ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  remul2 Unicode version

Theorem remul2 10532
Description: Real part of a product. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
remul2  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( A  x.  ( Re `  B ) ) )

Proof of Theorem remul2
StepHypRef Expression
1 recn 7671 . . 3  |-  ( A  e.  RR  ->  A  e.  CC )
2 remul 10531 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
31, 2sylan 279 . 2  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( ( ( Re `  A
)  x.  ( Re
`  B ) )  -  ( ( Im
`  A )  x.  ( Im `  B
) ) ) )
4 rere 10524 . . . . 5  |-  ( A  e.  RR  ->  (
Re `  A )  =  A )
54adantr 272 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  A
)  =  A )
65oveq1d 5741 . . 3  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( ( Re `  A )  x.  (
Re `  B )
)  =  ( A  x.  ( Re `  B ) ) )
7 reim0 10520 . . . . 5  |-  ( A  e.  RR  ->  (
Im `  A )  =  0 )
87oveq1d 5741 . . . 4  |-  ( A  e.  RR  ->  (
( Im `  A
)  x.  ( Im
`  B ) )  =  ( 0  x.  ( Im `  B
) ) )
9 imcl 10513 . . . . . 6  |-  ( B  e.  CC  ->  (
Im `  B )  e.  RR )
109recnd 7712 . . . . 5  |-  ( B  e.  CC  ->  (
Im `  B )  e.  CC )
1110mul02d 8067 . . . 4  |-  ( B  e.  CC  ->  (
0  x.  ( Im
`  B ) )  =  0 )
128, 11sylan9eq 2165 . . 3  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( ( Im `  A )  x.  (
Im `  B )
)  =  0 )
136, 12oveq12d 5744 . 2  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( ( ( Re
`  A )  x.  ( Re `  B
) )  -  (
( Im `  A
)  x.  ( Im
`  B ) ) )  =  ( ( A  x.  ( Re
`  B ) )  -  0 ) )
14 recl 10512 . . . . 5  |-  ( B  e.  CC  ->  (
Re `  B )  e.  RR )
1514recnd 7712 . . . 4  |-  ( B  e.  CC  ->  (
Re `  B )  e.  CC )
16 mulcl 7665 . . . 4  |-  ( ( A  e.  CC  /\  ( Re `  B )  e.  CC )  -> 
( A  x.  (
Re `  B )
)  e.  CC )
171, 15, 16syl2an 285 . . 3  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( A  x.  (
Re `  B )
)  e.  CC )
1817subid1d 7979 . 2  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( ( A  x.  ( Re `  B ) )  -  0 )  =  ( A  x.  ( Re `  B ) ) )
193, 13, 183eqtrd 2149 1  |-  ( ( A  e.  RR  /\  B  e.  CC )  ->  ( Re `  ( A  x.  B )
)  =  ( A  x.  ( Re `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1312    e. wcel 1461   ` cfv 5079  (class class class)co 5726   CCcc 7539   RRcr 7540   0cc0 7541    x. cmul 7546    - cmin 7850   Recre 10499   Imcim 10500
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-mpt 3949  df-id 4173  df-po 4176  df-iso 4177  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-2 8683  df-cj 10501  df-re 10502  df-im 10503
This theorem is referenced by:  redivap  10533  remul2d  10631
  Copyright terms: Public domain W3C validator