  B )  e.  CC )
1110mul02d 8420 . . . 4  |-  ( B  e.  CC  ->  (
0  x.  ( Im
`  B ) )  =  0 )
128, 11sylan9eq 2249 . . 3  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  =  0 )
136, 12oveq12d 5941 . 2  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  =  ( ( A  x.  ( Re
`  B ) )  -  0 ) )
14 recl 11020 . . . . 5  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
1514recnd 8057 . . . 4  |-  ( B  e.  CC  ->  (
Re `  B )  e.  CC )
16 mulcl 8008 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  B )  e.  CC )  -> 
( A  x.  (
Re `  B )
)  e.  CC )
171, 15, 16syl2an 289 . . 3  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( A  x.  (
Re `  B )
)  e.  CC )
1817subid1d 8328 . 2  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( ( A  x.  ( Re `  B ) )  -  0 )  =  ( A  x.  ( Re `  B ) ) )
193, 13, 183eqtrd 2233 1  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( A  x.  ( Re `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5923   CCcc 7879   RRcr 7880   0cc0 7881    x. cmul 7886    - cmin 8199   Recre 11007   Imcim 11008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-2 9051  df-cj 11009  df-re 11010  df-im 11011
This theorem is referenced by:  redivap  11041  remul2d  11139  abscxp  15161
  Copyright terms: Public domain W3C validator